删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Out-of-time-ordered correlation in the anisotropic Dicke model

本站小编 Free考研考试/2022-01-02

Jihan Hu(胡继晗), Shaolong Wan(完绍龙),Department of Modern Physics, University of Science and Technology of China, Hefei, 230026, China

Received:2021-07-29Revised:2021-09-10Accepted:2021-09-10Online:2021-10-26


Abstract
Out-of-time-ordered correlation (OTOC) functions have been used as an indicator of quantum chaos in a lot of physical systems. In this work, we numerically demonstrate that zero temperature OTOC can detect quantum phase transition in the anisotropic Dicke model. The phase diagram is given with OTOC. The finite-size effect is studied. Finally, the temperature effect is discussed.
Keywords: OTOC;anisotropic dicke model;quantum phase transition


PDF (657KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Jihan Hu(胡继晗), Shaolong Wan(完绍龙). Out-of-time-ordered correlation in the anisotropic Dicke model. Communications in Theoretical Physics, 2021, 73(12): 125703- doi:10.1088/1572-9494/ac256d

1. Introduction

There has been a great revival of out-of-time-ordered correlation (OTOC) functions in recent years. Its importance was first realized by A Larkin and Y N Ovchinnikov [1]. After several decades of silence, its relevance to black holes was revealed by A Y Kitaev [2, 3]. Consider two generic unitary operators V and W, along with the Hamiltonian H of a many-body system. The OTOC is defined as$\begin{eqnarray}F(t)=\displaystyle \frac{1}{2}\left(\langle {V}^{\dagger }(0){W}^{\dagger }(t)V(0)W(t)\rangle +{\rm{h}}.{\rm{c}}.\right),\end{eqnarray}$where V(0) = V and W(t) = eiHtWe−iHt denote time-evolving unitary operators. ⟨...⟩ stands for the expectation value on a pure state of interest (in our case the ground state), or the thermal average for a given temperature. The OTOC is closely related to the squared commutator of V and W(t), which is written as C(t) = ⟨∣[W(t), V]∣2⟩ = 2(1 − ReF(t)). Naively substituting $W=V=\hat{p}$, we have [4]$\begin{eqnarray}\begin{array}{l}C(t)={{\hslash }}^{2}\left\langle {\left(\displaystyle \frac{\partial \hat{p}(t)}{\partial x(0)}\right)}^{2}\right\rangle \\ \approx \,{{\hslash }}^{2}\left\langle \left\langle {\left(\displaystyle \frac{{\rm{\Delta }}p(t)}{{\rm{\Delta }}x(0)}\right)}^{2}\right\rangle \right\rangle ={C}_{\mathrm{cl}}(t),\end{array}\end{eqnarray}$where $\hat{p}$ and $\hat{x}$ are the momentum and position operators, Ccl(t) is the classical counterpart of C(t). Then, we can see the intrinsic relation of C(t) with classical chaos, which attracts a lot of interest [58]. Over years of studies, OTOC is proved to be powerful in different scenarios including many-body localization, [911] information scrambling [12] and AdS/CFT [8, 13, 14].

As theoretical studies on OTOC go on, [1519] direct computations show that it can be used as an order parameter to distinguish different quantum phases. There have been flourishing works on the 1D Bose–Hubbard model, [20] Ising model [21] and the XXZ model [22]. In reference [23], OTOC in the Lipkin-Meshkov-Glick model is researched, indicating some connections between OTOC and excited-state quantum phase transition. Even in the topological phase transition, OTOC has a substantial footprint [24].

The Dicke model is definitely a fundamental model of cavity-QED, describing the interaction of many atoms to a single cavity mode [2528]. This model undergoes a phase transition to a superradiant state at a critical value of the atom-field interaction [26]. Classical chaos methods are widely applied to this model even before the recent enthusiasm [25, 26, 2934]. In reference [35], a diagrammatic method on OTOC is used to compute the Lyapunov exponent and study the chaotic behavior of the Dicke model. Reference [34] shows OTOCs of the Dicke model can also grow exponentially in its non-chaotic regime. The interplay of quantum phase transition and chaos remains an open question. Using OTOC as a complementary tool to show ergodic-nonergodic transition in a generalized version of the Dicke model, reference [36] concludes the existence of a quantum analogue of the classical Kolmogorov-Arnold-Moser (KAM) theorem, [37, 38] which might be misleading because the OTOC fails to show its power in detecting quantum phase transition.

In this work, we compute OTOC in the anisotropic Dicke model. Since the rigid quantum phase transition only occurs at zero temperature, we focus on zero temperature OTOC. Here, we recover the phase diagram of the anisotropic Dicke model with OTOC and study the finite-size effect. Finally, we give the dynamical pattern of OTOC as the temperature increases.

2. The model and the main result

The anisotropic Dicke model (ADM) can be written as$\begin{eqnarray}\begin{array}{rcl}H&=&{\hslash }\omega {a}^{\dagger }a+{\hslash }{\omega }_{z}{J}_{z}+\displaystyle \frac{{g}_{1}}{\sqrt{2j}}\left({a}^{\dagger }{J}_{-}+{{aJ}}_{+}\right)\\ & & +\ \displaystyle \frac{{g}_{2}}{\sqrt{2j}}\left({a}^{\dagger }{J}_{+}+{{aJ}}_{-}\right),\end{array}\end{eqnarray}$where a(a) are bosonic annihilation (creation) operators, satisfying [a, a] = 1 and ${J}_{\pm ,z}={\sum }_{i=1}^{2j}\tfrac{1}{2}{\sigma }_{\pm ,z}^{(i)}$ are angular momentum operators, describing a pseudospin of length j composed of N = 2j non-interacting spin-1/2 atoms described by the Pauli matrices ${\sigma }_{\pm ,z}^{(i)}$ acting on site i. The ADM describes a single bosonic mode (often a cavity photon mode) of frequency ω which interacts collectively with a set of N two-level systems (the atoms) with energy-splitting ωz ( conventionally taken to be 1), within the dipole approximation coupled to the field. Written in terms of collective operators, the ADM can be dramatically simplified when we take j to have its maximal value j = N/2. The model has four tunable parameters: The photon frequency ω, the atomic energy splitting ωz and counter-(co-)rotating photon-atom coupling g1(g2). For g1 = g2 = g, the ADM reduces to the Dicke model with coupling parameter g. The ADM possesses a parity symmetry ${\rm{\Pi }}=\exp (i\pi [{a}^{\dagger }a+{J}_{z}+j])$ satisfying [H, Π] = 0 with eigenvalues±1.

Our focus is restricted to the positive parity subspace, which includes the ground state for the parameter ranges considered in this work [26]. Hereafter, we work in the basis {∣n⟩ ⨂ ∣j, m⟩} with aan⟩ = nn⟩ and Jzj, m⟩ = mj, m⟩ and we set ω = ωz = 1 which is most physically acceptable. We take the cutoff of the number of bosons to be 100 unless otherwise stated (i.e. ncutoff = 100).

When g1 = 0 or g2 = 0, the ADM is integrable, which inspires a lot of researchers working on the integrablity of the model. In the thermodynamic limit N → ∞ , the ADM exhibits a second-order quantum phase transition at ${g}_{1}+{g}_{2}=\sqrt{\omega {\omega }_{z}}$ with order parameter aa/j, [26] separating the normal phase at ${g}_{1}+{g}_{2}\lt \sqrt{\omega {\omega }_{z}}$ with ⟨aa⟩/j = 0 from the superradiant phase with $\langle {a}^{\dagger }a\rangle /j={ \mathcal O }(1)$.

In the following, we utilize OTOC to detect the phase transition in the ADM. We take W = V = aa + 10, N = 2j = 10, and compute the OTOC at zero temperature, i.e. F(t) = ⟨VW(t)VW(t)⟩, where ⟨...⟩ stands for the expectation value on ground state. We focus on R(t) = 1 − F(t)/F(0). This value, dubbed residue OTOC, is large if the system spreads information fast. For a generic system, it is generally close to zero. In figure 1, R(t) is plotted for typical g1,2, as a function of time, from which we can see the OTOC of the ADM shows steady behavior.

Figure 1.

New window|Download| PPT slide
Figure 1.The representative time evolution of R(t) (defined in the text).


This enables us to utilize $\bar{{ \mathcal R }}={\mathrm{lim}}_{t\to \infty }{\int }_{0}^{t}R(t^{\prime} ){\rm{d}}t^{\prime} $, which is considered as saturation value, [22] to separate different phases. As indicated in figure 2, in normal phase (blue region), $\bar{{ \mathcal R }}$ is smaller than in the superradiant phase (white region), as a function of g1,2. In general, it is easy to understand that F(t) will not go far from F(0), if the interaction between atoms and field is small, leading to a small value of $\bar{{ \mathcal R }}$. We take about 30 × 30 points resulting in the saw-tooth pattern of the separatrix, which suggests the existence of a phase boundary. If more discrete points in the (g1, g2) space are considered, a smoother phase boundary is expected.

Figure 2.

New window|Download| PPT slide
Figure 2.Density plot of $\bar{{ \mathcal R }}$ as a function of g1,2. The Dicke model, i.e. in which g1 = g2, is indicated by a dot-dashed line. Normal phase (NP) and superradiant phase (SP) are separated by the quantum phase transition (QPT) line, the dashed line.


3. Finite-size effect and temperature going high

To analyze the finite-size effect with N increasing, we further calculate $\bar{{ \mathcal R }}$ with different N along the Dicke line as a function of g. Figure 3 shows close to the critical point (g ≈ 0.5), the slope is steeper with N larger. In the thermodynamic limit, we expect at gc = 0.5, there will be a sudden jump. Note that when N ≥ 6, there is a decreasing tendency with g going large. We believe it is caused by relatively small ncutoff, which does not have any effect on our discussion.

Figure 3.

New window|Download| PPT slide
Figure 3.$\bar{{ \mathcal R }}$ as a function of the Dicke coupling constant g, plotted with different N (the size of the system).


We plot the derivative of $\bar{{ \mathcal R }}$ with respect to g in figure 4. Despite the rapid oscillating behavior, we can infer there is a QPT near gc = 0.5.

Figure 4.

New window|Download| PPT slide
Figure 4.$\tfrac{{\rm{d}}\bar{{ \mathcal R }}}{{\rm{d}}g}$ plotted as g. The rapid oscillations are consequences of the finite time window we take.


To provide more compelling evidence, we give three fittings with N increasing. In figure 5(a), both the value at gc and the maximum of $\tfrac{{\rm{d}}\bar{{ \mathcal R }}}{{\rm{d}}g}$ grow linearly with N, fitting models being −0.0071 + 0.0249N (red line) and −0.0046 + 0.0776N (blue line) respectively. In figure 5(b), we fit the data using aNb + c, with a = 0.4079, b = 0.9220 and c = 0.0253.

Figure 5.

New window|Download| PPT slide
Figure 5.(a) Fittings of $\tfrac{{\rm{d}}\bar{{ \mathcal R }}}{{\rm{d}}g}$ at gc = 0.5 and of maximum of $\tfrac{{\rm{d}}\bar{{ \mathcal R }}}{{\rm{d}}g}$, respectively as a function of N. (b) Peak position gp minus gc as a function of N, tending to 0 with N large. Fitting models and parameters are given in the text.


The fittings clearly show the existence of a jump of $\bar{{ \mathcal R }}$ at gc, in the thermodynamic limit.

It is believed that OTOC can characterize ergodic-nonergodic transition in the ADM, [36] but with a relatively high temperature (T = 10).

Here, we want to track how a single physical quantity can show quite different physics of a system. In figure 6, we plot $\bar{{ \mathcal R }}$ as a function of g1,2, with β being ∞, 1, 0.7, 0.3, 0.1, and 0, viz, temperature being 0, 1, 1.43, 3.33, 10 and ∞. Although the scalings are different, the patterns are rather smooth, varying from a relatively clear boundary, which shows the existence of QPT, to a relatively blurred one, which is considered as a hint of the quantum KAM theorem.

Figure 6.

New window|Download| PPT slide
Figure 6.Density plot of $\bar{{ \mathcal R }}$ as a function of g1,2 with T = 0, 1, 1.43, 3.33, 10, ∞ respectively. Although the legends of each density plot are different, they do not matter and are left out for simplicity.


4. Conclusion and discussion

In this work, we compute zero temperature OTOC in the anisotropic Dicke model, and recover the phase diagram, which possesses a clear boundary between the normal phase and the superradiant phase. Further finite-size effect is discussed, and in the thermodynamic limit, the saturation value of the residue OTOC in the Dicke model will be like a step function, which demonstrates that the boundary line in the ADM will be quite clear as the number of atoms goes to infinity. We also provide a dynamic changing of density plot of $\bar{{ \mathcal R }}$ as the temperature increases. At zero temperature, the boundary is clear and separates the superradiant phase from the normal phase; At a quantitatively high temperature (T ≥ 10), the boundary is fuzzy, which shows an ergodic-nonergodic transition, suggesting the rationality of the quantum Kolmogorov-Arnold-Moser theorem.

Acknowledgments

This work was supported by NSFC Grant No. 11 275 180.


Reference By original order
By published year
By cited within times
By Impact factor

Larkin A I Ovchinnikov Y N 1969 Soviet Journal of Experimental and Theoretical Physics 28 1200
[Cited within: 1]

Kitaev A Y 2014Talk at the Fundamental Physics Prize Symposium (www.youtube.com/embed/OQ9qN8j7EZI)
[Cited within: 1]

Kitaev A Y 2015 Talk at KITP Program: Entanglement in Strongly-Correlated Quantum Matter(www.on.kitp.ucsb.edu//online/entangled15/kitaev/)
[Cited within: 1]

Rozenbaum E B Ganeshan S Galitski V 2017 Phys. Rev. Lett. 118 086801
DOI:10.1103/PhysRevLett.118.086801 [Cited within: 1]

Shenker S H Stanford D 2014 J. High Energy Phys. JHEP03(2014)067
DOI:10.1007/JHEP03(2014)067 [Cited within: 1]

Shenker S H Stanford D 2014 J. High Energy Phys. JHEP12(2014)046
DOI:10.1007/JHEP03(2014)067

Shenker S H Stanford D 2015 J. High Energy Phys. JHEP05(2015)132
DOI:10.1007/JHEP05(2015)132

Maldacena J Shenker S H Stanford D 2016 J. High Energy Phys. JHEP08(2016)106
DOI:10.1007/JHEP08(2016)106 [Cited within: 2]

Khemani V Vishwanath A Huse D A 2018 Phys. Rev. X 8 031057
[Cited within: 1]

Chen X Zhou T C Huse D A Fradkin E 2017 Ann. Phys. 529 1600332
DOI:10.1002/andp.201600332

Huang Y C Zhang Y L Chen X 2017 Ann. Phys. 529 1600318
DOI:10.1002/andp.201600318 [Cited within: 1]

Hosur P Qi X L Roberts D A Yoshida B 2016 J. High Energy Phys. JHEP02(2016)004
DOI:10.1007/JHEP02(2016)004 [Cited within: 1]

Maldacena J Stanford D 2016 Phys. Rev. D 94 106002
DOI:10.1103/PhysRevD.94.106002 [Cited within: 1]

Maldacena J Stanford D Yang Z B arXiv:1606.01857v2
[Cited within: 1]

Blake M Lee H Liu H 2018 J. High Energy Phys. JHEP10(2018)127
DOI:10.1007/JHEP10(2018)127 [Cited within: 1]

Halpern N Y 2017 Phys. Rev. A 95 012120
DOI:10.1103/PhysRevA.95.012120

Zhang Y L Huang Y C Chen X 2019 Phys. Rev. D 99 014303
DOI:10.1103/PhysRevB.99.014303

Rammensee J Urbina J D Richter K 2019 Phys. Rev. Lett. 121 124101
DOI:10.1103/PhysRevLett.121.124101

Cotler J Hunter-Jones N Liu J Y Yoshida B 2018 J. High Energy Phys. JHEP10(2018)127
[Cited within: 1]

Shen H T Zhang P F Fan R H Zhai H 2017 Phys. Rev. B 96 054503
DOI:10.1103/PhysRevB.96.054503 [Cited within: 1]

Heyl H Zhang P F Fan R H Zhai H 2018 Phys. Rev. Lett. 121 016801
DOI:10.1103/PhysRevLett.121.016801 [Cited within: 1]

Dağ C B Sun K Duan L M 2019 Phys. Rev. Lett. 123 140602
DOI:10.1103/PhysRevLett.123.140602 [Cited within: 2]

Wang Q Pérez-Bernal F Fan R H Zhai H 2019 Phys. Rev. A 100 062113
DOI:10.1103/PhysRevA.100.062113 [Cited within: 1]

Dağ C B Duan L M Sun K 2020 Phys. Rev. B 101 104415
DOI:10.1103/PhysRevB.101.104415 [Cited within: 1]

Emary C Brandes T 2003 Phys. Rev. Lett. 90 044101
DOI:10.1103/PhysRevLett.90.044101 [Cited within: 2]

Emary C Brandes T 2003 Phys. Rev. E 67 066203
DOI:10.1103/PhysRevE.67.066203 [Cited within: 4]

Garraway B M 2011 Phil. Trans. R. Soc. A 369 1137
DOI:10.1098/rsta.2010.0333

Kirton P Roses M M Keeling J Torre E G D 2019 Advanced Quantum Technologies 2 1800043
DOI:10.1002/qute.201800043 [Cited within: 1]

Altland A Haake F 2012 Phys. Rev. Lett. 108 073601
DOI:10.1103/PhysRevLett.108.073601 [Cited within: 1]

Pérez-Fernández P Relaño A Arias J M Cejnar P Dukelsky J García-Ramos J E 2011 Phys. Rev. E 83 046208
DOI:10.1103/PhysRevE.83.046208

Bastarrachea-Magnani M A et al. 2015 Phys. Scr. 90 068015
DOI:10.1088/0031-8949/90/6/068015

Chávez-Carlos J et al. 2016 Phys. Rev. E 94 022209
DOI:10.1103/PhysRevE.94.022209

Chávez-Carlos J et al. 2019 Phys. Rev. Lett. 122 024101
DOI:10.1103/PhysRevLett.122.024101

Bhattacharya U Dasgupta S Dutta A 2014 Phys. Rev. E 90 022920
DOI:10.1103/PhysRevE.90.022920 [Cited within: 2]

Alavirad Y Lavasani A 2019 Phys. Rev. A 99 043602
DOI:10.1103/PhysRevA.99.043602 [Cited within: 1]

Buijsman W Gritsev V Sprik R 2017 Phys. Rev. Lett. 118 080601
DOI:10.1103/PhysRevLett.118.080601 [Cited within: 2]

Hose G Taylor H S 1983 Phys. Rev. Lett. 51 947
DOI:10.1103/PhysRevLett.51.947 [Cited within: 1]

Brandino G P Caux J-S Konik R M 2015 Phys. Rev. X 5 041043
[Cited within: 1]

闂傚倷娴囬褏鈧稈鏅犻、娆撳冀椤撶偟鐛ラ梺鍦劋椤ㄥ懐澹曟繝姘厵闁告挆鍛闂佹娊鏀遍崹鍫曞Φ閸曨垰绠涢柛鎾茬劍閸嬔冾渻閵堝繒鍒扮€殿喖澧庨幑銏犫攽鐎n亞鍔﹀銈嗗笒鐎氼剛绮婚妷锔轰簻闁哄啠鍋撻柛搴″暱閻g兘濡烽妷銏℃杸濡炪倖姊婚悺鏂库枔濡眹浜滈柨鏂垮⒔閵嗘姊婚崒姘偓鐑芥倿閿旈敮鍋撶粭娑樻噽閻瑩鏌熼悜姗嗘畷闁稿孩顨嗛妵鍕棘閸喒鎸冮梺鍛婎殕瀹€鎼佸箖濡も偓閳藉鈻庣€n剛绐楅梻浣哥-缁垰螞閸愵喖钃熸繛鎴欏灩鍞梺闈涚箚閸撴繈鎮甸敃鈧埞鎴︽倷閹绘帗鍊悗鍏夊亾闁归棿绀侀拑鐔兼煏閸繍妲哥紒鐙欏洦鐓曟い顓熷灥閺嬬喐绻涢崼婵堝煟婵﹨娅g槐鎺懳熼悡搴樻嫛闂備胶枪缁ㄦ椽宕愬Δ鍐ㄥ灊婵炲棙鍔曠欢鐐烘煙闁箑澧版い鏃€甯″娲嚃閳圭偓瀚涢梺鍛婃尰閻╊垶鐛繝鍌楁斀閻庯綆鍋嗛崢浠嬫⒑缂佹◤顏勵嚕閼搁潧绶為柛鏇ㄥ幐閸嬫挾鎲撮崟顒傤槰闂佹寧娲忛崹浠嬪极閹扮増鍊风痪鐗埫禍楣冩煥濠靛棝顎楀ù婊冨⒔缁辨帡骞夌€n剛袦闂佸搫鐬奸崰鎰缚韫囨柣鍋呴柛鎰ㄦ櫓閳ь剙绉撮—鍐Χ閸℃ê鏆楅梺纭呮珪閹瑰洦淇婇幘顔肩闁规惌鍘介崓鐢告⒑閹勭闁稿妫濇俊瀛樼節閸屾鏂€闂佺粯锕╅崑鍕妤e啯鈷戦柛娑橈功閳藉鏌f幊閸旀垵顕i弻銉晢闁告洦鍓欓埀顒€鐖奸弻锝夊箛椤撶偟绁烽梺鎶芥敱濮婅绌辨繝鍕勃闁稿本鑹鹃~鍥⒑閸濆嫮鐒跨紒缁樼箓閻i攱绺介崜鍙夋櫇闂侀潧绻掓慨瀵哥不閹殿喚纾介柛灞剧懅閸斿秵銇勯妸銉﹀殗閽樻繈姊婚崼鐔恒€掗柡鍡檮閹便劌顫滈崱妤€浼庣紓浣瑰敾缁蹭粙婀侀梺鎸庣箓鐎氼垶顢楅悢璁垮綊鎮℃惔銏犳灎濠殿喖锕ュ钘夌暦閵婏妇绡€闁稿本绮庨幊鍡樼節绾版ɑ顫婇柛瀣噽閹广垽宕奸妷褍绁﹂梺鍦濠㈡﹢鏌嬮崶顒佺厸闁搞儮鏅涢弸鎴炵箾閸涱喚澧紒缁樼⊕濞煎繘宕滆琚f繝鐢靛仜閹锋垹绱炴担鍝ユ殾闁炽儲鏋奸崼顏堟煕椤愩倕鏋庨柍褜鍓涢弫濠氬蓟閿濆顫呴柣妯哄悁缁敻姊洪幖鐐测偓鎰板磻閹剧粯鈷掑ù锝堫潐閸嬬娀鏌涢弬璺ㄐら柟骞垮灲瀹曠喖顢橀悙鑼喊闂佽崵濮村ú銈咁嚕椤掑嫬绫嶉柛灞绢殔娴滈箖鏌ㄥ┑鍡涱€楀褌鍗抽弻銊モ槈閾忣偄顏�
547闂傚倸鍊搁崐椋庣矆娴i潻鑰块梺顒€绉查埀顒€鍊圭粋鎺斺偓锝庝簽閿涙盯姊洪悷鏉库挃缂侇噮鍨堕崺娑㈠箳濡や胶鍘遍梺鍝勬处椤ㄥ棗鈻嶉崨瀛樼厽闊浄绲奸柇顖炴煛瀹€瀣埌閾绘牠鏌嶈閸撶喖寮绘繝鍥ㄦ櫜濠㈣泛锕﹂悿鍥⒑鐟欏嫬绀冩い鏇嗗懐鐭嗛柛鎰ㄦ杺娴滄粓鐓崶銊﹀鞍妞ゃ儲绮撻弻锝夊箻鐎靛憡鍒涘┑顔硷攻濡炶棄鐣峰Δ鍛闁兼祴鏅涢崵鎺楁⒒娴e憡鎲搁柛锝冨劦瀹曟垿宕熼娑樹患闂佺粯鍨兼慨銈夊疾閹间焦鐓ラ柣鏇炲€圭€氾拷1130缂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾閽樻繃銇勯弽銊х煂闁活厽鎹囬弻锝夊閵忊晜姣岄梺绋款儐閹瑰洤鐣疯ぐ鎺濇晝闁挎繂娲﹂濠氭⒒娓氣偓閳ь剛鍋涢懟顖涙櫠閸欏浜滄い鎰╁焺濡叉椽鏌涢悩璇у伐妞ゆ挸鍚嬪鍕節閸愵厾鍙戦梻鍌欑窔閳ь剛鍋涢懟顖涙櫠閹绢喗鐓涢悘鐐登规晶鑼偓鍨緲鐎氼噣鍩€椤掑﹦绉靛ù婊勭矒閿濈偞鎯旈埦鈧弨浠嬫煟閹邦垰鐨哄褎鐩弻娑㈠Ω閵壯傝檸闂佷紮绲块崗姗€寮幘缁樺亹闁肩⒈鍓﹀Σ浼存煟閻斿摜鐭婄紒缁樺笧閸掓帒鈻庨幘宕囧€為梺鍐叉惈閸熶即鏁嶅⿰鍕瘈闁靛骏绲剧涵楣冩煥閺囶亪妾柡鍛劦濮婄粯鎷呴崨濠傛殘闁煎灕鍥ㄧ厱濠电姴鍟版晶杈╃磽閸屾稒宕岄柟绋匡攻缁旂喖鍩¢崒娑辨閻庤娲︽禍婵嬪箯閸涱垱鍠嗛柛鏇ㄥ幗琚欓梻鍌氬€风粈浣革耿闁秴鍌ㄧ憸鏃堝箖濞差亜惟闁宠桨鑳堕鍥⒑閸撴彃浜濇繛鍙夌墵閹偤宕归鐘辩盎闂佺懓顕崑娑㈩敋濠婂懐纾煎ù锝呮惈椤eジ鏌曢崶褍顏い銏℃礋婵偓闁宠桨绀佹竟澶愭⒒娴g懓顕滅紒瀣浮瀹曟繂鈻庨幘璺虹ウ闁诲函缍嗛崳顕€寮鍡欑瘈濠电姴鍊规刊鍏间繆閺屻儲鏁辩紒缁樼箞閹粙妫冨☉妤佸媰闂備焦鎮堕崝宀€绱炴繝鍌ゅ殨妞ゆ劑鍊楅惌娆愪繆椤愩倖鏆╅柛搴涘€楅幑銏犫攽鐎n亞鍊為梺闈浨归崕鏌ヮ敇濞差亝鈷戦柛婵嗗濡叉悂鏌eΔ浣虹煉鐎规洘鍨块獮鎺懳旈埀顒勫触瑜版帗鐓涢柛鎰╁妿婢ф盯鏌i幘宕囩闁哄本鐩崺鍕礃閳哄喚妲烽梻浣呵圭换鎰版儔閼测晜顫曢柟鐑橆殢閺佸﹪鏌涜箛鎿冩Ц濞存粓绠栭幃娲箳瀹ュ棛銈板銈庡亜椤︾敻鐛崱娑樻閹煎瓨鎸婚~宥夋⒑閸︻厼鍔嬮柛銊ㄦ珪缁旂喖寮撮悢铏诡啎闁哄鐗嗘晶浠嬪箖婵傚憡鐓涢柛婊€绀佹禍婊堝础闁秵鐓曟い鎰Т閸旀粓鏌i幘瀛樼闁哄瞼鍠栭幃婊兾熺拠鏌ョ€洪梻浣呵归鍥ㄧ箾閳ь剟鏌$仦鐣屝ユい褌绶氶弻娑滅疀閺冨倶鈧帗绻涢崱鎰仼妞ゎ偅绻勯幑鍕洪鍜冪船婵犲痉鏉库偓褏寰婃禒瀣柈妞ゆ牜鍋涚粻鐘虫叏濡顣抽柛瀣崌閻涱噣宕归鐓庮潛闂備礁鎽滈崰鎾寸箾閳ь剛鈧娲橀崹鍧楃嵁濡皷鍋撳☉娅亪顢撻幘缁樷拺缂備焦锚閻忥箓鏌ㄥ鑸电厓鐟滄粓宕滃☉銏犵;闁绘梻鍘ч悞鍨亜閹烘垵鏋ゆ繛鍏煎姍閺岀喖顢欓懖鈺佺厽閻庤娲樺ú鐔笺€佸☉銏″€烽柤纰卞墮婵附淇婇悙顏勨偓鏍垂婵傜ǹ纾垮┑鐘宠壘缁€鍌炴倶閻愭澘瀚庡ù婊勭矒閺岀喖骞嗚閹界娀鏌涙繝鍐ㄥ闁哄瞼鍠栭、娆撴嚃閳轰胶鍘介柣搴ゎ潐濞茬喐绂嶉崼鏇犲祦闁搞儺鍓欐儫闂侀潧顦崐鏇⑺夊顑芥斀闁绘劘鍩栬ぐ褏绱掗懠顒€浜剧紒鍌氱Ч閹崇偤濡疯濞村嫰姊洪幐搴㈢5闁稿鎹囧Λ浣瑰緞閹邦厾鍘遍棅顐㈡处濞叉牜鏁崼鏇熺厵闁稿繐鍚嬮崐鎰版煛鐏炵晫啸妞ぱ傜窔閺屾稖绠涢弮鍌楁闂傚洤顦甸弻娑㈠Ψ椤旂厧顫╃紒鐐劤閵堟悂寮婚弴鐔虹瘈闊洦娲滈弳鐘差渻閵堝棙绀夊瀛樻倐楠炲牓濡搁妷搴e枔缁瑩宕归纰辨綍闂傚倷鑳舵灙妞ゆ垵妫濋獮鎰節濮橆剛顔嗛梺鍛婁緱閸ㄩ亶宕伴崱娑欑厱闁哄洢鍔屾晶浼存煛閸℃ê鍝烘慨濠勭帛閹峰懘宕崟顐$帛闁诲孩顔栭崰妤呭磿婵傜ǹ桅闁圭増婢樼粈鍐┿亜韫囨挻顥犲璺哄娣囧﹪濡惰箛鏇炲煂闂佸摜鍣ラ崹璺虹暦閹达附鍋愮紓浣贯缚閸橀亶姊洪弬銉︽珔闁哥噥鍋呴幈銊╁焵椤掑嫭鈷戠紒瀣儥閸庢劙鏌熺粙娆剧吋妤犵偛绻樺畷銊р偓娑櫭禒鎯ь渻閵堝棛澧柤鐟板⒔缁骞嬮敂瑙f嫽婵炶揪绲介幉锟犲箚閸儲鐓曞┑鐘插閸︻厼寮查梻渚€娼х换鍫ュ磹閺囥垺鍊块柛顭戝亖娴滄粓鏌熺€电ǹ浠滄い鏇熺矌缁辨帗鎷呯憴鍕嚒濡炪値鍙€濞夋洟骞夐幘顔肩妞ゆ巻鍋撶痪鐐▕閹鈻撻崹顔界亾闂佽桨绀侀…鐑藉Υ娴g硶妲堟俊顖涚矌閸犲酣鎮鹃埄鍐跨矗濞达絽澹婂Λ婊勭節閻㈤潧浠╅柟娲讳簽缁辩偤鍩€椤掍降浜滄い鎰╁焺濡偓闂佽鍣换婵嬪春閳ь剚銇勯幒鎴濐仾闁抽攱甯¢弻娑氫沪閹规劕顥濋梺閫炲苯鍘哥紒顔界懇閵嗕礁鈻庨幇顔剧槇闂佸憡娲﹂崜锕€岣块悢鍏尖拺闁告挻褰冩禍婵囩箾閸欏澧辩紒顔垮吹缁辨帒螣闂€鎰泿闂備礁婀遍崑鎾翅缚濞嗘拲澶婎潩閼哥數鍘遍柣搴秵閸嬪懐浜告导瀛樼厵鐎瑰嫮澧楅崵鍥┾偓瑙勬礈閸忔﹢銆佸Ο琛℃敠闁诡垎鍌氼棜濠电姷鏁告慨鏉懨洪敃鍌氱9闁割煈鍋嗙粻楣冩煙鐎涙ḿ绠橀柡瀣暟缁辨帡鍩€椤掑倵鍋撻敐搴℃灍闁绘挸鍟伴幉绋库堪閸繄顦у┑鐐村灦濮樸劑鎯岄崱妞曞綊鏁愰崼鐔粹偓鍐煟閹烘埊韬柡宀€鍠庨埢鎾诲垂椤旂晫浜愰梻浣呵归鍡涘箰閹间礁鐓″璺哄閸嬫捇宕烽鐐愩儲銇勯敂鍨祮婵﹥妞介弻鍛存倷閼艰泛顏梺鍛娒幉锛勬崲濞戙垹绾ч柟瀵稿仜閺嬬姴顪冮妶鍐ㄧ仾闁挎洏鍨归悾鐑筋敃閿曗偓鍞悷婊冪灱缁厽寰勬繛鐐杸闁圭儤濞婂畷鎰板箻缂佹ê鈧潡鏌ㄩ弮鈧畷妯绘叏閾忣偅鍙忔俊顖氱仢閻撴劙鏌i幘宕囩闁哄本鐩崺鍕礃閳哄喚妲舵俊鐐€х拋锝嗕繆閸ヮ剙鐒垫い鎺嗗亾婵犫偓鏉堛劎浠氭俊鐐€ら崢濂稿床閺屻儲鍋╅柣鎴eГ閺呮煡鏌涢妷顖炴闁告洖鍟村铏圭矙閹稿孩鎷卞銈冨妼閹冲繒绮嬪澶婄畾妞ゎ兘鈧磭绉洪柡浣瑰姍瀹曘劑顢欓崗鍏肩暭闂傚倷绀侀幉鈥趁洪悢铏逛笉闁哄稁鍘奸拑鐔兼煥濠靛棭妲归柛濠勫厴閺屾稑鈻庤箛锝嗏枔濠碘槅鍋呴崹鍨潖濞差亝鐒婚柣鎰蔼鐎氫即鏌涘Ο缁樺€愰柡宀嬬秮楠炴帡鎮欓悽鍨闁诲孩顔栭崳顕€宕滈悢椋庢殾闁圭儤鍩堝ḿ鈺呮煥濠靛棙顥犻柛娆忓暞缁绘繂鈻撻崹顔界亾闂佺娅曢幐鍝ュ弲闂佺粯枪椤曆呭婵犳碍鐓欓柟顖嗗懏鎲兼繝娈垮灡閹告娊寮诲☉妯锋婵鐗婇弫楣冩⒑闂堚晝绋婚柟顔煎€垮濠氭晲閸℃ê鍔呴梺闈涚箳婵挳寮稿▎鎾寸厽闁绘ê鍟挎慨澶愭煕閻樺磭澧电€规洘妞介崺鈧い鎺嶉檷娴滄粓鏌熺€电ǹ浠滄い鏇熺矋閵囧嫰鏁冮崒銈嗩棖缂備浇椴搁幐鎼侇敇婵傜ǹ妞藉ù锝嚽规竟搴ㄦ⒒娴d警鏀版繛鍛礋閹囨偐鐠囪尙鐤囬梺缁樕戝鍧楀极閸℃稒鐓曢柟閭﹀枛娴滈箖鏌﹂幋婵愭Ш缂佽鲸鎹囧畷鎺戔枎閹存繂顬夐梻浣告啞閸旀洟鈥﹂悜鐣屽祦闊洦绋掗弲鎼佹煥閻曞倹瀚�28缂傚倸鍊搁崐鎼佸磹妞嬪孩顐介柨鐔哄Т绾捐顭块懜闈涘Е闁轰礁顑囬幉鎼佸籍閸稈鍋撴担鑲濇棃宕ㄩ闂寸盎闂備焦鍎崇换鎰耿闁秵鍋傞悗锝庡枟閳锋垿鎮峰▎蹇擃仾闁稿孩顨婇弻娑㈠Ω閵壯嶇礊婵犮垼顫夊ú鐔煎极閹剧粯鏅搁柨鐕傛嫹
相关话题/ordered correlation anisotropic