Diverse acoustic wave propagation to confirmable time【-逻*辑*与-】ndash;space fractional KP equation ari
本站小编 Free考研考试/2022-01-02
Aly R Seadawy,1, Muhammad Younis2, Muhammad Z Baber3, Syed T R Rizvi4, Muhammad S Iqbal31Mathematics Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia 2Department of Computer Science, University of the Punjab, Lahore, Pakistan 3Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan 4Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Pakistan
Abstract In this study, the (3+1)-dimensional fractional time–space Kadomtsev–Petviashivili (FTSKP) equation is considered and analyzed analytically, which propagates the acoustic waves in an unmagnetized dusty plasma. The fractional derivatives are studied in a confirmable sense. The new modified extended direct algebraic (MEDA) approach is adopted to investigate the diverse nonlinear wave structures. A variety of new families of hyperbolic and trigonometric solutions are obtained in single and different combinations. The obtained results are also constructed graphically with the different parametric choices. Keywords:exact solutions;fractional calculus;new MEDA technique;unmagnetized dusty plasma
PDF (3496KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite Cite this article Aly R Seadawy, Muhammad Younis, Muhammad Z Baber, Syed T R Rizvi, Muhammad S Iqbal. Diverse acoustic wave propagation to confirmable time–space fractional KP equation arising in dusty plasma. Communications in Theoretical Physics, 2021, 73(11): 115004- doi:10.1088/1572-9494/ac18bb
1. Introduction
Fractional partial differential equations (FPDEs) describe the nonlinear behavior of many physical phenomena in different fields. Therefore, it is imperative to find exact solutions of such type of model. Kadomtsev and Petviashvili extracted solutions to a (2+1)-dimensional KP equation [1, 2].
FPDEs are commonly used to describe problems in fluid mechanics, geographies, plasma physics, and thermal and mechanical systems. Increasing attention has been given by different scientists to find the exact solution for the fractional order reasoning. Many methods are being developed and are gradually maturing [3–9].
In this paper, the (3+1)-dimensional FTSKP equation is under investigation. This equation is used to analyze the complex dust acoustic wave structures [10, 11]. Diverse families of hyperbolic, trigonometric and plane wave solutions are constructed with different arguments. The new MEDA method [12–15] is adopted to derive the exact solutions. The (3+1)-dimensional FTSKP equation is read as follow [16, 17];$\begin{eqnarray}\begin{array}{l}{{\rm{D}}}_{t}^{\alpha }{{\rm{D}}}_{x}^{\alpha }u+{a}_{1}{\left({{\rm{D}}}_{x}^{\alpha }u\right)}^{2}+{a}_{1}u{{\rm{D}}}_{x}^{2\alpha }u\\ +{a}_{2}{{\rm{D}}}_{x}^{4\alpha }u+{a}_{3}{{\rm{D}}}_{y}^{2\alpha }u+{a}_{3}{{\rm{D}}}_{z}^{2\alpha }u=0.\end{array}\end{eqnarray}$In recent decades, exact solutions [18], analytical solutions [19] and numerical solutions [20] of many NPDEs have been successfully obtained. For example, the construction of bright-dark solitary waves and elliptic function solutions are observed in [21]. A fractional order model was used to find lump solutions in dusty plasma [22]. Dispersive shock wave solutions were also constructed in [23]. There are also many different methods for obtaining exact explicit solutions; the exp-function method [24, 25], the MEDA method [26], the extended auxiliary equation method [27] and modified method of simplest equation, the $(G^{\prime} /{G}^{2})$-expansion method [28], modified mapping method [29], extended homogeneous balance method [30] and extended Fan's sub-equation method [31], Lie algebraic discussion for affinity based information diffusion in social networks; analytical solution for an in-host viral infection model with time-inhomogeneous rates [32–34]; extended and modified direct algebraic method, extended mapping method, and Seadawy techniques [35–43].
2. Wave propagation
To find the exact solutions of equation (1) we convert it into an ordinary differential equation by using the following transformation$\begin{eqnarray}\begin{array}{l}u(x,y,z,t)=U(\xi ),\quad {\rm{where}}\\ \xi =\displaystyle \frac{p}{\alpha }{x}^{\alpha }+\displaystyle \frac{q}{\alpha }{y}^{\alpha }+\displaystyle \frac{r}{\alpha }{z}^{\alpha }-\displaystyle \frac{c}{\alpha }{t}^{\alpha }.\end{array}\end{eqnarray}$Equation (1) changes into the fractional order ordinary deferential equation as$\begin{eqnarray}\begin{array}{l}{{pcU}}^{{\prime\prime} }(\xi )+{\alpha }_{1}{\left({{pU}}^{{\prime} }(\xi )\right)}^{2}+{\alpha }_{1}{{pUU}}^{{\prime\prime} }(\xi )\\ +{\alpha }_{2}{p}^{4}{U}^{{\prime} \prime\prime\prime }(\xi )+{\alpha }_{3}{q}^{2}{U}^{{\prime\prime} }(\xi )+{\alpha }_{3}{r}^{2}{U}^{{\prime\prime} }(\xi )=0.\end{array}\end{eqnarray}$Suppose the solutions of equation (3) can be expressed as U(ξ) in the form of [15].$\begin{eqnarray}U(\xi )=\sum _{i=0}^{N}{b}_{i}{Q}^{i}(\xi ),\quad {b}_{i}\ne 0,\end{eqnarray}$where bi(0 ≤ i ≤ N) are constants and Q(ξ) is satisfy the equation (3). Here we take$\begin{eqnarray}\begin{array}{l}{Q}^{{\prime} }(\xi )=\mathrm{ln}(B)(\mu +\lambda Q(\xi )+{{rQ}}^{2}(\xi ))\\ B\ne 0,1\end{array}\end{eqnarray}$The value of N for equation (4) is taken by homogeneous balancing principle from equation (3) by putting equal to highest derivative term and highest nonlinear term. It gives N = 1 and takes expression from the solutions of equation (4) as$\begin{eqnarray}u(\xi )={b}_{0}+{b}_{1}Q(\xi ).\end{eqnarray}$Substituting equation (6) and its derivatives in equation (3) and equating the co-efficients of the same power of Q(ξ) equal to zero, we get the system of equations easily. We further solve this system of equations by using the mathematica or maple, and get the solutions set as follows:
Case 1: where free parameters are r and μ while along with b0 = 0, ${b}_{1}=-\tfrac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}$,$\lambda =\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}$
Type 1: For λ2 − μr < 0 and r ≠ 0, the mixed trigonometric solutions are found as$\begin{eqnarray*}\begin{array}{l}{u}_{1}(\xi )=-\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ \times \left(-\displaystyle \frac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{2\sqrt{5}\sqrt{{\alpha }_{2}}{{rp}}^{2}\mathrm{ln}(B)}+\displaystyle \frac{\sqrt{-\left(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}}{2r}\right.\\ \left.{\tan }_{B}\left(\displaystyle \frac{\sqrt{-(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r)}}{2}\xi \right)\right).\end{array}\end{eqnarray*}$The plot and its corresponding contour plot of the solution u1(x, t) are depicted in figure 1, for the different choices of parameters c = 100, p = 100.101, μ = 0.1, s = 0.0005, α1 =20, α2 = 0.9, α3 = 1, r = 0.0002, q = 0.1, and B = 5.$\begin{eqnarray*}\begin{array}{l}{u}_{2}(\xi )=-\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ \times \left(-\displaystyle \frac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{2\sqrt{5}\sqrt{{\alpha }_{2}}{{rp}}^{2}\mathrm{ln}(B)}-\displaystyle \frac{\sqrt{-\left(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}}{2r}\right.\\ \left.{\cot }_{B}\left(\displaystyle \frac{\sqrt{-\left(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}}{2}\xi \right)\right).\end{array}\end{eqnarray*}$The plot and its corresponding contour plot of the solution u1(x, t) are depicted in figure 2, for the values of parameters c = 120, p = 1, μ = 0.1, s = 0.0005, α1 = 20, α2 = 0.9, α3 = 1, q = 0.0002, q = 0.1, and B = 5.$\begin{eqnarray*}\begin{array}{l}{u}_{3}(\xi )=-\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ \times \left(-\displaystyle \frac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{2\sqrt{5}\sqrt{{\alpha }_{2}}{{rp}}^{2}\mathrm{ln}(B)}+\displaystyle \frac{\sqrt{-\left(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}}{2r}\right.\\ \left({\tan }_{B}\left(\sqrt{-\left(\displaystyle \frac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}\xi \right)\right.\\ \left.\left.\pm \sqrt{({pq})}{\sec }_{B}\left(\sqrt{-\left(\displaystyle \frac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}\xi \right)\right)\right).\end{array}\end{eqnarray*}$The plot and its corresponding contour plot of the solutions u3(x, t) are depicted in figure 3, for the values of parameters c = 20, p = 20, μ = 2.1, s = 10.5, α1 = 20, α2 = 0.9, α3 = 1, q = 2.2, q = 1.1, and B = 2.$\begin{eqnarray*}\begin{array}{l}{u}_{4}(\xi )=-\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ \times \left(-\displaystyle \frac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{2\sqrt{5}\sqrt{{\alpha }_{2}}{{rp}}^{2}\mathrm{ln}(B)}-\displaystyle \frac{\sqrt{-\left(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}}{2r}\right.\\ \left({\cot }_{B}\left(\sqrt{-\left(\displaystyle \frac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}\xi \right)\right.\\ \left.\left.\pm \sqrt{({pq})}{\csc }_{B}\left(\sqrt{-\left(\displaystyle \frac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}\xi \right)\right)\right).\end{array}\end{eqnarray*}$The plot and its corresponding contour plot of the solutions u4(x, t) are depicted in figure 4, for the values of parameters c = 10, p = 20, μ = 21, s = 15, α1 = 30, α2 = 1.9, α3 = 10, q = 22.2, q = 1.1, and B = 5.$\begin{eqnarray*}\begin{array}{l}{u}_{5}(\xi )=-\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ \times \left(-\displaystyle \frac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{2\sqrt{5}\sqrt{{\alpha }_{2}}{{rp}}^{2}\mathrm{ln}(B)}+\displaystyle \frac{\sqrt{-\left(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}}{2r}\right.\\ \left({\tan }_{B}\left(\displaystyle \frac{\sqrt{-\left(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}}{4}\xi \right)\right.\\ \left.\left.-\sqrt{({pq})}{\cot }_{B}\left(\displaystyle \frac{\sqrt{-\left(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}}{4}\xi \right)\right)\right).\end{array}\end{eqnarray*}$The plot and its corresponding contour plot of the solutions u5(x, t) are depicted in figure 5, for the values of parameters c = 10, p = 20, μ = 21, s = 15, α1 = 30, α2 = 1.9, α3 = 10, q = 22.2, q = 1.1, and B = 5.
Figure 1.
New window|Download| PPT slide Figure 1.Graphical representation and corresponding contour of u1(x, t) for different values of parameters.
Figure 2.
New window|Download| PPT slide Figure 2.Graphical representation and corresponding contour of u2(x, t) for different values of parameters.
Figure 3.
New window|Download| PPT slide Figure 3.Graphical representation and corresponding contour of u3(x, t) for different values of parameters.
Figure 4.
New window|Download| PPT slide Figure 4.Graphical representation and corresponding contour of u4(x, t) for different values of parameters.
Figure 5.
New window|Download| PPT slide Figure 5.Graphical representation and corresponding contour of u5(x, t) for different values of parameters.
Type 2: For λ2 − μr > 0 and r ≠ 0, different types of solutions are obtained.
The dark solutions are obtained as$\begin{eqnarray*}\begin{array}{l}{u}_{6}(\xi )=-\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ \times \left(-\displaystyle \frac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{2\sqrt{5}\sqrt{{\alpha }_{2}}{{rp}}^{2}\mathrm{ln}(B)}+\displaystyle \frac{\sqrt{-\left(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}}{2r}\right.\\ \left.{\tanh }_{B}\left(\displaystyle \frac{\sqrt{-(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r)}}{2}\xi \right)\right).\end{array}\end{eqnarray*}$The plot and its corresponding contour plot of the solutions u6(x, t) are depicted in figure 6, for the values of parameters c = 10, p = 10.101, μ = 0.1, s = 11.5, α1 = 20, α2 = 0.9, α3 = 1, q = 0.0002, q = 0.1, and B = 5.
Figure 6.
New window|Download| PPT slide Figure 6.Graphical representation and corresponding contour of u6(x, t) for different values of parameters.
The singular solution is obtained as$\begin{eqnarray*}\begin{array}{l}{u}_{7}(\xi )=-\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ \times \left(-\displaystyle \frac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{2\sqrt{5}\sqrt{{\alpha }_{2}}{{rp}}^{2}\mathrm{ln}(B)}-\displaystyle \frac{\sqrt{-\left(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}}{2r}\right.\\ \left.{\coth }_{B}\left(\displaystyle \frac{\sqrt{-\left(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}}{2}\xi \right)\right).\end{array}\end{eqnarray*}$The complex dark bright solution is obtained as$\begin{eqnarray*}\begin{array}{l}{u}_{8}(\xi )=-\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ \times \left(-\displaystyle \frac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{2\sqrt{5}\sqrt{{\alpha }_{2}}{{rp}}^{2}\mathrm{ln}(B)}-\displaystyle \frac{\sqrt{-\left(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}}{2r}\right.\\ \left({\tanh }_{B}\left(\sqrt{-\left(\displaystyle \frac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}\xi \right)\right.\\ \left.\left.\pm {\rm{i}}\sqrt{({pq})}{{\rm{{\rm{sech}} }}}_{B}\left(\sqrt{-\left(\displaystyle \frac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}\xi \right)\right)\right).\end{array}\end{eqnarray*}$The plot and its corresponding contour plot of the solutions u6(x, t) are depicted in figure 7, for the values of parameters c = 100, p = 100, μ = 21, s = 10.5, α1 = 200, α2 = 10.9, α3 = 1, q = 20.2, q = 11, and B = 20.
Figure 7.
New window|Download| PPT slide Figure 7.Graphical representation and corresponding contour of u8(x, t) for different values of parameters.
Type 3: For μr > 0 and λ = 0, we obtained trigonometric solutions as$\begin{eqnarray*}\begin{array}{rcl}{u}_{11}(\xi ) & = & -\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \times \left(\sqrt{\displaystyle \frac{\mu }{r}}{\tan }_{B}(\sqrt{\mu r}\xi )\right).\end{array}\end{eqnarray*}$The plot and its corresponding contour plot of the solutions u11(x, t) are depicted in figure 8, for the values of parameters c = 80, p = 1.01, μ = 0.1, s = 0.05, α1 = 10, α2 = 0.9, α3 = 1, q = 0.002, q = 0.1, and B = 3.$\begin{eqnarray*}\begin{array}{rcl}{u}_{12}(\xi ) & = & \displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \times \left(\sqrt{\displaystyle \frac{\mu }{r}}{\cot }_{B}(\sqrt{\mu r}\xi )\right).\end{array}\end{eqnarray*}$The plot and its corresponding contour plot of the solutions u12(x, t) are depicted in figure 9, for the values of parameters c = 80, p = 0.01, μ = 0.1, s = 0.05, α1 = 10, α2 = 0.9, α3 = 1, q = 0.002, q = 0.1, and B = 3.
Figure 8.
New window|Download| PPT slide Figure 8.Graphical representation and corresponding contour of u11(x, t) for different values of parameters.
Figure 9.
New window|Download| PPT slide Figure 9.Graphical representation and corresponding contour of u12(x, t) for different values of parameters.
The mixed trigonometric solutions are obtained as$\begin{eqnarray*}\begin{array}{rcl}{u}_{13}(\xi ) & = & -\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \times \sqrt{\displaystyle \frac{\mu }{r}}\left({\tan }_{B}(2\sqrt{\mu r}\xi )\pm \sqrt{{pq}}{\sec }_{B}(2\sqrt{\mu r}\xi )\right).\end{array}\end{eqnarray*}$The plot and its corresponding contour plot of the solutions u13(x, t) are depicted in figure 10, for the values of parameters c = 100, p = 100, μ = 1.1, s = 1.05, α1 = 10, α2 = 0.9, α3 = 1, q = 0.02, q = 0.1, and B = 3.$\begin{eqnarray*}\begin{array}{rcl}{u}_{14}(\xi ) & = & \displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \times \sqrt{\displaystyle \frac{\mu }{r}}\left({\cot }_{B}\left(2\sqrt{\mu r}\xi \right)\pm \sqrt{{pq}}{\csc }_{B}\left(2\sqrt{\mu r}\xi \right)\right),\end{array}\end{eqnarray*}$$\begin{eqnarray*}\begin{array}{rcl}{u}_{15}(\xi ) & = & -\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \times \displaystyle \frac{1}{2}\sqrt{\displaystyle \frac{\mu }{r}}\left({\tan }_{B}(\displaystyle \frac{\sqrt{\mu r}}{2}\xi )-\sqrt{{pq}}{\cot }_{B}(\displaystyle \frac{\sqrt{\mu r}}{2}\xi )\right),\end{array}\end{eqnarray*}$
Figure 10.
New window|Download| PPT slide Figure 10.Graphical representation and corresponding contour of u13(x, t) for different values of parameters.
Type 4: For μr < 0 and λ = 0, we obtained dark solutions as$\begin{eqnarray*}\begin{array}{rcl}{u}_{16}(\xi ) & = & \displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \times \left(\sqrt{-\displaystyle \frac{\mu }{r}}{\tanh }_{B}(\sqrt{-\mu r}\xi )\right).\end{array}\end{eqnarray*}$The plot and its corresponding contour plot of the solutions u16(x, t) are depicted in figure 11, for the values of parameters c = 80, p = 1.01, μ = 0.1, s = 0.05, α1 = 10, α2 = 0.9, α3 = 1, q = 0.02, q = 0.1, and B = 3. We get the singular solution as$\begin{eqnarray*}\begin{array}{rcl}{u}_{17}(\xi ) & = & \displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \times \left(\sqrt{-\displaystyle \frac{\mu }{r}}{\coth }_{B}(\sqrt{-\mu r}\xi )\right).\end{array}\end{eqnarray*}$The plot and its corresponding contour plot of the solutions u17(x, t) are depicted in figure 12, for the values of parameters c = 80, p = 0.01, μ = 0.1, s = 0.05, α1 = 10, α2 = 0.9, α3 = 1, q = 0.002, q = 0.1, and B = 3.
Figure 11.
New window|Download| PPT slide Figure 11.Graphical representation and corresponding contour of u16(x, t) for different values of parameters.
Figure 12.
New window|Download| PPT slide Figure 12.Graphical representation and corresponding contour of u17(x, t) for different values of parameters.
The different type of complex combo solutions are obtained as$\begin{eqnarray*}\begin{array}{l}{u}_{18}(\xi )=\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ \times \sqrt{-\displaystyle \frac{\mu }{r}}\left({\tanh }_{B}(2\sqrt{-\mu r}\xi )\pm {\rm{i}}\sqrt{{pq}}{{\rm{{\rm{sech}} }}}_{B}(2\sqrt{-\mu r}\xi )\right).\end{array}\end{eqnarray*}$The plot and its corresponding contour plot of the solutions u18(x, t) are depicted in figure 13, for the values of parameters c = 100, p = 100, μ = 1.1, s = 1.05, α1 = 10, α2 = 0.9, α3 = 1, q = 0.02, q = 0.1, and B = 3.$\begin{eqnarray*}\begin{array}{l}{u}_{19}(\xi )=\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ \times \sqrt{-\displaystyle \frac{\mu }{r}}\left({\coth }_{B}(2\sqrt{-\mu r}\xi )\pm \sqrt{{pq}}{{csch}}_{B}(2\sqrt{-\mu r}\xi )\right),\end{array}\end{eqnarray*}$$\begin{eqnarray*}\begin{array}{l}{u}_{20}(\xi )=-\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ \times \displaystyle \frac{1}{2}\sqrt{\displaystyle \frac{-\mu }{r}}\left({\tanh }_{B}(\displaystyle \frac{\sqrt{-\mu r}}{2}\xi )-{\coth }_{B}(\displaystyle \frac{\sqrt{-\mu r}}{2}\xi )\right).\end{array}\end{eqnarray*}$The plot and its corresponding contour plot of the solutions u20(x, t) are depicted in figure 14, for the values of parameters c = 100, p = 100, μ = 1.1, s = 1.05, α1 = 10, α2 = 0.9, α3 = 1, q = 0.02, q = 0.1, and B = 3.
Figure 13.
New window|Download| PPT slide Figure 13.Graphical representation and corresponding contour of u18(x, t) for different values of parameters.
Figure 14.
New window|Download| PPT slide Figure 14.Graphical representation and corresponding contour of u20(x, t) for different values of parameters.
The dark solutions are obtained as$\begin{eqnarray*}\begin{array}{rcl}{u}_{43}(\xi ) & = & \displaystyle \frac{{\alpha }_{2}\left(-{\lambda }^{2}\right){p}^{4}{\mathrm{ln}}^{2}(B)-{cp}-{\alpha }_{3}{q}^{2}-{\alpha }_{3}{s}^{2}}{{\alpha }_{1}p}\\ & & -\displaystyle \frac{12{\alpha }_{2}\lambda {p}^{3}r{\mathrm{ln}}^{2}(B)}{{\alpha }_{1}(2p+1)}\\ & & \times \left(-\displaystyle \frac{\lambda }{2r}-\displaystyle \frac{\sqrt{3{\lambda }^{2}}}{2r}{\tanh }_{B}\left(\displaystyle \frac{\sqrt{3{\lambda }^{2}}}{2}\xi \right)\right).\end{array}\end{eqnarray*}$The plot and its corresponding contour plot of the solutions u43(x, t) are depicted in figure 15, for the values of parameters c = 2, p = 2, μ = 3.1, s = 10.05, α1 = 3, α2 = 1.9, α3 = 1, q = 0.2, q = 0.1, and B = 3.
Figure 15.
New window|Download| PPT slide Figure 15.Graphical representation and corresponding contour of u43(x, t) for different values of parameters.
The singular solution is obtained as$\begin{eqnarray*}\begin{array}{rcl}{u}_{44}(\xi ) & = & \displaystyle \frac{{\alpha }_{2}\left(-{\lambda }^{2}\right){p}^{4}{\mathrm{ln}}^{2}(B)-{cp}-{\alpha }_{3}{q}^{2}-{\alpha }_{3}{s}^{2}}{{\alpha }_{1}p}\\ & & -\displaystyle \frac{12{\alpha }_{2}\lambda {p}^{3}r{\mathrm{ln}}^{2}(B)}{{\alpha }_{1}(2p+1)}\\ & & \times \left(-\displaystyle \frac{\lambda }{2r}-\displaystyle \frac{\sqrt{3{\lambda }^{2}}}{2r}{\coth }_{B}\left(\displaystyle \frac{\sqrt{3{\lambda }^{2}}}{2}\xi \right)\right).\end{array}\end{eqnarray*}$The plot and its corresponding contour plot of the solutions u44(x, t) are depicted in figure 16, for the values of parameters c = 2, p = 2, μ = 3.1, s = 10.05, α1 = 3, α2 = 1.9, α3 = 1, q = 0.2, q = 0.1, and B = 3.
Figure 16.
New window|Download| PPT slide Figure 16.Graphical representation and corresponding contour of u44(x, t) for different values of parameters.
The complex dark bright solution is obtained as$\begin{eqnarray*}\begin{array}{rcl}{u}_{45}(\xi ) & = & \displaystyle \frac{{\alpha }_{2}\left(-{\lambda }^{2}\right){p}^{4}{\mathrm{ln}}^{2}(B)-{cp}-{\alpha }_{3}{q}^{2}-{\alpha }_{3}{s}^{2}}{{\alpha }_{1}p}\\ & & -\displaystyle \frac{12{\alpha }_{2}\lambda {p}^{3}r{\mathrm{ln}}^{2}(B)}{{\alpha }_{1}(2p+1)}\\ & & \times \left(-\displaystyle \frac{\lambda }{2r}-\displaystyle \frac{\sqrt{3{\lambda }^{2}}}{2r}\left({\tanh }_{B}\left(\sqrt{3{\lambda }^{2}}\xi \right)\right.\right.\\ & & \left.\left.\pm {\rm{i}}\sqrt{({pq})}{{{\rm{sech}} }}_{B}\left(\sqrt{3{\lambda }^{2}}\xi \right)\right)\Space{0ex}{3.5ex}{0ex}\right).\end{array}\end{eqnarray*}$The plot and its corresponding contour plot of the solutions u45(x, t) are depicted in figure 17, for the values of parameters c = 20, p = 20, μ = 1.011, s = 1.05, α1 = 10, α2 = 10.9, α3 = 2, q = 10.2, q = 10.1, and B = 5.
Figure 17.
New window|Download| PPT slide Figure 17.Graphical representation and corresponding contour of u45(x, t) for different values of parameters.
The mixed singular solution is obtained as$\begin{eqnarray*}\begin{array}{rcl}{u}_{46}(\xi ) & = & \displaystyle \frac{{\alpha }_{2}\left(-{\lambda }^{2}\right){p}^{4}{\mathrm{ln}}^{2}(B)-{cp}-{\alpha }_{3}{q}^{2}-{\alpha }_{3}{s}^{2}}{{\alpha }_{1}p}\\ & & -\displaystyle \frac{12{\alpha }_{2}\lambda {p}^{3}r{\mathrm{ln}}^{2}(B)}{{\alpha }_{1}(2p+1)}\\ & & \times \left(-\displaystyle \frac{\lambda }{2r}-\displaystyle \frac{\sqrt{-3{\lambda }^{2}}}{2r}\left({\coth }_{B}\left(\sqrt{3{\lambda }^{2}}\xi \right)\right.\right.\\ & & \left.\left.\pm \sqrt{({pq})}{{csch}}_{B}\left(\sqrt{3{\lambda }^{2}}\xi \right)\right)\Space{0ex}{3.5ex}{0ex}\right).\end{array}\end{eqnarray*}$The plot and its corresponding contour plot of the solutions u46(x, t) are depicted in figure 18, for the values of parameters c = 20, p = 20, μ = 1.011, s = 1.05, α1 = 10, α2 = 10.9, α3 = 2, q = 10.2, q = 10.1, and B = 5.
Figure 18.
New window|Download| PPT slide Figure 18.Graphical representation and corresponding contour of u46(x, t) for different values of parameters.
The dark solution is obtained as$\begin{eqnarray*}\begin{array}{rcl}{u}_{47}(\xi ) & = & \displaystyle \frac{{\alpha }_{2}\left(-{\lambda }^{2}\right){p}^{4}{\mathrm{ln}}^{2}(B)-{cp}-{\alpha }_{3}{q}^{2}-{\alpha }_{3}{s}^{2}}{{\alpha }_{1}p}\\ & & -\displaystyle \frac{12{\alpha }_{2}\lambda {p}^{3}r{\mathrm{ln}}^{2}(B)}{{\alpha }_{1}(2p+1)}\left(-\displaystyle \frac{\lambda }{2r}+\displaystyle \frac{\sqrt{3{\lambda }^{2}}}{4r}\right.\\ & & \left.\times \left({\tanh }_{B}\left(\displaystyle \frac{\sqrt{3{\lambda }^{2}}}{4}\xi \right)+{\coth }_{B}\left(\displaystyle \frac{\sqrt{3{\lambda }^{2}}}{4}\xi \right)\right)\right).\end{array}\end{eqnarray*}$The plot and its corresponding contour plot of the solutions u47(x, t) are depicted in figure 19, for the values of parameters c = 20, p = 20, μ = 1.011, s = 1.05, α1 = 10, α2 = 10.9, α3 = 2, q = 10.2, q = 10.1, and B = 5.
Figure 19.
New window|Download| PPT slide Figure 19.Graphical representation and corresponding contour of u47(x, t) for different values of parameters.
Type 3: For λ2 = μr we have trigonometric solutions obtained as$\begin{eqnarray*}\begin{array}{rcl}{u}_{48}(\xi ) & = & \displaystyle \frac{{\alpha }_{2}\left(-{\lambda }^{2}\right){p}^{4}{\mathrm{ln}}^{2}(B)-{cp}-{\alpha }_{3}{q}^{2}-{\alpha }_{3}{s}^{2}}{{\alpha }_{1}p}\\ & & +\displaystyle \frac{12{\alpha }_{2}\lambda {p}^{3}r{\mathrm{ln}}^{2}(B)}{{\alpha }_{1}(2p+1)}\left(\displaystyle \frac{\lambda \mathrm{ln}(B)\xi +2}{\rho r\mathrm{ln}(B)}\right).\end{array}\end{eqnarray*}$Type 4: For λ = χ, μ = νχ(ν ≠ 0) and r = 0 we have trigonometric solutions obtained as$\begin{eqnarray*}\begin{array}{rcl}{u}_{49}(\xi ) & = & \displaystyle \frac{{\alpha }_{2}\left(-{\lambda }^{2}\right){p}^{4}{\mathrm{ln}}^{2}(B)-{cp}-{\alpha }_{3}{q}^{2}-{\alpha }_{3}{s}^{2}}{{\alpha }_{1}p}\\ & & -\displaystyle \frac{12{\alpha }_{2}\lambda {p}^{3}r{\mathrm{ln}}^{2}(B)}{{\alpha }_{1}(2p+1)}\left({B}^{\chi \rho }-\nu \right).\end{array}\end{eqnarray*}$Type 5: For λ = χ, r = νχ(ν ≠ 0) and μ = 0 we have obtained a plane solution as$\begin{eqnarray*}\begin{array}{rcl}{u}_{50}(\xi ) & = & \displaystyle \frac{{\alpha }_{2}\left(-{\lambda }^{2}\right){p}^{4}{\mathrm{ln}}^{2}(B)-{cp}-{\alpha }_{3}{q}^{2}-{\alpha }_{3}{s}^{2}}{{\alpha }_{1}p}\\ & & -\displaystyle \frac{12{\alpha }_{2}\lambda {p}^{3}r{\mathrm{ln}}^{2}(B)}{{\alpha }_{1}(2p+1)}\left(\displaystyle \frac{{{pB}}^{\chi \rho }}{p-\nu {{qB}}^{\chi \rho }}\right).\end{array}\end{eqnarray*}$Type 6: For μ = 0, and λ ≠ 0 we obtained mixed hyperbolic solutions as$\begin{eqnarray*}\begin{array}{l}{u}_{51}(\xi )=\displaystyle \frac{{\alpha }_{2}\left(-{\lambda }^{2}\right){p}^{4}{\mathrm{ln}}^{2}(B)-{cp}-{\alpha }_{3}{q}^{2}-{\alpha }_{3}{s}^{2}}{{\alpha }_{1}p}\\ +\displaystyle \frac{12{\alpha }_{2}\lambda {p}^{3}r{\mathrm{ln}}^{2}(B)}{{\alpha }_{1}(2p+1)}\\ \left(\displaystyle \frac{p\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}}{r\left({\cosh }_{B}\left(\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}\xi \right)-{\sinh }_{B}\left(\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}\xi \right)+p\right)}\right).\end{array}\end{eqnarray*}$The plot and its corresponding contour plot of the solutions u51(x, t) are depicted in figure 20, for the values of parameters c = 200, p = 20, μ = 100, s = 1.05, α1 = 100, α2 = 10.9, α3 = 2, q = 10.2, q = 10.1, and B = 5.$\begin{eqnarray*}\begin{array}{l}{u}_{52}(\xi )=\displaystyle \frac{{\alpha }_{2}\left(-{\lambda }^{2}\right){p}^{4}{\mathrm{ln}}^{2}(B)-{cp}-{\alpha }_{3}{q}^{2}-{\alpha }_{3}{s}^{2}}{{\alpha }_{1}p}\\ +\displaystyle \frac{12{\alpha }_{2}\lambda {p}^{3}r{\mathrm{ln}}^{2}(B)}{{\alpha }_{1}(2p+1)}\\ \left(\displaystyle \frac{p\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}\left({\sinh }_{B}\left(\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}\xi \right)+{\cosh }_{B}\left(\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}\xi \right)\right)}{r\left({\sinh }_{B}\left(\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}\xi \right)+{\cosh }_{B}\left(\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}\xi \right)+p\right)}\right).\end{array}\end{eqnarray*}$
Figure 20.
New window|Download| PPT slide Figure 20.Graphical representation and corresponding contour of u51(x, t) for different values of parameters.
Case 3: Where free parameters are μ, r and λ while along with b0 = b0, ${b}_{1}=-\tfrac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}$
In this work, the (3 + 1)-dimensional fractional time-space KP (FTSKP) equation is under investigation, which propagates the acoustic waves in an unmagnetized dusty plasma. This fractional model is defined using the confirmable fractional derivatives. The diverse new families of hyperbolic, trigonometric, rational, and plane wave solutions are obtained in single and different combinations using the new modified extended direct algebraic (MEDA) technique. Graphical representations of the obtained results are also depicted with different choices of parameters.
SeadawyA R2017 Ion acoustic solitary wave solutions of two-dimensional nonlinear Kadomtsev-Petviashvili-Burgers equation in quantum plasma, Mathematical methods and applied 40 15981607 [Cited within: 1]
Kalim Ul-Haq TariqSeadawyAly R2019 Soliton solutions of (3+1)-dimensional Korteweg-de Vries Benjamin-Bona-Mahony, Kadomtsev-Petviashvili Benjamin-Bona-Mahony and modified Korteweg de Vries-Zakharov-Kuznetsovequations and their applications in water waves 31 813 DOI:10.1016/j.jksus.2017.02.004 [Cited within: 1]
SeadawyAly R2017 Travelling wave solutions of a weakly nonlinear two-dimensional higher order Kadomtsev-Petviashvili dynamical equation for dispersive shallow water waves 132 11329 DOI:10.1140/epjp/i2017-11313-4
AlyR2017 Seadawy, Solitary wave solutions of tow-dimensional nonlinear Kadomtsev-Petviashvili dynamic equation in a dust acoustic plasmas 89 11149
SeadawyAEl-RashidyK2018 Dispersive Solitary wave solutions of Kadomtsev-Petviashivili and modified Kadomtsev-Petviashivili dynamical equations in unmagnetized dust plasma 8 12161222 DOI:10.1016/j.rinp.2018.01.053
Ul-Haq TariqKSeadawyA R2018 Computational soliton solutions to (3+1)-dimensional generalized Kadomtsev-Petviashvili and (2+1)-dimensional Gardner-Kadomtsev-Petviashvili models and their applications 91 113
AhmedISeadawyA RLuD2019 Mixed lump-solitons, periodic lump and breather soliton solutions for (2+1)-dimensional extended Kadomtsev-Petviashvili dynamical equation 33 1950019 DOI:10.1142/S021797921950019X
SeadawyA RAliAAlbarakatiW A2019 Analytical wave solutions of the (2+1)-dimensional first integro-differential Kadomtsev-Petviashivili hierarchy equation by using modified mathematical methods 15 102775 DOI:10.1016/j.rinp.2019.102775 [Cited within: 1]
GuoM et al. 2018 Study of ion-acoustic solitary waves in a magnetized plasma using the three-dimensional time-space fractional Schamel-KdV equation 2018 6852548 DOI:10.1155/2018/6852548 [Cited within: 1]
FuLYangH2019 An application of (3+1)-dimensional time-space fractional ZK model to analyze the complex dust acoustic waves 2019 2806724 DOI:10.1155/2019/2806724 [Cited within: 1]
MaS HFangJ PZhengC L2009 New exact solutions of the (2+1)-dimensional breaking soliton system via an extended mapping method 40 210214 DOI:10.1016/j.chaos.2007.07.043 [Cited within: 1]
SolimanA AAbdoH A2012 New exact Solutions of nonlinear variants of the RLW, the PHI-four and Boussinesq equations based on modified extended direct algebraic method 11 4557arXiv:1207.5127
YounasUYounisMSeadawyA RRizviS T RAlthobaitiSSayedS2021 Diverse exact solutions for modified nonlinear Schrödinger equation with conformable fractional derivative 20 103766 DOI:10.1016/j.rinp.2020.103766
YounasUSeadawyA RYounisMRizviS T R2020 Dispersive of propagation wave structures to the Dullin-Gottwald-Holm dynamical equation in a shallow water waves 68 348364 DOI:10.1016/j.cjph.2020.09.021 [Cited within: 2]
SunJFuLYangH2019 Analytical study of (3+1)-dimensional fractional ultralow-frequency dust acoustic waves in a dual-temperature plasma 38 928952 DOI:10.1177/1461348418817991 [Cited within: 1]
FuLYangH2019 An application of (3+1)-dimensional time-space fractional ZK model to analyze the complex dust acoustic waves 2019 DOI:10.1155/2019/2806724 [Cited within: 1]
ObaidullahUJamalS2020 A computational procedure for exact solutions of Burgers' hierarchy of nonlinear partial differential equations 111 DOI:10.1007/s12190-020-01403-x [Cited within: 1]
ZhangR FBiligeS2019 Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation 95 30413048 DOI:10.1007/s11071-018-04739-z [Cited within: 1]
TuK MYihK AChouF IChouJ H2020 Numerical solution and Taguchi experimental method for variable viscosity and non-Newtonian fluids effects on heat and mass transfer by natural convection in porous media 22 252261 [Cited within: 1]
SarwarAGangTArshadMAhmedI2020 Construction of bright-dark solitary waves and elliptic function solutions of space-time fractional partial differential equations and their applications 95 045227 DOI:10.1088/1402-4896/ab6d46 [Cited within: 1]
RizviS T RSeadawyA RAshrafFYounisMIqbalH2020 Dumitru Baleanu, Lump and Interaction solutions of a geophysical Korteweg-de Vries equation 19 103661 DOI:10.1016/j.rinp.2020.103661 [Cited within: 1]
LuDSeadawyA RYaroD2019 Analytical wave solutions for the nonlinear three-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov and two-dimensional Kadomtsev-Petviashvili-Burgers equations 12 21642168 DOI:10.1016/j.rinp.2019.02.049 [Cited within: 1]
ZhangZ YLiuZ HMiaoX JChenY Z2010 New exact solutions to the perturbed nonlinear Schrödinger's equation with Kerr law nonlinearity 216 30643072 DOI:10.1016/j.amc.2010.04.026 [Cited within: 1]
MirzazadehM2015 The extended homogeneous balance method and exact 1- soliton solutions of Maccari system 2 15231536 [Cited within: 1]
YombaE2005 The extended Fan's sub-equation method and its application to (2.1)-dimensional dispersive long wave and Whitham-Broer-Kaup equations 43 789805 [Cited within: 1]
AliASeadawyA RLuD2018 Computational methods and traveling wave solutions for the fourth-Order nonlinear Ablowitz-Kaup-Newell-Segur water wave dynamical equation via two methods and its applications 16 219226 DOI:10.1515/phys-2018-0032 [Cited within: 1]
AsgharA RSeadawyALuD2018 New solitary wave solutions of some nonlinear models and their Applications 2018 112232
ArshadMSeadawyALuD2017 Bright-Dark Solitary Wave Solutions of generalized higher-order nonlinear Schrodinger equation and its applications in optics 31 17111721 DOI:10.1080/09205071.2017.1362361
AhmedISeadawyA RLuD2019 M-shaped rational solitons and their interaction with kink waves in the Fokas-lenells equation 94 055205 DOI:10.1088/1402-4896/ab0455
FarahNSeadawyA RAhmadSRizviS T RYounisM2020 Interaction properties of soliton molecules and Painleve analysis for nano bioelectronics transmission model 52 115 DOI:10.1007/s11082-020-02443-0
SeadawyA RTariqK ULiuJ-G2019 Symbolic computations: Dispersive Soliton solutions for (3+1)-dimensional Boussinesqand Kadomtsev-Petviashvili dynamical equations and its applications B33 1950342 DOI:10.1142/S0217979219503429
ÇelikNSeadawyA RÖzkanY SYasarE2021 A model of solitary waves in a nonlinear elastic circular rod: abundant different type exact solutions and conservation laws 143 110486 DOI:10.1016/j.chaos.2020.110486
YounasUYounisMSeadawyA RRizviS T R2020 Optical solitons and closed form solutions to (3+1)-dimensional resonant Schrodinger equation 34 2050291 DOI:10.1142/S0217979220502914