Received:2019-11-18Revised:2019-12-19Accepted:2019-12-24Online:2020-03-06
Abstract
Keywords:
PDF (733KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Jun Chen. Testing the distance-duality relation with the baryon acoustic oscillations data and type Ia supernovae data. Communications in Theoretical Physics, 2020, 72(4): 045401- doi:10.1088/1572-9494/ab6911
1. Introduction
There is a very important relation in cosmology, and it is the distance-duality relation (DDR). It was founded in 1933 by Etherington [1], which is the relation between the angular diameter distance DA and the luminosity distance DL, and has the following formUzan et al studied the DDR [21] and got that this relation coincides with the Galaxy cluster observational data in the 68.27% error range and value of η is slightly smaller than 1. Rana et al [22] found that the DDR is consistent with observational data for the entire redshift range (0,2.418) in the 68.27% error range. Santos et al [23] discovered that the DDR is consistent with galaxy clusters observations and Hubble parameter observations in the 68.27% error range. Liao et al [24] got that the DDR is consistent with type Ia supernovae (SNe Ia) data and strong gravitational lensing observations in the 68.27% error range. Using type-Ia supernovae and ultra-compact radio data, Li and Lin [25] discussed the DDR and found that the DDR coincides with observations in the 95.45% error range. Lin, Li and Li [26] constrained the DDR and got that the DDR is true with the newer baryon acoustic oscillation (BAO) data and the type Ia supernovae (SNe Ia) data in the 68.27% error range. Holanda et al [27] have studied the DDR with supernovae Ia and strong gravitational lensing data and find that this relation is consistent the observations in the 68.27% error range. In the preceding time, the DDR was discussed too [28–44].
Lately, Wu et al [45] constrained the DDR with the Union2.1 data and five BAO data, and they found that the DDR is consistent with observational data in the 95.45% error range before h was marginalized. Now that more and new observations have been provided, we will check for the DDR with the observational data in this paper.
2. Method and samples
In order to check for the DDR with a model-independent way, one must get DA and DL at the same redshift from the different cosmic observations, and the DDR is true if the equation (Table 1.
Table 1.The nine baryon acoustic oscillation data.
z | DA(z)(Mpc) | 1σ | References |
---|---|---|---|
0.32 | 981 | 20 | [46] |
0.35 | 1050 | 38 | [47] |
0.38 | 1100 | 14±8 | [48] |
0.51 | 1309 | 15±9 | [48] |
0.61 | 1418 | 17±10 | [48] |
0.44 | 1205 | 114 | [49] |
0.60 | 1380 | 95 | [49] |
0.73 | 1534 | 107 | [49] |
0.57 | 1380 | 23 | [50] |
New window|CSV
To check for the DDR with the observational data, three parametrizations of equation (
To obtain the best fit results of η1, η2 and η3, we calculate them by using $L\propto {{\rm{e}}}^{{}^{-{\chi }^{2}/2}}$, with
3. Results
We first check for the η1, η2 and η3 with the Union2.1, JLA and BAO data, and find that the likelihood distributions of η1, η2 and η3 are shown in figures 1 and 2. The best fit values and errors are listed in table 2.Figure 1.
New window|Download| PPT slideFigure 1.The likelihood distributions of η1, η2 and η3 without (st) and with (sy) systematic errors from the Union2.1 plus BAO.
Figure 2.
New window|Download| PPT slideFigure 2.The likelihood distributions of η1, η2 and η3 without and with systematic errors from the JLA plus BAO.
Table 2.
Table 2.The best fit values of η and the 68.27% error range without systematic errors and with systematic errors.
η | Union2.1+BAO | JLA+BAO |
---|---|---|
${\eta }_{1,{st}}$ | −0.0227±0.0177 | −0.0146±0.0147 |
${\eta }_{2,{st}}$ | −0.0485±0.0364 | −0.0256±0.0304 |
${\eta }_{3,{st}}$ | −0.0730±0.0550 | −0.0407±0.0464 |
${\eta }_{1,{sy}}$ | 0.0066±0.0354 | −0.0106±0.0155 |
${\eta }_{2,{sy}}$ | 0.0193±0.0694 | −0.0176±0.0309 |
${\eta }_{3,{sy}}$ | 0.0270±0.1069 | −0.0283±0.0473 |
New window|CSV
The DDR is consistent with the BAO plus Union2.1 data in the 95.45% error range if the systematic errors are not considered, and in the 68.27% error range if the systematic errors are considered. And the DDR is consistent with the BAO plus JLA data in the 68.27% error range whether the systematic errors are considered or not.
To obtain the distance modulus μ from the SNe Ia [51, 52], the reductive Hubble constant h $({H}_{0}\,=100\,{\rm{h}}\,\mathrm{km}\,{{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1},{H}_{0}$ is Hubble constant) has been taken to be h=0.7. Because there are minute differences in different observational h, for example, (0.678±0.009 [55], 0.700±0.022 [56, 57], 0.738±0.024 [58], 0.6850± 0.0127 [52], ${0.7612}_{-0.0344}^{+0.0347}$ [59] and ${0.672}_{-0.010}^{+0.012}$ [60]), so we must consider the impact of h=0.7. For the sake of discussing the influence of the uncertainty of h, we assume it is a free parameter. Because ${D}_{L}\propto \tfrac{1}{h}$, one can obtain ${D}_{L}\,=\tfrac{0.7}{h}{10}^{0.2(\mu -25)}$ [45].
And then, we constrain the DDR by allowing h to be a free parameter rather than a definite value. The results are shown in figures 3 and 4, and the best fit values are $({\eta }_{2,{st}}=-0.0872,h=0.714)$, $({\eta }_{2,{sy}}=0.0840,h=0.677)$, $({\eta }_{3,{st}}=-0.2203,h=0.736)$ and $({\eta }_{3,{sy}}=0.1432$, h= 0.674) with the Union2.1 plus BAO data; $({\eta }_{2,{st}}=0.0348$, h=0.679), $({\eta }_{2,{sy}}=0.0369$, h=0.681), $({\eta }_{3,{st}}=0.0763,h\,=0.673)$ and $({\eta }_{3,{sy}}=0.0806,h=0.675)$ with the JLA plus BAO data. So the DDR is consistent with the observational data in the 68.27% error range whether the systematic errors are considered or not while h is a free parameter.
Figure 3.
New window|Download| PPT slideFigure 3.The contour plots of $h-{\eta }_{2}$ and $h-{\eta }_{3}$ from BAO plus Union2.1 observational data.
Figure 4.
New window|Download| PPT slideFigure 4.The contour plots of $h-{\eta }_{2}$ and $h-{\eta }_{3}$ from BAO plus JLA observational data.
To eliminate the influence of h, we marginalize the h. We assume that h is a Gaussian distribution, $\overline{P}(h)\,=\exp \left(-\tfrac{{\left(h-{h}_{{obs}}\right)}^{2}}{2{\sigma }_{{h}_{{obs}}}^{2}}\right)$, and one can get P(ηj) by calculating
Figure 5.
New window|Download| PPT slideFigure 5.The likelihood functions of η2 and η3 with a marginalization over h from BAO plus Union2.1 observational data.
Figure 6.
New window|Download| PPT slideFigure 6.The likelihood functions of η2 and η3 with a marginalization over h from BAO plus JLA observational data.
4. Conclusion
The DDR is very important in modern cosmology because it is independent with any cosmic model, and it can reflect a lot of information about the Universe when one tests it.In this letter, we check for the DDR with the new standard candles (SNe Ia) and the new standard rulers (BAO), the best fit values of ηj support that the DDR is valid to the observational data in the 68.27% error range, except for the instance of Union2.1 and BAO regardless of the systematic errors where the DDR is valid to observations in the 95.45% error range.
When we treat h as a free parameter, the DDR is consistent with observations in the 68.27% error range no matter how the systematic errors are included. So this constraint is dependent on the precise Hubble constant. And then, assuming h is a Gaussian distribution and making a marginalization over it, the likelihood functions of η2 and η3 are obtained, the best fit values of η2 and η3 are nearer zero, the DDR is consistent with observations in the 68.27% error range, whether systematic errors are considered or not. So, the more precise observations are expected to constrain the DDR in future.
Acknowledgments
This work was supported by the Foundation of the Guizhou Provincial Education Department of China under Grants No. KY[2016]104, the National Natural Science Foundation of China under Grants Nos. 11 465 011 and 11 865 018, the Foundation of Guizhou Provincial Science and Technology of China under Grants No. J[2014]2150.Reference By original order
By published year
By cited within times
By Impact factor
DOI:10.1080/14786443309462220 [Cited within: 1]
DOI:10.1088/0256-307X/33/5/059801 [Cited within: 1]
DOI:10.1103/PhysRevD.92.123539
DOI:10.1088/2041-8205/742/2/L26
DOI:10.1103/PhysRevD.89.103517
DOI:10.1088/1475-7516/2012/12/028
DOI:10.1088/1475-7516/2012/10/029
DOI:10.1088/1674-4527/16/11/175
DOI:10.1142/S0218271818500542 [Cited within: 1]
DOI:10.1086/307945 [Cited within: 1]
DOI:10.1103/PhysRevLett.88.161302
DOI:10.1086/383520
DOI:10.1103/PhysRevD.69.101305
DOI:10.1103/PhysRevD.95.023005 [Cited within: 2]
DOI:10.1088/0253-6102/71/9/1097 [Cited within: 1]
DOI:10.1142/S0218271813500259
DOI:10.1088/0253-6102/71/7/826
DOI:10.1088/0253-6102/71/8/991
DOI:10.1142/S0218271811019372
DOI:10.1088/0253-6102/71/5/545 [Cited within: 1]
DOI:10.1103/PhysRevD.70.083533 [Cited within: 1]
DOI:10.1088/1475-7516/2016/07/026 [Cited within: 1]
DOI:10.1088/1475-7516/2015/10/061 [Cited within: 1]
DOI:10.3847/0004-637X/822/2/74 [Cited within: 1]
DOI:10.1093/mnras/stx2810 [Cited within: 1]
DOI:10.1093/mnras/sty2062 [Cited within: 1]
DOI:10.1088/1475-7516/2016/02/054 [Cited within: 1]
DOI:10.1088/0004-637X/745/1/98 [Cited within: 1]
DOI:10.1088/1475-7516/2012/06/022
DOI:10.1088/2041-8205/729/1/L14
DOI:10.1088/2041-8205/722/2/L233
DOI:10.1088/1475-7516/2011/05/023
DOI:10.1088/1475-7516/2008/07/012
DOI:10.1088/1475-7516/2010/02/008
DOI:10.1088/1475-7516/2012/03/016
DOI:10.1088/1475-7516/2013/04/027
DOI:10.1142/S0218271806008486
DOI:10.1142/S0218271817500973
DOI:10.1007/s10773-015-2765-1
DOI:10.1088/1674-4527/11/8/003
DOI:10.1088/1475-7516/2010/10/024
DOI:10.1016/j.physletb.2012.12.022
DOI:10.3847/1538-4357/aaddfd [Cited within: 1]
DOI:10.1103/PhysRevD.92.023520 [Cited within: 2]
DOI:10.1093/mnras/stw066 [Cited within: 2]
DOI:10.1093/mnras/stt379 [Cited within: 1]
DOI:10.1093/mnras/stx721 [Cited within: 3]
DOI:10.1111/j.1365-2966.2012.21473.x [Cited within: 3]
DOI:10.1093/mnras/stu197 [Cited within: 2]
DOI:10.1088/0004-637X/746/1/85 [Cited within: 2]
DOI:10.1051/0004-6361/201423413 [Cited within: 3]
DOI:10.1051/0004-6361:20066930
DOI:10.1088/0067-0049/192/1/1 [Cited within: 1]
DOI:10.1051/0004-6361/201525830 [Cited within: 1]
DOI:10.1088/0067-0049/208/2/19 [Cited within: 2]
DOI:10.1088/0067-0049/208/2/20 [Cited within: 2]
DOI:10.1088/0004-637X/730/2/119 [Cited within: 1]
DOI:10.3847/1538-4357/aa667e [Cited within: 1]
DOI:10.1093/mnras/sty1939 [Cited within: 1]