删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Testing the distance-duality relation with the baryon acoustic oscillations data and type Ia superno

本站小编 Free考研考试/2022-01-02

Jun Chen,School of Science, Kaili University, Kaili, Guizhou 556011, China

Received:2019-11-18Revised:2019-12-19Accepted:2019-12-24Online:2020-03-06


Abstract
In this letter, the cosmic distance-duality relation has been constrained with a model-independent method by combining the baryon acoustic oscillation (BAO) data and the type Ia supernova (SNe Ia) data. The results show that this relation is consistent with the observational data in the 68.27% error range, except for the instance of Union 2.1 plus BAO with the statistic errors only, where the relation is consistent with the observations in the 95.45% error range. To study the result of the uncertainty of the Hubble constant on the investigation of this relation,we treat the dimensionless Hubble constant h as a free parameter and get that the observational data favors the relation in the 68.27% error range. And then h has been marginalized and the results support that this relation is favored by the observations in the 68.27% error range too.
Keywords: Baryon acoustic oscillation;the cosmic distance-duality relation;type Ia supernovae


PDF (733KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Jun Chen. Testing the distance-duality relation with the baryon acoustic oscillations data and type Ia supernovae data. Communications in Theoretical Physics, 2020, 72(4): 045401- doi:10.1088/1572-9494/ab6911

1. Introduction

There is a very important relation in cosmology, and it is the distance-duality relation (DDR). It was founded in 1933 by Etherington [1], which is the relation between the angular diameter distance DA and the luminosity distance DL, and has the following form$\begin{eqnarray}\displaystyle \frac{{D}_{L}}{{D}_{A}{\left(1+z\right)}^{2}}-1=0,\end{eqnarray}$where z is the red-shift. There are three general hypotheses about the DDR: photons’ number is constant, the Universe’s space-time is denoted by Riemannian geometry and light travel along zero geodesics. Violation of the first hypothesis can study the cosmic opacity [29]. And violation of the next two hypotheses can study the exotic physics [1014], Tiwari has constrained axion-like particles with the DDR in the paper [14]. Because the DDR does not relate with the matter and the field equations of Einstein, and influences the relationship of the observational data DA and DL, so it plays a very important role in modern cosmology and in cosmic observations [1520]. Therefore, it is very requisite and worthy to check for the DDR.

Uzan et al studied the DDR [21] and got that this relation coincides with the Galaxy cluster observational data in the 68.27% error range and value of η is slightly smaller than 1. Rana et al [22] found that the DDR is consistent with observational data for the entire redshift range (0,2.418) in the 68.27% error range. Santos et al [23] discovered that the DDR is consistent with galaxy clusters observations and Hubble parameter observations in the 68.27% error range. Liao et al [24] got that the DDR is consistent with type Ia supernovae (SNe Ia) data and strong gravitational lensing observations in the 68.27% error range. Using type-Ia supernovae and ultra-compact radio data, Li and Lin [25] discussed the DDR and found that the DDR coincides with observations in the 95.45% error range. Lin, Li and Li [26] constrained the DDR and got that the DDR is true with the newer baryon acoustic oscillation (BAO) data and the type Ia supernovae (SNe Ia) data in the 68.27% error range. Holanda et al [27] have studied the DDR with supernovae Ia and strong gravitational lensing data and find that this relation is consistent the observations in the 68.27% error range. In the preceding time, the DDR was discussed too [2844].

Lately, Wu et al [45] constrained the DDR with the Union2.1 data and five BAO data, and they found that the DDR is consistent with observational data in the 95.45% error range before h was marginalized. Now that more and new observations have been provided, we will check for the DDR with the observational data in this paper.

2. Method and samples

In order to check for the DDR with a model-independent way, one must get DA and DL at the same redshift from the different cosmic observations, and the DDR is true if the equation (1) is zero. The DA data is chosen from the BAO [4650] observational data. The BAO produces in the early universe and causes an over density of baryons at about the 150Mpc scale now. Because the measurement of the BAO is not related to the number of photons, it is regarded as the standard ruler. The nine data points have been listed in table 1. The DL data are chosen from the standard candles, SNe Ia, include the Union2.1 SNe Ia [51] and the joint light-curve analysis SNe Ia (JLA) [5254]. The JLA has 740 samples and the Union2.1 has 580 data points. Because one can only get the distance modulus μ directly from the type Ia supernovae data, so the DL can be calculated through equation (2)$\begin{eqnarray}{D}_{L}={10}^{0.2(\mu -25)}.\end{eqnarray}$In order to get the DL(z) from μ(z), all SNe Ia data in the region $[z-0.005,z+0.005]$ have been binned, and the computational formula is$\begin{eqnarray}{\mu }_{{bin}}(z)=\displaystyle \frac{{\sum }_{i}{\mu }_{i}{\sigma }_{i}^{-2}}{{\sum }_{i}{\sigma }_{i}^{-2}},\end{eqnarray}$and ${\sigma }_{{\mu }_{{bin}}}^{2}$ is$\begin{eqnarray}{\sigma }_{{\mu }_{{bin}}}^{2}=\displaystyle \frac{1}{{\sum }_{i}{\sigma }_{i}^{-2}}.\end{eqnarray}$Here, ${\sigma }_{{\mu }_{{bin}}}$ is the error of the μi.


Table 1.
Table 1.The nine baryon acoustic oscillation data.
zDA(z)(Mpc)1σReferences
0.3298120[46]
0.35105038[47]
0.38110014±8[48]
0.51130915±9[48]
0.61141817±10[48]
0.441205114[49]
0.60138095[49]
0.731534107[49]
0.57138023[50]

New window|CSV

To check for the DDR with the observational data, three parametrizations of equation (1) have been chosen,$\begin{eqnarray}\displaystyle \frac{{D}_{L}}{{D}_{A}{\left(1+z\right)}^{2}}-1={\eta }_{1},\end{eqnarray}$$\begin{eqnarray}\displaystyle \frac{{D}_{L}}{{D}_{A}{\left(1+z\right)}^{2}}-1={\eta }_{2}z,\end{eqnarray}$$\begin{eqnarray}\displaystyle \frac{{D}_{L}}{{D}_{A}{\left(1+z\right)}^{2}}-1={\eta }_{3}\displaystyle \frac{z}{1+z}.\end{eqnarray}$Here η1, η2 and η3 are constants. The results of η1, η2 and η3 will be null if the DDR is valid with the observational data.

To obtain the best fit results of η1, η2 and η3, we calculate them by using $L\propto {{\rm{e}}}^{{}^{-{\chi }^{2}/2}}$, with$\begin{eqnarray}{\chi }^{2}({\eta }_{j})=\sum _{i}\displaystyle \frac{{\left({\eta }_{j}-{\eta }_{j,{obs}}({z}_{i}\right)}^{2}}{{\sigma }_{{\eta }_{j,{obs}}}^{2}({z}_{i})}.\end{eqnarray}$Here j=1, 2, or 3, ${\eta }_{j,{obs}}({z}_{i})$ is the result gained from the observational data, and ${\sigma }_{{\eta }_{j,{obs}}}({z}_{i})$ is the error of ${\eta }_{j,{obs}}({z}_{i})$. The likelihood of ${\eta }_{j}$ is $P={{\rm{e}}}^{-{\chi }^{2}({\eta }_{j})/2}$.

3. Results

We first check for the η1, η2 and η3 with the Union2.1, JLA and BAO data, and find that the likelihood distributions of η1, η2 and η3 are shown in figures 1 and 2. The best fit values and errors are listed in table 2.

Figure 1.

New window|Download| PPT slide
Figure 1.The likelihood distributions of η1, η2 and η3 without (st) and with (sy) systematic errors from the Union2.1 plus BAO.


Figure 2.

New window|Download| PPT slide
Figure 2.The likelihood distributions of η1, η2 and η3 without and with systematic errors from the JLA plus BAO.



Table 2.
Table 2.The best fit values of η and the 68.27% error range without systematic errors and with systematic errors.
ηUnion2.1+BAOJLA+BAO
${\eta }_{1,{st}}$−0.0227±0.0177−0.0146±0.0147
${\eta }_{2,{st}}$−0.0485±0.0364−0.0256±0.0304
${\eta }_{3,{st}}$−0.0730±0.0550−0.0407±0.0464
${\eta }_{1,{sy}}$0.0066±0.0354−0.0106±0.0155
${\eta }_{2,{sy}}$0.0193±0.0694−0.0176±0.0309
${\eta }_{3,{sy}}$0.0270±0.1069−0.0283±0.0473

New window|CSV

The DDR is consistent with the BAO plus Union2.1 data in the 95.45% error range if the systematic errors are not considered, and in the 68.27% error range if the systematic errors are considered. And the DDR is consistent with the BAO plus JLA data in the 68.27% error range whether the systematic errors are considered or not.

To obtain the distance modulus μ from the SNe Ia [51, 52], the reductive Hubble constant h $({H}_{0}\,=100\,{\rm{h}}\,\mathrm{km}\,{{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1},{H}_{0}$ is Hubble constant) has been taken to be h=0.7. Because there are minute differences in different observational h, for example, (0.678±0.009 [55], 0.700±0.022 [56, 57], 0.738±0.024 [58], 0.6850± 0.0127 [52], ${0.7612}_{-0.0344}^{+0.0347}$ [59] and ${0.672}_{-0.010}^{+0.012}$ [60]), so we must consider the impact of h=0.7. For the sake of discussing the influence of the uncertainty of h, we assume it is a free parameter. Because ${D}_{L}\propto \tfrac{1}{h}$, one can obtain ${D}_{L}\,=\tfrac{0.7}{h}{10}^{0.2(\mu -25)}$ [45].

And then, we constrain the DDR by allowing h to be a free parameter rather than a definite value. The results are shown in figures 3 and 4, and the best fit values are $({\eta }_{2,{st}}=-0.0872,h=0.714)$, $({\eta }_{2,{sy}}=0.0840,h=0.677)$, $({\eta }_{3,{st}}=-0.2203,h=0.736)$ and $({\eta }_{3,{sy}}=0.1432$, h= 0.674) with the Union2.1 plus BAO data; $({\eta }_{2,{st}}=0.0348$, h=0.679), $({\eta }_{2,{sy}}=0.0369$, h=0.681), $({\eta }_{3,{st}}=0.0763,h\,=0.673)$ and $({\eta }_{3,{sy}}=0.0806,h=0.675)$ with the JLA plus BAO data. So the DDR is consistent with the observational data in the 68.27% error range whether the systematic errors are considered or not while h is a free parameter.

Figure 3.

New window|Download| PPT slide
Figure 3.The contour plots of $h-{\eta }_{2}$ and $h-{\eta }_{3}$ from BAO plus Union2.1 observational data.


Figure 4.

New window|Download| PPT slide
Figure 4.The contour plots of $h-{\eta }_{2}$ and $h-{\eta }_{3}$ from BAO plus JLA observational data.


To eliminate the influence of h, we marginalize the h. We assume that h is a Gaussian distribution, $\overline{P}(h)\,=\exp \left(-\tfrac{{\left(h-{h}_{{obs}}\right)}^{2}}{2{\sigma }_{{h}_{{obs}}}^{2}}\right)$, and one can get P(ηj) by calculating$\begin{eqnarray}P({\eta }_{j})={\int }_{-\infty }^{+\infty }\overline{P}(h)\cdot P({\eta }_{j},h){\rm{d}}{h},\end{eqnarray}$where $P({\eta }_{j},h)={\rm{\exp }}(-{\chi }^{2}({\eta }_{j},h)/2)$. The Hubble constant is chosen ${H}_{0}=70.0\pm 2.2\,\mathrm{km}\,{{\rm{s}}}^{-1}{\mathrm{Mpc}}^{-1}$ [56, 57] in this paper. The likelihood distributions of η2 and η3 are shown in figures 5 and 6. And find the best fit values and 68.27% error range are ${\eta }_{2,{st}}=-{0.0564}_{-0.0760}^{+0.0680}$, ${\eta }_{2,{sy}}={0.0214}_{-0.0909}^{+0.0924}$, ${\eta }_{3,{st}}\,=-{0.0887}_{-0.1035}^{+0.1071}$ and ${\eta }_{3,{sy}}={0.0283}_{-0.1414}^{+0.1439}$ with the Union2.1 plus BAO data; ${\eta }_{2,{st}}=-{0.0167}_{-0.0622}^{+0.0633}$, ${\eta }_{2,{sy}}\,=-{0.0099}_{-0.0627}^{+0.0648}$, ${\eta }_{3,{st}}=-{0.0329}_{-0.0995}^{+0.1033}$ and ${\eta }_{3,{sy}}\,=-{0.0215}_{-0.1002}^{+0.1041}$ with the JLA plus BAO data. Though the best fit values are not zero, but the DDR is accommodated in the 68.27% error range after h is marginalized, whether the systematic errors are considered or not.

Figure 5.

New window|Download| PPT slide
Figure 5.The likelihood functions of η2 and η3 with a marginalization over h from BAO plus Union2.1 observational data.


Figure 6.

New window|Download| PPT slide
Figure 6.The likelihood functions of η2 and η3 with a marginalization over h from BAO plus JLA observational data.


4. Conclusion

The DDR is very important in modern cosmology because it is independent with any cosmic model, and it can reflect a lot of information about the Universe when one tests it.

In this letter, we check for the DDR with the new standard candles (SNe Ia) and the new standard rulers (BAO), the best fit values of ηj support that the DDR is valid to the observational data in the 68.27% error range, except for the instance of Union2.1 and BAO regardless of the systematic errors where the DDR is valid to observations in the 95.45% error range.

When we treat h as a free parameter, the DDR is consistent with observations in the 68.27% error range no matter how the systematic errors are included. So this constraint is dependent on the precise Hubble constant. And then, assuming h is a Gaussian distribution and making a marginalization over it, the likelihood functions of η2 and η3 are obtained, the best fit values of η2 and η3 are nearer zero, the DDR is consistent with observations in the 68.27% error range, whether systematic errors are considered or not. So, the more precise observations are expected to constrain the DDR in future.

Acknowledgments

This work was supported by the Foundation of the Guizhou Provincial Education Department of China under Grants No. KY[2016]104, the National Natural Science Foundation of China under Grants Nos. 11 465 011 and 11 865 018, the Foundation of Guizhou Provincial Science and Technology of China under Grants No. J[2014]2150.


Reference By original order
By published year
By cited within times
By Impact factor

Etherington I M H 1933 Philos. Mag. 15 761
DOI:10.1080/14786443309462220 [Cited within: 1]

Li H K Wu P X Yu H W 2016 Chin. Phys. Lett. 33 059801
DOI:10.1088/0256-307X/33/5/059801 [Cited within: 1]

Liao K Avgoustidis A Li Z X 2015 Phys. Rev. D 92 123539
DOI:10.1103/PhysRevD.92.123539

Lima J A S Cunha J V Zanchin V T 2011 Astrophys. J. Lett. 742 L26
DOI:10.1088/2041-8205/742/2/L26

Holanda R F L Busti V C 2014 Phys. Rev. D 89 103517
DOI:10.1103/PhysRevD.89.103517

Nair R Jhingan S Jain D 2012 J. Cosmol. Astropart. Phys. 12 028
DOI:10.1088/1475-7516/2012/12/028

Chen Jet al. 2012 J. Cosmol. Astropart. Phys. 10 029
DOI:10.1088/1475-7516/2012/10/029

Chen J 2016 Res. Astron. Astrophys. 17 175
DOI:10.1088/1674-4527/16/11/175

Chen J 2018 Inter. J. Mod. Phys. D 27 1850054
DOI:10.1142/S0218271818500542 [Cited within: 1]

Aguirre A 1999 Astrophys. J. 525 583
DOI:10.1086/307945 [Cited within: 1]

Csaki C Kaloper N Terning J 2002 Phys. Rev. Lett. 88 161302
DOI:10.1103/PhysRevLett.88.161302

Bassett B A Kunz M 2004 Astrophys. J. 607 661
DOI:10.1086/383520

Bassett B A Kunz M 2004 Phys. Rev. D 69 101305
DOI:10.1103/PhysRevD.69.101305

Tiwari P 2017 Phys. Rev. D 95 023005
DOI:10.1103/PhysRevD.95.023005 [Cited within: 2]

Zhao Z 2019 Commun. Theor. Phys. 71 1097
DOI:10.1088/0253-6102/71/9/1097 [Cited within: 1]

Fu X Y Wu P X Yu H W Zhou B J 2013 Inter. J. Mod. Phys. D 22 1350025
DOI:10.1142/S0218271813500259

Zhang X Huang Q G 2019 Commun. Theor. Phys. 71 826
DOI:10.1088/0253-6102/71/7/826

Yu H Lin Z C Liu Y X 2019 Commun. Theor. Phys. 71 991
DOI:10.1088/0253-6102/71/8/991

Fu X Y Wu P X Yu H W 2011 Inter. J. Mod. Phys. D 20 1301
DOI:10.1142/S0218271811019372

Yang L Met al. 2019 Commun. Theor. Phys. 71 545
DOI:10.1088/0253-6102/71/5/545 [Cited within: 1]

Uzan J P Aghanim N Mellier Y 2004 Phys. Rev. D 70 083533
DOI:10.1103/PhysRevD.70.083533 [Cited within: 1]

Rana Aet al. 2016 J. Cosmol. Astropart. Phys. 07 026
DOI:10.1088/1475-7516/2016/07/026 [Cited within: 1]

Santos S Busti V C Holanda R F L 2015 J. Cosmol. Astropart. Phys. 10 061
DOI:10.1088/1475-7516/2015/10/061 [Cited within: 1]

Liao Ket al. 2016 Astrophys. J. 822 74
DOI:10.3847/0004-637X/822/2/74 [Cited within: 1]

Li X Lin H N 2018 Mon. Not. R. Astron. Soc. 474 313
DOI:10.1093/mnras/stx2810 [Cited within: 1]

Lin H N Li M H Li X 2018 Mon. Not. R. Astron. Soc. 480 3117
DOI:10.1093/mnras/sty2062 [Cited within: 1]

Holanda R F L Busti V C Alcaniz J S 2016 J. Cosmol. Astropart. Phys. 03 054
DOI:10.1088/1475-7516/2016/02/054 [Cited within: 1]

Meng X Het al. 2012 Astrophys. J. 745 98
DOI:10.1088/0004-637X/745/1/98 [Cited within: 1]

Holanda R F L Goncalves R S Alcaniz J S 1606 J. Cosmol. Astropart. Phys. 2012 022
DOI:10.1088/1475-7516/2012/06/022

Li Z X Wu P X Yu H W 2011 Astrophys. J. Lett. 729 L14
DOI:10.1088/2041-8205/729/1/L14

Holanda R F L Lima J A S Ribeiro M B 2010 Astrophys. J. Lett. 722 L233
DOI:10.1088/2041-8205/722/2/L233

Nair R Jhingan S Jain D 2011 J. Cosmol. Astropart. Phys. 05 023
DOI:10.1088/1475-7516/2011/05/023

Lazkoz R Nesseris S Perivolaropoulos L 2008 J. Cosmol. Astropart. Phys. 07 012
DOI:10.1088/1475-7516/2008/07/012

Stern Det al. 2010 J. Cosmol. Astropart. Phys. 1002 008
DOI:10.1088/1475-7516/2010/02/008

Cao Set al. 2012 J. Cosmol. Astropart. Phys. 03 016
DOI:10.1088/1475-7516/2012/03/016

Holanda R F L Carvalho J C Alcaniz J S 2013 J. Cosmol. Astropart. Phys. 1304 027
DOI:10.1088/1475-7516/2013/04/027

More Set al. 2016arXiv:1612.087841


De Bernardis F Giusarma E Melchiorri A 2006 Inter. J. Mod. Phys. D 15 759
DOI:10.1142/S0218271806008486

Fu X Y Li P C 2017 Inter. J. Mod. Phys. D 26 1750097
DOI:10.1142/S0218271817500973

Chen Z X Zhou B J Fu X Y 2016 Int. J. Theor. Phys. 55 1229
DOI:10.1007/s10773-015-2765-1

Fu X Y Wu P X Yu H W Li Z X 2011 Res. Astron. Astrophys. 11 895
DOI:10.1088/1674-4527/11/8/003

Avgoustidis A 2010 J. Cosmol. Astropart. Phys. 10 024
DOI:10.1088/1475-7516/2010/10/024

Liao K Li Z X Ming J Zhu Z H 2013 Phys. Lett. B 718 1166
DOI:10.1016/j.physletb.2012.12.022

Ruan C Melia F Zhang T 2018 Astrophys. J. 866 31
DOI:10.3847/1538-4357/aaddfd [Cited within: 1]

Wu P Xet al. 2015 Phys. Rev. D 92 023520
DOI:10.1103/PhysRevD.92.023520 [Cited within: 2]

Cuesta A Jet al. 2016 Mon. Not. R. Astron. Soc. 457 1770
DOI:10.1093/mnras/stw066 [Cited within: 2]

Xu Xet al. 2013 Mon. Not. R. Astron. Soc. 431 2834
DOI:10.1093/mnras/stt379 [Cited within: 1]

Alam Set al. 2017 Mon. Not. R. Astron. Soc. 721 2617
DOI:10.1093/mnras/stx721 [Cited within: 3]

Blake Cet al. 2012 Mon. Not. R. Astron. Soc. 425 405
DOI:10.1111/j.1365-2966.2012.21473.x [Cited within: 3]

Lado Set al. 2014 Mon. Not. R. Astron. Soc. 439 3504
DOI:10.1093/mnras/stu197 [Cited within: 2]

Suzuki Net al. 2012 Astrophys. J. 746 85
DOI:10.1088/0004-637X/746/1/85 [Cited within: 2]

Betoule Met al. 2014 Astron. Astropart. 568 A22
DOI:10.1051/0004-6361/201423413 [Cited within: 3]

Guy Jet al. 2007 Astron. & Astrophys. 466 11
DOI:10.1051/0004-6361:20066930

Conley Aet al. 2011 Astrophys. J. Suppl. Ser. 192 1
DOI:10.1088/0067-0049/192/1/1 [Cited within: 1]

Ade P A Ret al. 2016 Astron. Astropart 594 A13
DOI:10.1051/0004-6361/201525830 [Cited within: 1]

Hinshaw Get al. 2013 Astrophys. J. Suppl. Ser. 208 19
DOI:10.1088/0067-0049/208/2/19 [Cited within: 2]

Bennett C Let al. 2013 Astrophys. J. Suppl. Ser. 208 20
DOI:10.1088/0067-0049/208/2/20 [Cited within: 2]

Riess A Get al. 2011 Astrophys. J. 730 119
DOI:10.1088/0004-637X/730/2/119 [Cited within: 1]

Wang D Meng X H 2017 Astrophys. J. 843 100
DOI:10.3847/1538-4357/aa667e [Cited within: 1]

Abbott T M Cet al. 2018 Mon. Not. R. Astron. Soc. 480 3879
DOI:10.1093/mnras/sty1939 [Cited within: 1]

相关话题/Testing distanceduality relation