Folded novel accurate analytical and semi-analytical solutions of a generalized Calogero【-逻*辑*与-】nda
本站小编 Free考研考试/2022-01-02
Mostafa M A Khater,1,2,∗, S K Elagan3, M A El-Shorbagy4,5, S H Alfalqi6, J F Alzaidi6, Nawal A Alshehri31Department of Mathematics, Faculty of Science, Jiangsu University, 212013, Zhenjiang, China 2Department of Mathematics, Obour High Institute For Engineering and Technology, 11828, Cairo, Egypt 3Department of Mathematics, Faculty of Science, Taif University P.O.Box 11099, Taif 21944, Saudi Arabia 4Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia 5Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Shebin El-Kom 32511, Egypt 6Department of Mathematics, Faculty of Science and Arts, Mahayil Asir King Khalid University, Abha, Saudi Arabia
First author contact:∗Author to whom any correspondence should be addressed. Received:2021-02-20Revised:2021-04-2Accepted:2021-05-25Online:2021-07-16
Abstract This paper studies the analytical and semi-analytic solutions of the generalized Calogero–Bogoyavlenskii–Schiff (CBS) equation. This model describes the (2 + 1)–dimensional interaction between Riemann-wave propagation along the y-axis and the x-axis wave. The extended simplest equation (ESE) method is applied to the model, and a variety of novel solitary-wave solutions is given. These solitary-wave solutions prove the dynamic behavior of soliton waves in plasma. The accuracy of the obtained solution is verified using a variational iteration (VI) semi-analytical scheme. The analysis and the match between the constructed analytical solution and the semi-analytical solution are sketched using various diagrams to show the accuracy of the solution we obtained. The adopted scheme’s performance shows the effectiveness of the method and its ability to be applied to various nonlinear evolution equations. Keywords:generalized Calogero–Bogoyavlenskii–Schiff equation;accurate analytical;semi-analytical solutions
PDF (1191KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite Cite this article Mostafa M A Khater, S K Elagan, M A El-Shorbagy, S H Alfalqi, J F Alzaidi, Nawal A Alshehri. Folded novel accurate analytical and semi-analytical solutions of a generalized Calogero–Bogoyavlenskii–Schiff equation. Communications in Theoretical Physics, 2021, 73(9): 095003- doi:10.1088/1572-9494/ac049f
1. Introduction
The soliton is one of the most notable characteristics that characterize the integrability of the nonlinear evolution equation [1, 2]. Recently, stray or monster waves, weird waves, and abnormal waves have been regarded as solitary waves. Solitary waves are an uncommon type of nonlinear wave that is restricted in only one direction and has important significance in various branches of physics [3, 4]. These waves were first found in the deep sea [5]. The applications of this wave appear in oceanography and optical fibers [6, 7]. Nowadays, a new type of wandering wave is known as the lumped wave, which is defined as a wave whose wandering is restricted in each direction in space [8].
Nowadays, based on the computer revolution, which has a great effect on the derivation of computational, semi-analytical, and numerical schemes, many schemes have derived, such as the sech-tanh expansion method, the auxiliary equation method, the direct algebraic equation method, the iteration method, the exponential expansion method, B-spline schemes, Kudryashov methods, the Adomian decomposition method, Khater methods, $\left(\tfrac{\varphi ^{\prime} (\zeta )}{\varphi (\zeta )}\right)$- expansion methods, and so on [9–15]; in addition, the lump solutions of many nonlinear phenomena have been investigated [16–20].
In this context, our paper aims to study the new soliton-wave solutions of the generalized CBS equation through the perspective of ESE, and MKud analysis technology [21, 22]. Another goal of the manuscript is to limit the examination of the semi-analytical and numerical solutions of the considered model to an explanation of the accuracy of the analytical solutions obtained and the analytical schemes used [23, 24]. The generalized CBS equation is given by [25–30]:$\begin{eqnarray}{{ \mathcal B }}_{t}+{{ \mathcal B }}_{{xxy}}+3{ \mathcal B }{{ \mathcal B }}_{y}+3{{ \mathcal B }}_{x}{{ \mathcal C }}_{y}+{r}_{1}{{ \mathcal B }}_{y}+{r}_{2}{{ \mathcal C }}_{{yy}}=0,\end{eqnarray}$where ${ \mathcal B }={ \mathcal B }(x,t,t),{ \mathcal C }={ \mathcal C }(x,y,t)$ describe the dynamics of solitons and nonlinear waves, while ri, i = 1, 2 are arbitrary constants to be determined later. Using the next relation between ${ \mathcal C }\ \& \ { \mathcal B }$ in the following formula, ${ \mathcal B }={{ \mathcal C }}_{x}$, yields$\begin{eqnarray}{{ \mathcal C }}_{{tx}}+{{ \mathcal C }}_{{xxxy}}+3{{ \mathcal C }}_{x}{{ \mathcal C }}_{{xy}}+3{{ \mathcal C }}_{{xx}}{{ \mathcal C }}_{y}=0.\end{eqnarray}$Eq. (2) is given in (2+1) dimensions, and has the following formula$\begin{eqnarray}{{ \mathcal B }}_{t}+{ \mathcal B }{{ \mathcal B }}_{z}+\displaystyle \frac{1}{2}{{ \mathcal B }}_{x}{\partial }_{x}^{-1}{{ \mathcal B }}_{z}+\displaystyle \frac{1}{4}{{ \mathcal B }}_{{xxz}}=0,\end{eqnarray}$where ${\partial }_{x}^{-1}{{ \mathcal B }}_{z}=\in {{ \mathcal B }}_{z}{dx}$. Equation (2) was derived by Bogoyavlenskii and Schiff in different ways, such as the modified Lax formalism and a reduction of the self-dual Yang–Mills equation. Additionally, the nonlocal form of the (2+1)-dimensional model is given by$\begin{eqnarray}\left\{\begin{array}{c}{{ \mathcal C }}_{x}-{{ \mathcal B }}_{z}=0,\\ 2{{ \mathcal B }}_{x}{ \mathcal C }+{{ \mathcal B }}_{{xxz}}+4{{ \mathcal B }}_{t}+4{ \mathcal B }{{ \mathcal B }}_{z}=0,\end{array}\right.\end{eqnarray}$while the potential form is given by$\begin{eqnarray}4{{ \mathcal E }}_{{tx}}+4{{ \mathcal E }}_{x}{{ \mathcal E }}_{{xz}}+2{{ \mathcal E }}_{{xx}}{{ \mathcal E }}_{z}+{{ \mathcal E }}_{{xxxz}}=0.\end{eqnarray}$Equations (2), (4), and (5) describe many nonlinear phenomena in plasma physics. Employing the next wave transformation ${ \mathcal C }={ \mathcal C }(x,y,t)={ \mathcal S }({\mathfrak{P}})$, where ${\mathfrak{P}}={r}_{1}x+{r}_{2}y\,+{r}_{3}t$ and ri, i = 1, 2, 3 are arbitrary constants, converts equation (2) into the following ordinary differential equation. Integrating the obtained equation once with the zero constant of integration, we get:$\begin{eqnarray}{r}_{3}{{ \mathcal S }}^{{\prime} }+{r}_{2}{r}_{1}^{2}{{ \mathcal S }}^{(3)}+3{r}_{2}{r}_{1}{\left({{ \mathcal S }}^{{\prime} }\right)}^{2}=0.\end{eqnarray}$Handling equation (6) through the perspective of the abovementioned analytical schemes and the homogeneous balance principle gives n = 1. Thus, the general solutions of equation (6) are evaluated by$\begin{eqnarray}{ \mathcal S }({\mathfrak{P}})=\left\{\begin{array}{c}{\sum }_{i=-n}^{n}{a}_{i}{\mathfrak{C}}{\left({\mathfrak{P}}\right)}^{i}={a}_{1}{\mathfrak{C}}({\mathfrak{P}})+\displaystyle \frac{{a}_{-1}}{{\mathfrak{C}}({\mathfrak{P}})}+{a}_{0},\\ {\sum }_{i=0}^{n}{a}_{i}{\mathfrak{L}}{\left({\mathfrak{P}}\right)}^{i}={a}_{1}{\mathfrak{L}}({\mathfrak{P}})+{a}_{0},\end{array}\right.\end{eqnarray}$where a0, a1, and a−1 are arbitrary constants.
The other sections of this manuscript are as follows: section 2 studies the general solution of the generalized CBS model. In addition, the accuracy of the obtained solution is checked using the abovementioned semi-analytical scheme. Section 3 introduces the solutions and achieves the goals of our research paper. Section 4 provides a summary of the manuscript.
2. Comparison of analytical and semi-analytical approaches to the generalized CBS equation
This section studies the analytical, semi-analytical, and numerical simulation of the generalized CBS equation. The headings of this section can be summarized in the following order:We apply the ESE and MKud schemes to equation (6) to get solitary-wave solutions, then obtain the initial and boundary conditions to investigate semi-analytical solutions through the VI technique. We check the accuracy of the obtained solution and calculate the absolute error value between the exact and semi-analytical solutions.
2.1. ESE analytical vs. VI numerical techniques, along with the generalized CBS equation
Applying the ESE scheme’s framework and its auxiliary, $\left({{\mathfrak{C}}}^{{\prime} }({\mathfrak{P}})={h}_{3}{\mathfrak{C}}{\left({\mathfrak{P}}\right)}^{2}+{h}_{2}{\mathfrak{C}}({\mathfrak{P}})+{h}_{1}\right)$ (where hi, i = 1, 2, 3 are arbitrary constants to be determined later), to equation (6) obtains the following sets of abovementioned parameters:
Set I$\begin{eqnarray*}{a}_{-1}\to \displaystyle \frac{2{h}_{1}}{{r}_{1}},{a}_{1}\to 0,{r}_{3}\to -\left({h}_{2}^{2}-4{h}_{1}{h}_{3}\right){r}_{2}.\end{eqnarray*}$
Set II$\begin{eqnarray*}{a}_{-1}\to 0,{a}_{1}\to -\displaystyle \frac{2{h}_{3}}{{r}_{1}},{r}_{3}\to -\left({h}_{2}^{2}-4{h}_{1}{h}_{3}\right){r}_{2}.\end{eqnarray*}$Therefore, the solitary solutions of the considered model are constructed in the following formulas:
For h2 = 0, h1h3 > 0, we get$\begin{eqnarray}{{ \mathcal C }}_{{\rm{I}},1}={a}_{0}+\displaystyle \frac{2\sqrt{{h}_{1}{h}_{3}}\cot \left(\sqrt{{h}_{1}{h}_{3}}\left(\eta +{r}_{2}\left(4{h}_{1}{h}_{3}t+y\right)+{r}_{1}x\right)\right)}{{r}_{1}},\end{eqnarray}$$\begin{eqnarray}{{ \mathcal C }}_{{\rm{I}},2}={a}_{0}+\displaystyle \frac{2\sqrt{{h}_{1}{h}_{3}}\tan \left(\sqrt{{h}_{1}{h}_{3}}\left(\eta +{r}_{2}\left(4{h}_{1}{h}_{3}t+y\right)+{r}_{1}x\right)\right)}{{r}_{1}},\end{eqnarray}$$\begin{eqnarray}{{ \mathcal C }}_{\mathrm{II},1}={a}_{0}-\displaystyle \frac{2\sqrt{{h}_{1}{h}_{3}}\tan \left(\sqrt{{h}_{1}{h}_{3}}\left(\eta +{r}_{2}\left(4{h}_{1}{h}_{3}t+y\right)+{r}_{1}x\right)\right)}{{r}_{1}},\end{eqnarray}$$\begin{eqnarray}{{ \mathcal C }}_{\mathrm{II},2}={a}_{0}-\displaystyle \frac{2\sqrt{{h}_{1}{h}_{3}}\cot \left(\sqrt{{h}_{1}{h}_{3}}\left(\eta +{r}_{2}\left(4{h}_{1}{h}_{3}t+y\right)+{r}_{1}x\right)\right)}{{r}_{1}}.\end{eqnarray}$
For h2 = 0, h1h3 < 0, we get$\begin{eqnarray}{{ \mathcal C }}_{{\rm{I}},3}={a}_{0}-\displaystyle \frac{2\sqrt{-{h}_{1}{h}_{3}}\coth \left(\sqrt{-{h}_{1}{h}_{3}}\left({r}_{2}\left(4{h}_{1}{h}_{3}t+y\right)+{r}_{1}x\right)\mp \tfrac{\mathrm{log}(\eta )}{2}\right)}{{r}_{1}},\end{eqnarray}$$\begin{eqnarray}{{ \mathcal C }}_{{\rm{I}},4}={a}_{0}-\displaystyle \frac{2\sqrt{-{h}_{1}{h}_{3}}\tanh \left(\sqrt{-{h}_{1}{h}_{3}}\left({r}_{2}\left(4{h}_{1}{h}_{3}t+y\right)+{r}_{1}x\right)\mp \tfrac{\mathrm{log}(\eta )}{2}\right)}{{r}_{1}},\end{eqnarray}$$\begin{eqnarray}{{ \mathcal C }}_{\mathrm{II},3}={a}_{0}-\displaystyle \frac{2\sqrt{-{h}_{1}{h}_{3}}\tanh \left(\sqrt{-{h}_{1}{h}_{3}}\left({r}_{2}\left(4{h}_{1}{h}_{3}t+y\right)+{r}_{1}x\right)\mp \tfrac{\mathrm{log}(\eta )}{2}\right)}{{r}_{1}},\end{eqnarray}$$\begin{eqnarray}{{ \mathcal C }}_{\mathrm{II},4}={a}_{0}-\displaystyle \frac{2\sqrt{-{h}_{1}{h}_{3}}\coth \left(\sqrt{-{h}_{1}{h}_{3}}\left({r}_{2}\left(4{h}_{1}{h}_{3}t+y\right)+{r}_{1}x\right)\mp \tfrac{\mathrm{log}(\eta )}{2}\right)}{{r}_{1}}.\end{eqnarray}$
For h1 = 0, h2 > 0, we get$\begin{eqnarray}{{ \mathcal C }}_{\mathrm{II},5}={a}_{0}+\displaystyle \frac{2{h}_{2}}{{r}_{1}\left({h}_{3}{e}^{{h}_{2}\left(\eta +{r}_{2}\left(y-{h}_{2}^{2}t\right)+{r}_{1}x\right)}-1\right)}+\displaystyle \frac{2{h}_{2}}{{r}_{1}}.\end{eqnarray}$
For h1 = 0, h2 < 0, we get$\begin{eqnarray}{{ \mathcal C }}_{\mathrm{II},6}={a}_{0}-\displaystyle \frac{2{h}_{3}}{{r}_{1}\left({h}_{3}{e}^{{h}_{2}\left(\eta +{r}_{2}\left(y-{h}_{2}^{2}t\right)+{r}_{1}x\right)}+1\right)}+\displaystyle \frac{2{h}_{3}}{{r}_{1}}.\end{eqnarray}$
For $4{h}_{1}{h}_{3}\gt {h}_{2}^{2}$, we get$\begin{eqnarray}{{ \mathcal C }}_{{\rm{I}},5}={a}_{0}-\displaystyle \frac{4{h}_{1}{h}_{3}}{{r}_{1}\left({h}_{2}-\sqrt{4{h}_{1}{h}_{3}-{h}_{2}^{2}}\tan \left(\tfrac{1}{2}\sqrt{4{h}_{1}{h}_{3}-{h}_{2}^{2}}\left(\eta +{r}_{2}\left({h}_{2}^{2}(-t)+4{h}_{1}{h}_{3}t+y\right)+{r}_{1}x\right)\right)\right)},\end{eqnarray}$$\begin{eqnarray}{{ \mathcal C }}_{{\rm{I}},6}={a}_{0}-\displaystyle \frac{4{h}_{1}{h}_{3}}{{r}_{1}\left({h}_{2}-\sqrt{4{h}_{1}{h}_{3}-{h}_{2}^{2}}\cot \left(\tfrac{1}{2}\sqrt{4{h}_{1}{h}_{3}-{h}_{2}^{2}}\left(\eta +{r}_{2}\left({h}_{2}^{2}(-t)+4{h}_{1}{h}_{3}t+y\right)+{r}_{1}x\right)\right)\right)},\end{eqnarray}$$\begin{eqnarray}{{ \mathcal C }}_{\mathrm{II},7}={a}_{0}-\displaystyle \frac{\sqrt{4{h}_{1}{h}_{3}-{h}_{2}^{2}}\tan \left(\tfrac{1}{2}\sqrt{4{h}_{1}{h}_{3}-{h}_{2}^{2}}\left(\eta +{r}_{2}\left({h}_{2}^{2}(-t)+4{h}_{1}{h}_{3}t+y\right)+{r}_{1}x\right)\right)}{{r}_{1}}+\displaystyle \frac{{h}_{2}}{{r}_{1}},\end{eqnarray}$$\begin{eqnarray}{{ \mathcal C }}_{\mathrm{II},8}={a}_{0}-\displaystyle \frac{\sqrt{4{h}_{1}{h}_{3}-{h}_{2}^{2}}\cot \left(\tfrac{1}{2}\sqrt{4{h}_{1}{h}_{3}-{h}_{2}^{2}}\left(\eta +{r}_{2}\left({h}_{2}^{2}(-t)+4{h}_{1}{h}_{3}t+y\right)+{r}_{1}x\right)\right)}{{r}_{1}}+\displaystyle \frac{{h}_{2}}{{r}_{1}}.\end{eqnarray}$
2.1.1. Comparison of the analytical and numerical solutions
Applying the VI method to equation (2), we get the following semi-analytical solutions:$\begin{eqnarray}\begin{array}{rcl}{{ \mathcal C }}_{n+1} & = & {{ \mathcal C }}_{n}-{\displaystyle \int }_{0}^{t}\left(-{\left({{ \mathcal C }}_{n}\right)}_{{xs}}+{\left({{ \mathcal C }}_{n}\right)}_{{xxxz}}\right.\\ & & \left.+4{\left({{ \mathcal C }}_{n}\right)}_{x}{\left({{ \mathcal C }}_{n}\right)}_{{xz}}+2{\left({{ \mathcal C }}_{n}\right)}_{{xx}}{\left({{ \mathcal C }}_{n}\right)}_{z}+3{\left({{ \mathcal C }}_{n}\right)}_{{yy}}\right){ds}.\end{array}\end{eqnarray}$Using equation (22),$\begin{eqnarray}{{ \mathcal C }}_{0}=1-2\tanh (x+2y),\end{eqnarray}$$\begin{eqnarray}\begin{array}{l}{{ \mathcal C }}_{1}(\zeta ,t)=1-2\tanh (x+2y)\\ \quad \times \left(8t\left(\cosh (2(x+2y))-11\right){{\rm{sech}} }^{4}(x+2y)+1\right),\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{l}{{ \mathcal C }}_{2}(\zeta ,t)=2{\rm{sech}} (x)\sinh (2y){\rm{sech}} (x+2y)\\ \quad \times \left(32t{{\rm{sech}} }^{2}(x+2y)\left(2{{\rm{sech}} }^{2}(x+2y)\left(12t{{\rm{sech}} }^{2}(x+2y)\right.\right.\right.\\ \quad \times \left(9056t-270){{\rm{sech}} }^{2}(x+2y)-3600t\left(3\cosh (2(x+2y))-1\right)\right.\\ \quad \left.\left.\left.\left.\times {{\rm{sech}} }^{6}(x+2y)-864t+243\right)+4t(64t-117)+3\right)+8t-1\right)-1\right)\\ \quad +2\tanh (x)\left(32t{{\rm{sech}} }^{2}(x+2y)\left(2{{\rm{sech}} }^{2}(x+2y)\right.\right.\\ \quad \times \left(12t{{\rm{sech}} }^{2}(x+2y)\left(9056t-270){{\rm{sech}} }^{2}(x+2y)\right.\right.\\ \quad \left.-3600t\left(3\cosh (2(x+2y))-1\right){{\rm{sech}} }^{6}(x+2y)-864t+243\right)\\ \quad \left.\left.\left.+4t(64t-117)+3\right)+8t-1\right)-1\right)+1.\end{array}\end{eqnarray}$Using same steps, we can get ${{ \mathcal C }}_{i}$, i = 3, 4, 5, ⋯.
2.2. MKud analytical vs. VI numerical techniques, along with the generalized CBS equation
Applying the MKud scheme’s framework and its auxiliary, $\left({{\mathfrak{L}}}^{{\prime} }({\mathfrak{P}})=\mathrm{ln}(k)\left({\mathfrak{L}}{\left({\mathfrak{P}}\right)}^{2}-{\mathfrak{L}}({\mathfrak{P}})\right)\right)$ (where k is an arbitrary constant to be evaluated later), to equation (6) obtains the following sets of abovementioned parameters:
Set I$\begin{eqnarray*}{a}_{1}\to -\displaystyle \frac{2\mathrm{log}(k)}{{r}_{1}},{r}_{3}\to {r}_{2}\left(-{\mathrm{log}}^{2}(k)\right).\end{eqnarray*}$Therefore, the solitary solutions of the considered model are constructed in the following formula:$\begin{eqnarray}{ \mathcal C }={a}_{0}-\displaystyle \frac{2\mathrm{log}(k)}{{r}_{1}\left(1\pm {k}^{{r}_{2}\left(y-t{\mathrm{log}}^{2}(k)\right)+{r}_{1}x}\right)}.\end{eqnarray}$
2.2.1. Comparison of the analytical and semi-analytical solutions
Applying the VI method along with equation (22) to equation (2), one obtains$\begin{eqnarray}{{ \mathcal C }}_{0}=3-\displaystyle \frac{2}{{e}^{x+2y}+1},\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{{ \mathcal C }}_{1} & = & \displaystyle \frac{1}{{\left({{\rm{e}}}^{x+2y}+1\right)}^{3}}\\ & & \times \left({{\rm{e}}}^{x+2y}\left({{\rm{e}}}^{x+2y}\left(4t+3{{\rm{e}}}^{x+2y}+7\right)-4t+5\right)+1\right),\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{{ \mathcal C }}_{2} & = & \frac{1}{{\left({{\rm{e}}}^{x+2y}+1\right)}^{9}}\left({{\rm{e}}}^{x+2y}\left(\left(4t\left(896{t}^{2}-77t+10\right)+266\right)\right.\right.\\ & & \times {{\rm{e}}}^{4x+8y}+\left(238-4t\left(896{t}^{2}-77t+10\right)\right)\\ & & \times {{\rm{e}}}^{3x+6y}+(25-4(t-2)t){{\rm{e}}}^{7(x+2y)}\\ & & -4\left(3t(5t(16t+3)-6)-49\right){{\rm{e}}}^{5(x+2y)}\\ & & +4\left(3t(5t(16t+3)-6)+35\right){{\rm{e}}}^{2x+4y}\\ & & -4\left(t(t(16t+31)+10)-13\right){{\rm{e}}}^{x+2y}\\ & & +4\left(t(t(16t+31)+10)+23\right){{\rm{e}}}^{6(x+2y)}\\ & & \left.\left.+4(t-2)t+3{{\rm{e}}}^{8(x+2y)}+11\right)+1\right).\end{array}\end{eqnarray}$Using same steps, we can get ${{ \mathcal C }}_{i}$, i = 3, 4, 5, ⋯.
3. Interpretation of the results
This section highlights the novelty of our research papers. It also shows the accuracy of the analytical solution obtained. The ESE and MKud calculation schemes have been applied to the generalized CBS equation for the constructed solitary-wave solution. Many different wave solutions have been obtained, some of which are demonstrated in 2D, 3D, and some sketches in profile drawings to explain solitary waves’ dynamic behavior in nonlinear phenomena in plasma physics. Figures 1 and 3 show the periodic-kink solitary-wave solution. While figure 2 show the semi-analytical solution in three different forms (2D, 3D, and contour plots). Comparing our solution with the solutions obtained in previously published papers, it can be seen that our solution is completely different from the solution evaluated in [25–29].
The VI scheme was applied to the considered model based on the computational solution obtained. The absolute error between the analytical and semi-analytic solutions was calculated, to show the accuracy of the solution and the method used (tables 1 and 2 and figures 3 and 4). This calculation shows that the MKud method is superior to the ESE method, and its absolute error value is much smaller than the absolute value obtained by the ESE method (figure 5).
New window|Download| PPT slide Figure 5.Absolute errors between the ESE and MKud analytical schemes and the TQBS numerical scheme.
Table 1. Table 1.Absolute errors between the analysis obtained using the ESE method and the constructed semi-analytical solution using the VI scheme for different values of x and the following values of the abovementioned parameters: a0 = 1, h2 = 0, h1 = −1, h3 = 1, r1 = −1, and r2 = −2.
Table 2. Table 2.Absolute errors between the analysis obtained using the MKud method and the constructed semi-analytical solution using the VI scheme for different values of x and the following values of the abovementioned parameters a0 = 1, k = e, r1 = −1, and r2 = −2.
This research paper has successfully processed the generalized CBS equations generated for plasma physics and weak dispersion media. The ESE, MKud, and VI schemes were used to find accurate and novel solitary-wave solutions for the model under consideration. Three different types of sketch were used to represent the kink solitary-wave solution. The accuracy of the MKud method was verified using the ESE method. This is our fourth paper on the topic of the ESE method, which examined the accuracy of the calculation scheme. This series aims to determine the accuracy of all the calculation schemes.
Acknowledgments
This research was supported by Taif University Researchers Supporting Project Number (TURSP-2020/247), Taif University, Taif, Saudi Arabia. Additionally, the authors extend their appreciation to the Deanship of Scientific Research at the King Khalid University, Abha, KSA, for funding this work through research group under grant number (RGP. 2/ 121/ 42).
SuJ-JGaoY-TDengG-FJiaT-T2019 Solitary waves, breathers, and rogue waves modulated by long waves for a model of a baroclinic shear flow 100 042210 DOI:10.1103/PhysRevE.100.042210 [Cited within: 1]
DematteisGGrafkeTOnoratoMVanden-EijndenE2019 Experimental evidence of hydrodynamic instantons: the universal route to rogue waves 9 041057 DOI:10.1103/PhysRevX.9.041057 [Cited within: 1]
LanZ-ZSuJ-J2019 Solitary and rogue waves with controllable backgrounds for the non-autonomous generalized ab system 96 25352546 DOI:10.1007/s11071-019-04939-1 [Cited within: 1]
MarcucciGPierangeliDContiC2020 Theory of neuromorphic computing by waves: machine learning by rogue waves, dispersive shocks, and solitons 125 093901 DOI:10.1103/PhysRevLett.125.093901 [Cited within: 1]
IlhanO AManafianJShahriariM2019 Lump wave solutions and the interaction phenomenon for a variable-coefficient Kadomtsev-Petviashvili equation 78 24292448 DOI:10.1016/j.camwa.2019.03.048 [Cited within: 1]
Abdel-AtyA-HKhaterM MDuttaHBouslimiJOmriM2020 Computational solutions of the HIV-1 infection of CD4+ T-cells fractional mathematical model that causes acquired immunodeficiency syndrome (AIDS) with the effect of antiviral drug therapy 139 110092 DOI:10.1016/j.chaos.2020.110092
KhaterM MAttiaR AParkCLuD2020 On the numerical investigation of the interaction in plasma between (high & low) frequency of (langmuir & ion-acoustic) waves 18 103317
QinHKhaterMAttiaR A2020 Inelastic interaction and blowup new solutions of nonlinear and dispersive long gravity waves 2020 110 DOI:10.1155/2020/5362989
KhaterM MGhanbariBNisarK SKumarD2020 Novel exact solutions of the fractional Bogoyavlensky-Konopelchenko equation involving the Atangana-Baleanu-Riemann derivative 59 29572967 DOI:10.1016/j.aej.2020.03.032
YueCLuDKhaterM MAbdel-AtyA-HAlharbiWAttiaR A2020 On explicit wave solutions of the fractional nonlinear DSW system via the modified Khater method 28 2040034 DOI:10.1142/S0218348X20400344
Abdel-AtyA-HKhaterMAttiaR AEleuchH2020 Exact traveling and nano-solitons wave solitons of the ionic waves propagating along microtubules in living cells 8 697 DOI:10.3390/math8050697 [Cited within: 1]
QinHKhaterMAttiaR A2020 Copious closed forms of solutions for the fractional nonlinear longitudinal strain wave equation in microstructured solids 2020 18 DOI:10.1155/2020/3498796 [Cited within: 1]
LiJAttiaR AKhaterM MLuD2020 The new structure of analytical and semi-analytical solutions of the longitudinal plasma wave equation in a magneto-electro-elastic circular rod 34 2050123 DOI:10.1142/S0217984920501237
KhaterM MAttiaR AAlodhaibiS SLuD2020 Novel soliton waves of two fluid nonlinear evolutions models in the view of computational scheme 34 2050096 DOI:10.1142/S0217979220500964
GünerhanHKhodadadF SRezazadehHKhaterM M2020 Exact optical solutions of the (2 + 1) dimensions Kundu-Mukherjee-Naskar model via the new extended direct algebraic method 2050225 DOI:10.1142/S0217984920502255
YueCKhaterM MIncMAttiaR ALuD2020 Abundant analytical solutions of the fractional nonlinear (2 + 1)-dimensional BLMP equation arising in incompressible fluid 34 2050084 DOI:10.1142/S0217979220500848 [Cited within: 1]
YueCElmoasryAKhaterMOsmanMAttiaRLuDElazabN S2020 On complex wave structures related to the nonlinear long-short wave interaction system: Analytical and numerical techniques 10 045212 DOI:10.1063/5.0002879 [Cited within: 1]
YueCKhaterM MAttiaR ALuD2020 Computational simulations of the couple Boiti-Leon-Pempinelli (BLP) system and the (3 + 1)-dimensional Kadomtsev-Petviashvili (KP) equation 10 045216 DOI:10.1063/1.5142796 [Cited within: 1]
KhaterM MAttiaR ALuD2020 Computational and numerical simulations for the nonlinear fractional Kolmogorov-Petrovskii-Piskunov (FKPP) equation 95 055213 DOI:10.1088/1402-4896/ab76f8 [Cited within: 1]
KhaterM M et al. 2020 Analytical and numerical solutions for the current and voltage model on an electrical transmission line with time and distance 95 055206 DOI:10.1088/1402-4896/ab76f8 [Cited within: 1]
BruzonMGandariasMMurielCRamirezJSaezSRomeroF2003 The Calogero-Bogoyavlenskii-Schiff equation in (2 + 1) dimensions 137 13671377 DOI:10.1023/A:1026040319977
HanLBiligeSZhangRLiM2020 Study on exact solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation 2 100010 DOI:10.1016/j.padiff.2020.100010
KhanM H et al. 2020 Lump, multi-lump, cross kinky-lump and manifold periodic-soliton solutions for the (2 + 1)-D Calogero-Bogoyavlenskii-Schiff equation 6 e03701 DOI:10.1016/j.heliyon.2020.e03701
QinC-YTianS-FZouLMaW-X2018 Solitary wave and quasi-periodic wave solutions to a (3 + 1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff equation 10 948977 DOI:10.4208/aamm.OA-2017-0220 [Cited within: 1]
LiSLiYZhangB G2016 Some singular solutions and their limit forms for generalized Calogero-Bogoyavlenskii-Schiff equation 85 16651677 DOI:10.1007/s11071-016-2785-2 [Cited within: 1]