删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Generalizations of the finite nonperiodic Toda lattice and its Darboux transformation

本站小编 Free考研考试/2022-01-02

Jian Li1, Chuanzhong Li,21School of Mathematics and Statistics, Ningbo University, Ningbo, 315211, China
2College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, 266590, China

Received:2021-04-16Revised:2021-05-9Accepted:2021-05-17Online:2021-06-25


Abstract
In this paper, we construct Hamiltonian systems for 2N particles whose force depends on the distances between the particles. We obtain the generalized finite nonperiodic Toda equations via a symmetric group transformation. The solutions of the generalized Toda equations are derived using the tau functions. The relationship between the generalized nonperiodic Toda lattices and Lie algebras is then be discussed and the generalized Kac-van Moerbeke hierarchy is split into generalized Toda lattices, whose integrability and Darboux transformation are studied.
Keywords: Hamiltonian systems;Toda lattices;Darboux transformation;Lie algebra;Kac-van Moerbeke hierarchy


PDF (347KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Jian Li, Chuanzhong Li. Generalizations of the finite nonperiodic Toda lattice and its Darboux transformation. Communications in Theoretical Physics, 2021, 73(8): 085002- doi:10.1088/1572-9494/ac01e5

1. Introduction

Many mathematicians have made significant contributions to the Toda equations and have achieved many meaningful results. For example, in 1974, the complete integrability of the Toda lattice was demonstrated by Henon [1]. A few years later, the nonlinear interactions in chains were well known [2]. Also, in 1974, according to Flaschka [3, 4], the Lax form was equivalent to the periodic Toda lattice:$\begin{eqnarray}\displaystyle \frac{{\rm{d}}L}{{\rm{d}}t}=[B,L],\end{eqnarray}$where L is a tridiagonal matrix, $B={(L)}_{\gt 0}-{(L)}_{\lt 0}$. Further, Moser showed the complete integrability of nonperiodic Toda lattices [5]. With the development of integrable systems, the relationship was established between nonperiodic Toda lattices and their geometry and topology. Then, by considering the full Kostant–Toda hierarchy with real variables [68], it was shown that the regular solutions for the full Kostant–Toda lattices could be split into the algebra sln(R). In fact, in recent years, Kodama has made many outstanding achievements with nonperiodic Toda lattices [913]. According to [14], any finite dimensional simple Lie algebra or Kac–Moody algebra can be split into generalized Toda lattices, and all these equations are integrable systems. There are many applications of two-dimensional Toda equations, including the inverse scattering method, the Hirota direct method, Darboux transformations [15, 16], and so on [1724].

This paper is arranged as follows. In section 2, we give the generalized Toda systems for $2N$ particles, and the properties and the solutions of the generalized Toda equations are both discussed. In section 3, the relationship between the generalized nonperiodic Toda lattices and Lie algebras is studied. From the example given in this article, the generalized Kac-van Moerbeke hierarchy can be split into two Toda lattices. In section 4, Darboux transformations of the two-dimensional generalized Toda equations are obtained.

2. Coupled Toda lattice

In this section, we consider $2n$ particles, whose force depends on the distances between the particles. For those particles, the coupled Hamiltonians $(H,\widehat{H})$ are given by$\begin{eqnarray}\left\{\begin{array}{l}H=\displaystyle \frac{1}{2}\sum _{k=1}^{n}({p}_{k}^{2}+\varepsilon {\widehat{p}}_{k}^{2})+\sum _{k=1}^{n-1}{{\rm{e}}}^{-({q}_{k+1}-{q}_{k})}\cosh [-\sqrt{\varepsilon }({\hat{q}}_{k+1}-{\hat{q}}_{k})],\\ \widehat{H}=\sum _{k=1}^{n}{p}_{k}{\hat{p}}_{k}+\displaystyle \frac{1}{\sqrt{\varepsilon }}\sum _{k=1}^{n-1}{{\rm{e}}}^{-({q}_{k+1}-{q}_{k})}\sinh [-\sqrt{\varepsilon }({\hat{q}}_{k+1}-{\hat{q}}_{k})],\end{array}\right.\end{eqnarray}$where $\tfrac{{\rm{d}}{q}_{k}}{{\rm{d}}t}=\tfrac{\partial H}{\partial {p}_{k}},\tfrac{{\rm{d}}{\hat{q}}_{k}}{{\rm{d}}t}=\tfrac{\partial \widehat{H}}{\partial {p}_{k}},\tfrac{{\rm{d}}{p}_{k}}{{\rm{d}}t}=-\tfrac{\partial H}{\partial {q}_{k}},\tfrac{{\rm{d}}{\hat{p}}_{k}}{{\rm{d}}t}=-\tfrac{\partial \widehat{H}}{\partial {q}_{k}}$. The Hamiltonian systems then represent a generalized finite nonperiodic lattice described by:$\begin{eqnarray}\left\{\begin{array}{l}\displaystyle \frac{{\rm{d}}{q}_{k}}{{\rm{d}}t}={p}_{k},\\ \displaystyle \frac{{\rm{d}}{\widehat{q}}_{k}}{{\rm{d}}t}={\hat{p}}_{k},\\ \displaystyle \frac{{\rm{d}}{p}_{k}}{{\rm{d}}t}=-{{\rm{e}}}^{-({q}_{k+1}-{q}_{k})}\cosh [-\sqrt{\varepsilon }({\hat{q}}_{k+1}-{\hat{q}}_{k})]+{e}^{-({q}_{k}-{q}_{k-1})}\cosh [-\sqrt{\varepsilon }({\hat{q}}_{k}-{\hat{q}}_{k-1})],\\ \displaystyle \frac{{\rm{d}}{\widehat{p}}_{k}}{{\rm{d}}t}=-\displaystyle \frac{1}{\sqrt{\varepsilon }}{{\rm{e}}}^{-({q}_{k+1}-{q}_{k})}\sinh [-\sqrt{\varepsilon }({\hat{q}}_{k+1}-{\hat{q}}_{k})]+\displaystyle \frac{1}{\sqrt{\varepsilon }}{{\rm{e}}}^{-({q}_{k}-{q}_{k-1})}\sinh [-\sqrt{\varepsilon }({\hat{q}}_{k}-{\hat{q}}_{k-1})],\end{array}\right.\end{eqnarray}$where the formal boundary conditions are given by ${{\rm{e}}}^{-({q}_{1}-{q}_{0})}={{\rm{e}}}^{-({\hat{q}}_{1}-{\hat{q}}_{0})}={{\rm{e}}}^{-({q}_{n+1}-{q}_{n})}={{\rm{e}}}^{-({\hat{q}}_{n+1}-{\hat{q}}_{n})}=0$ at ${q}_{0}={\hat{q}}_{0}=0$ and ${q}_{n+1}={\hat{q}}_{n+1}=\infty $. In fact, the equations (2.2) can be expressed in the Lax form, and we introduce a new set of variables, as follows:$\begin{eqnarray}\left\{\begin{array}{l}{a}_{k}=\displaystyle \frac{1}{2}{{\rm{e}}}^{-\tfrac{1}{2}({q}_{k+1}-{q}_{k})}\cosh [\displaystyle \frac{-\sqrt{\varepsilon }}{2}({\hat{q}}_{k+1}-{\hat{q}}_{k})],\\ {\widehat{a}}_{k}=\displaystyle \frac{1}{2\sqrt{\varepsilon }}{{\rm{e}}}^{-\tfrac{1}{2}({q}_{k+1}-{q}_{k})}\sinh [\displaystyle \frac{-\sqrt{\varepsilon }}{2}({\hat{q}}_{k+1}-{\hat{q}}_{k})],\\ {b}_{k}=-\displaystyle \frac{1}{2}{p}_{k},\\ {\widehat{b}}_{k}=-\displaystyle \frac{1}{2}{\hat{p}}_{k}.\end{array}\right.\end{eqnarray}$Based on the above transformation (2.3), the generalized Toda equations (2.2) become$\begin{eqnarray}\left\{\begin{array}{l}\displaystyle \frac{{\rm{d}}{a}_{k}}{{\rm{d}}t}={a}_{k}({b}_{k+1}-{b}_{k})-\varepsilon {\hat{a}}_{k}({\hat{b}}_{k+1}-{\hat{b}}_{k}),\\ \displaystyle \frac{{\rm{d}}{\widehat{a}}_{k}}{{\rm{d}}t}={\hat{a}}_{k}({b}_{k+1}-{b}_{k})-{a}_{k}({\hat{b}}_{k+1}-{\hat{b}}_{k}),\\ \displaystyle \frac{{\rm{d}}{b}_{k}}{{\rm{d}}t}=2({a}_{k}^{2}+\varepsilon {\hat{a}}_{k}^{2}-{a}_{k-1}^{2}-\varepsilon {\hat{a}}_{k-1}^{2}),\\ \displaystyle \frac{{\rm{d}}{\widehat{b}}_{k}}{{\rm{d}}t}=4({a}_{k}{\hat{a}}_{k}-{a}_{k-1}{\hat{a}}_{k-1}),\end{array}\right.\end{eqnarray}$where ${a}_{0}={\hat{a}}_{0}=0$ and ${a}_{n}={\hat{a}}_{n}=0$. From the two extended symmetric matrices $L(\widehat{L})$, and ${a}_{k},{b}_{k}({\widehat{a}}_{k},{\widehat{b}}_{k})$ we can obtain the elements of $L(\widehat{L})$, using the expressions given by$\begin{eqnarray}L=\left(\begin{array}{ccccc}{b}_{1} & {a}_{1} & & & \\ {a}_{1} & {b}_{2} & \ddots & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & {b}_{n-1} & {a}_{n-1}\\ & & & {a}_{n-1} & {b}_{n}\end{array}\right),\end{eqnarray}$$\begin{eqnarray}\widehat{L}=\left(\begin{array}{ccccc}{\widehat{b}}_{1} & {\widehat{a}}_{1} & & & \\ {\widehat{a}}_{1} & {\widehat{b}}_{2} & \ddots & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & {\widehat{b}}_{n-1} & {\widehat{a}}_{n-1}\\ & & & {\widehat{a}}_{n-1} & {\widehat{b}}_{n}\end{array}\right).\end{eqnarray}$Thus, the systems (2.5) and (2.6) can be written as$\begin{eqnarray}\left\{\begin{array}{l}\displaystyle \frac{{\rm{d}}}{{\rm{dt}}}L(t)=[B,L]+\varepsilon [\hat{B},\hat{L}],\\ \displaystyle \frac{{\rm{d}}}{{\rm{dt}}}\widehat{L}(t)=[\hat{B},L]+[B,\hat{L}],\end{array}\right.\end{eqnarray}$where $\left\{\begin{array}{l}B={(L)}_{\gt 0}-{(L)}_{\lt 0},\\ \widehat{B}={(\hat{L})}_{\gt 0}-{(\hat{L})}_{\lt 0},\end{array}\right.$ ${(L)}_{\gt 0}{((\hat{L})}_{\gt 0})$ is the upper triangular matrix of $L(\hat{L})$, and ${(L)}_{\lt 0}{((\hat{L})}_{\lt 0})$ is the lower triangular matrix of $L(\hat{L})$. According to [3], we find that the functions ${tr}({L}^{k}),{tr}({\widehat{L}}^{k})$ are constant for any k, and$\begin{eqnarray}\left\{\begin{array}{l}\mathrm{tr}([B,{L}^{k}+2\varepsilon \sum _{j=1}^{\left[\tfrac{k}{2}\right]}{C}_{k}^{2j}{L}^{k-2j}{\widehat{L}}^{2j}]+\varepsilon [\widehat{B},\sum _{j=1}^{\left[\tfrac{k}{2}\right]}{C}_{k}^{2j-1}{L}^{k-2j+1}{\widehat{L}}^{2j-1}])=\\ \displaystyle \frac{{\rm{d}}}{{\rm{d}}t}\mathrm{tr}({L}^{k}+2\varepsilon \sum _{j=1}^{\left[\tfrac{k}{2}\right]}{C}_{k}^{2j}{L}^{k-2j}{\widehat{L}}^{2j})=0,\\ \mathrm{tr}([\widehat{B},{L}^{k}+2\varepsilon \sum _{j=1}^{\left[\tfrac{k}{2}\right]}{C}_{k}^{2j}{L}^{k-2j}{\widehat{L}}^{2j}]+[B,\sum _{j=1}^{\left[\tfrac{k}{2}\right]}{C}_{k}^{2j-1}{L}^{k-2j+1}{\widehat{L}}^{2j-1}])=\\ \displaystyle \frac{{\rm{d}}}{{\rm{d}}t}\mathrm{tr}(\sum _{j=1}^{\left[\tfrac{k}{2}\right]}{C}_{k}^{2j-1}{L}^{k-2j+1}{\widehat{L}}^{2j-1})=0.\end{array}\right.\end{eqnarray}$For the $2{\rm{n}}-2$ independent invariant functions,$\begin{eqnarray}\left\{\begin{array}{l}{H}_{k}(L,\widehat{L})=\displaystyle \frac{1}{k+1}\mathrm{tr}({L}^{k+1}+2\varepsilon \sum _{j=1}^{\left[\tfrac{k+1}{2}\right]}{C}_{k+1}^{2j}{L}^{k+1-2j}{\hat{L}}^{2j}),\\ {\widehat{H}}_{k}(L,\widehat{L})=\displaystyle \frac{1}{k+1}\mathrm{tr}(\sum _{j=1}^{\left[\tfrac{k+1}{2}\right]}{C}_{k+1}^{2j-1}{L}^{k-2j+2}{\hat{L}}^{2j-1}),\end{array}\right.\end{eqnarray}$where $[\,]$ represents an integer operation and ${C}_{k+1}^{2j-1}$ represents a binomial coefficient. From the calculation and transformation shown in (2.2), we obtain the relationship between the independent invariant functions and Hamiltonian $(H,\widehat{H})$ ,$\begin{eqnarray}\left\{\begin{array}{l}H(L,\widehat{L})=\displaystyle \frac{1}{2}\mathrm{tr}({L}^{2}+\varepsilon {\hat{L}}^{2}),\\ \widehat{H}(L,\widehat{L})=\displaystyle \frac{1}{2}\mathrm{tr}(\hat{L}L+L\hat{L}).\end{array}\right.\end{eqnarray}$According to the properties of tridiagonal symmetric matrices [5], this has real and distinct eigenvalues. In fact, ${\widehat{q}}_{k+1}-{\widehat{q}}_{k}$ and ${q}_{k+1}-{q}_{k}$ tend to $\infty $ when ${\rm{t}}\to \pm \infty $. Furthermore, it is easy to see that ${\hat{a}}_{k}$ and ak tend to zero, so $L(\widehat{L})$ degenerates into a diagonal matrix $\mathrm{diag}({\lambda }_{1},{\lambda }_{2},\cdots ,{\lambda }_{n})$ ($\mathrm{diag}({\widehat{\lambda }}_{1},{\widehat{\lambda }}_{2},\cdots ,{\widehat{\lambda }}_{n})$),$\begin{eqnarray}\left\{\begin{array}{l}L(t)\to \mathrm{diag}({\lambda }_{1},{\lambda }_{2},\cdots ,{\lambda }_{n}),\\ \widehat{L}(t)\to \mathrm{diag}({\widehat{\lambda }}_{1},{\widehat{\lambda }}_{2},\cdots ,{\widehat{\lambda }}_{n}).\end{array}\right.\end{eqnarray}$There are many methods to solve the the Toda lattice, such as QR-factorization [25], Gram-Schmidt orthogonalization [26], and so on. Based on the methods provided above and the generalized initial matrices $(L(0),\hat{L}(0))$, the factorization of the generalized initial matrices can be expressed as$\begin{eqnarray}\left\{\begin{array}{l}{{\rm{e}}}^{{tL}(0)}\cosh (\varepsilon t\hat{L}(0))=k(t)r(t)+\varepsilon \hat{k}(t)\hat{r}(t),\\ \displaystyle \frac{1}{\sqrt{\varepsilon }}{{\rm{e}}}^{{tL}(0)}\sinh (\sqrt{\varepsilon }t\hat{L}(0))=\hat{k}(t)r(t)+k(t)\hat{r}(t),\end{array}\right.\end{eqnarray}$where $k(t),\hat{k}(t)\in {{SO}}_{n}$ and $r(t),\hat{r}(t)$ are upper triangular matrices. In order to solve the generalized Toda equations (2.4), we introduce the τ-functions [27]. We now define two moment matrices,$\begin{eqnarray}\left\{\begin{array}{l}M(t):= {{\rm{e}}}^{2{tL}(0)}\cosh (2\sqrt{\varepsilon }t\hat{L}(0))={r}^{{\rm{T}}}(t)r(t)+\varepsilon {\widehat{r}}^{{\rm{T}}}(t)\widehat{r}(t),\\ \widehat{M}(t):= \displaystyle \frac{1}{\sqrt{\varepsilon }}{{\rm{e}}}^{2{tL}(0)}\sinh (2\sqrt{\varepsilon }t\hat{L}(0))={r}^{T}(t)\widehat{r}(t)+{\widehat{r}}^{{\rm{T}}}(t)r(t),\end{array}\right.\end{eqnarray}$where ${r}^{T}(t)({\hat{r}}^{T}(t))$ is the transpose of $r(t)(\hat{r}(t))$. From the decomposition of (2.13), the matrices r(t) and $\hat{r}(t)$ can be obtained by the factorization of (2.12).

The tau functions ${\tau }_{j},{\hat{\tau }}_{j}$ ($j=1,\cdots ,n-1$) are defined by,$\begin{eqnarray}\left\{\begin{array}{l}{\tau }_{j}:= \det ({M}_{j}(t))=\prod _{i=1}^{j}{\widetilde{r}}_{i}+\varepsilon \sum _{\sum _{i=1}^{j}{k}_{i}=0\ {mod}\ 2}^{j}({\widetilde{r}}_{1}^{[{k}_{1}]}{\widetilde{r}}_{2}^{[{k}_{2}]}\cdots {\widetilde{r}}_{j}^{[{k}_{j}]})+{\varepsilon }^{2}\prod _{i=1}^{j}{\widehat{\widetilde{r}}}_{i},\\ {\widehat{\tau }}_{j}:= \det ({\hat{M}}_{j}(t))=\sum _{m=1}^{j}{\widetilde{r}}_{1}\cdots {\widehat{\widetilde{r}}}_{m}\cdots {\widetilde{r}}_{j}+\varepsilon \sum _{\sum _{i=1}^{j}{k}_{i}=1\ {mod}\ 2}^{j}({\widetilde{r}}_{1}^{[{k}_{1}]}{\widetilde{r}}_{2}^{[{k}_{2}]}\cdots {\widetilde{r}}_{j}^{[{k}_{j}]}),\end{array}\right.\end{eqnarray}$where Mj (${\hat{M}}_{j}$) are the j×j upper-left sub-matrix of M(t) ($\hat{M}(t)$), and ${\widetilde{r}}_{p}^{[{k}_{p}]}=\left\{\begin{array}{l}{\widetilde{r}}_{p},\,\,\,{k}_{p}=0,\\ {\widehat{\widetilde{r}}}_{p},\,\,\,{k}_{p}=1.\end{array}\right.$ Let diag (r(t))=diag $({r}_{1}(t),\cdots ,{r}_{n}(t))$ and $\mathrm{diag}(\hat{r}(t))=\mathrm{diag}({\hat{r}}_{1}(t),\cdots ,{\hat{r}}_{n}(t))$; note that ${\widetilde{r}}_{i}={r}_{i}^{2}+\varepsilon {\widehat{r}}_{i}^{2}$, ${\widehat{\widetilde{r}}}_{i}={r}_{i}{\widehat{r}}_{i}+{\widehat{r}}_{i}{r}_{i}$.

From the gauge transformation and the Gram-Schmidt method of orthonormalization, we then have$\begin{eqnarray}\left\{\begin{array}{l}{a}_{j}(t)={a}_{j}(0)\displaystyle \frac{{r}_{k+1}{r}_{k}+\varepsilon {\hat{r}}_{k+1}{\hat{r}}_{k}}{{r}_{k}^{2}-\varepsilon {\hat{r}}_{k}^{2}}+\varepsilon {\hat{a}}_{j}(0)\displaystyle \frac{{\hat{r}}_{k+1}{r}_{k}+{r}_{k+1}{\hat{r}}_{k}}{{r}_{k}^{2}-\varepsilon {\hat{r}}_{k}^{2}},\\ {\hat{a}}_{j}(t)={\hat{a}}_{j}(0)\displaystyle \frac{{r}_{k+1}{r}_{k}+\varepsilon {\hat{r}}_{k+1}{\hat{r}}_{k}}{{r}_{k}^{2}-\varepsilon {\hat{r}}_{k}^{2}}+{a}_{j}(0)\displaystyle \frac{{\hat{r}}_{k+1}{r}_{k}+{r}_{k+1}{\hat{r}}_{k}}{{r}_{k}^{2}-\varepsilon {\hat{r}}_{k}^{2}}.\end{array}\right.\end{eqnarray}$Therefore, with (2.14) and (2.4), we obtain the solutions $({a}_{j}(t),{\hat{a}}_{j}(t),{b}_{j}(t),{\hat{b}}_{j}(t))$,$\begin{eqnarray}\left\{\begin{array}{l}{a}_{j}(t)={a}_{j}(0)\displaystyle \frac{x{\tau }_{j}(t)-\varepsilon y{\hat{\tau }}_{j}(t)}{{\tau }_{j}^{2}(t)-\varepsilon {\hat{\tau }}_{j}^{2}(t)}+\varepsilon {\hat{a}}_{j}(0)\displaystyle \frac{y{\tau }_{j}(t)-x{\hat{\tau }}_{j}(t)}{{\tau }_{j}^{2}(t)-\varepsilon {\hat{\tau }}_{j}^{2}(t)},\\ {\hat{a}}_{j}(t)={\hat{a}}_{j}(0)\displaystyle \frac{x{\tau }_{j}(t)-\varepsilon y{\hat{\tau }}_{j}(t)}{{\tau }_{j}^{2}(t)-\varepsilon {\hat{\tau }}_{j}^{2}(t)}+{a}_{j}(0)\displaystyle \frac{y{\tau }_{j}(t)-x{\hat{\tau }}_{j}(t)}{{\tau }_{j}^{2}(t)-\varepsilon {\hat{\tau }}_{j}^{2}(t)},\end{array}\right.\end{eqnarray}$where $x={\left(\tfrac{{a}_{1}\mp \sqrt{{a}_{1}^{2}-\varepsilon {a}_{2}^{2}}}{2}\right)}^{\tfrac{1}{2}}$, $y={\left(\tfrac{{a}_{1}\mp \sqrt{{a}_{1}^{2}-\varepsilon {a}_{2}^{2}}}{2\varepsilon }\right)}^{\tfrac{1}{2}}$ and ${a}_{1}={\tau }_{j+1}(t){\tau }_{j-1}(t)+\varepsilon {\hat{\tau }}_{j+1}(t){\hat{\tau }}_{j-1}(t)$, ${a}_{2}={\hat{\tau }}_{j+1}(t){\tau }_{j-1}(t)\,+{\tau }_{j+1}(t){\hat{\tau }}_{j-1}(t)$. Furthermore, we have$\begin{eqnarray}\left\{\begin{array}{l}{b}_{j}(t)=\displaystyle \frac{1}{4}\displaystyle \frac{{\rm{d}}}{{\rm{d}}t}[\mathrm{log}(c+\sqrt{\varepsilon }\hat{c})+\mathrm{log}(c-\sqrt{\varepsilon }\hat{c})],\\ {\hat{b}}_{j}(t)=\displaystyle \frac{1}{4\sqrt{\varepsilon }}\displaystyle \frac{{\rm{d}}}{{\rm{d}}t}[\mathrm{log}(c+\sqrt{\varepsilon }\hat{c})-\mathrm{log}(c-\sqrt{\varepsilon }\hat{c})],\end{array}\right.\end{eqnarray}$where $c=\tfrac{{\tau }_{j}(t){\tau }_{j-1}(t)-\varepsilon {\hat{\tau }}_{j}(t){\hat{\tau }}_{j-1}(t)}{{\tau }_{j-1}^{2}(t)-\varepsilon {\hat{\tau }}_{j-1}^{2}(t)}$, $\hat{c}=\tfrac{{\hat{\tau }}_{j}(t){\tau }_{j-1}(t)-{\tau }_{j}(t){\hat{\tau }}_{j-1}(t)}{{\tau }_{j-1}^{2}(t)-\varepsilon {\hat{\tau }}_{j-1}^{2}(t)}$.

3. Generalized Toda lattice on Lie algebras

We first give the Lax equations of the generalized nonperiodic Toda lattice, which are connected with the Lie algebra g. The forms are as follows:$\begin{eqnarray}\left\{\begin{array}{l}\displaystyle \frac{{\rm{d}}}{{\rm{d}}t}P=[P,N]+\varepsilon [\hat{P},\hat{N}]\\ \displaystyle \frac{{\rm{d}}}{{\rm{d}}t}\widehat{P}=[P,\hat{N}]+[\hat{P},N],\end{array}\right.\end{eqnarray}$where $P(t),\widehat{P}(t)$ are the elements of g and $N(t)(\widehat{N}(t))$ are the projections of $P(t)(\widehat{P}(t))$, which are given by$\begin{eqnarray}\left\{\begin{array}{l}P(t)=\sum _{i=1}^{l}{f}_{i}(t){h}_{{\alpha }_{i}}+\sum _{i=1}^{l}{g}_{i}(t)({e}_{-{\alpha }_{i}}+{e}_{{\alpha }_{i}}),\\ \widehat{P}(t)=\sum _{i=1}^{l}{\hat{f}}_{i}(t){h}_{{\alpha }_{i}}+\sum _{i=1}^{l}{\hat{g}}_{i}(t)({e}_{-{\alpha }_{i}}+{e}_{{\alpha }_{i}}),\\ N(t)=-\sum _{i=1}^{l}{g}_{i}(t){h}_{-{\alpha }_{i}},\\ \widehat{N}(t)=-\sum _{i=1}^{l}{\hat{g}}_{i}(t){h}_{-{\alpha }_{i}},\end{array}\right.\end{eqnarray}$where ${h}_{{\alpha }_{i}},{e}_{\pm {\alpha }_{i}}(i=1,2,\ldots ,l)$ are the Chevalley basis of the algebra, $[{h}_{{\alpha }_{i}},{h}_{{\alpha }_{j}}]=0$, $[{h}_{{\alpha }_{i}},{e}_{\pm {\alpha }_{i}}]=\pm {C}_{{ij}}{e}_{\pm {\alpha }_{i}}$, $[{e}_{{\alpha }_{i}},{e}_{-{\alpha }_{j}}]={\delta }_{{ij}}{h}_{{\alpha }_{j}}$, and ${C}_{{ij}}={\alpha }_{i}({h}_{{\alpha }_{i}})$ is the Cartan matrix. In fact, Chevalley proved the complete integrability of the algebra, and Kostant discussed the geometry of the iso-spectral variety for the single-component system [28]. According to (3.1), this then gives$\begin{eqnarray}\left\{\begin{array}{l}\displaystyle \frac{{\rm{d}}{f}_{i}}{{\rm{d}}t}={g}_{i},\,\,\,\,\,\,\,\displaystyle \frac{{\rm{d}}{\widehat{f}}_{i}}{{\rm{d}}t}={\hat{g}}_{i},\\ \displaystyle \frac{{\rm{d}}{g}_{i}}{{\rm{d}}t}=-\left(\sum _{j=1}^{l}{f}_{j}\right){g}_{i}-\varepsilon (\sum _{j=1}^{l}{\widehat{f}}_{j}){\widehat{g}}_{i},\\ \displaystyle \frac{{\rm{d}}{\widehat{g}}_{i}}{{\rm{d}}t}=-\left(\sum _{j=1}^{l}{\widehat{f}}_{j}\right){g}_{i}-(\sum _{j=1}^{l}{f}_{j}){\widehat{g}}_{i},\end{array}\right.\end{eqnarray}$and the relations of ${f}_{i},{\hat{f}}_{i},{g}_{i},{\hat{g}}_{i}$ with τ-functions are given by$\begin{eqnarray}\left\{\begin{array}{l}{f}_{i}(t)=\displaystyle \frac{{\rm{d}}}{{\rm{d}}t}\displaystyle \frac{\mathrm{log}[{\tau }_{i}(t)+\sqrt{\varepsilon }{\hat{\tau }}_{i}(t)]+\mathrm{log}[{\tau }_{i}(t)-\sqrt{\varepsilon }{\hat{\tau }}_{i}(t)]}{2},\\ {\widehat{f}}_{i}(t)=\displaystyle \frac{{\rm{d}}}{{\rm{d}}t}\displaystyle \frac{\mathrm{log}[{\tau }_{i}(t)+\sqrt{\varepsilon }{\hat{\tau }}_{i}(t)]-\mathrm{log}[{\tau }_{i}(t)-\sqrt{\varepsilon }{\hat{\tau }}_{i}(t)]}{2\sqrt{\varepsilon }},\end{array}\right.\end{eqnarray}$$\begin{eqnarray}\left\{\begin{array}{l}{g}_{i}(t)={g}_{i}(0)\prod _{j=1}^{l}\left[{\left({\tau }_{j}(t)\right)}^{-{C}_{{ij}}}+2\varepsilon \sum _{m=1}^{\left[\tfrac{-{C}_{{ij}}}{2}\right]}({C}_{-{C}_{{ij}}}^{2m}{\left({\tau }_{j}(t)\right)}^{-{C}_{{ij}}-2m}{\left({\widehat{\tau }}_{j}(t)\right)}^{2m})\right]\\ \quad +\varepsilon {\widehat{g}}_{i}(0)\prod _{j=1}^{l}\left[\sum _{m=1}^{\left[\tfrac{-{C}_{{ij}}}{2}\right]}({C}_{-{C}_{{ij}}}^{2m-1}{\left({\tau }_{j}(t)\right)}^{-{C}_{{ij}}-2m+1}{\left({\widehat{\tau }}_{j}(t)\right)}^{2m-1})\right],\\ {\widehat{g}}_{i}(t)={\widehat{g}}_{i}(0)\prod _{j=1}^{l}\left[{\left({\tau }_{j}(t)\right)}^{-{C}_{{ij}}}+2\varepsilon \sum _{m=1}^{\left[\tfrac{-{C}_{{ij}}}{2}\right]}({C}_{-{C}_{{ij}}}^{2m}{\left({\tau }_{j}(t)\right)}^{-{C}_{{ij}}-2m}{\left({\widehat{\tau }}_{j}(t)\right)}^{2m})\right]\\ \quad +{g}_{i}(0)\prod _{j=1}^{l}\left[\sum _{m=1}^{\left[\tfrac{-{C}_{{ij}}}{2}\right]}({C}_{-{C}_{{ij}}}^{2m-1}{\left({\tau }_{j}(t)\right)}^{-{C}_{{ij}}-2m+1}{\left({\widehat{\tau }}_{j}(t)\right)}^{2m-1})\right].\end{array}\right.\end{eqnarray}$The integrability of the system can be ensured, because we give a specific example to illustrate it below.

Let ${g}_{1}={{SO}}_{2n}$, $X,\widehat{X}\in {{SO}}_{2n}$, if ${X}^{2k-1}+2\varepsilon {\sum }_{j=1}^{\left[\tfrac{2k-1}{2}\right]}{C}_{2k-1}^{2j}{X}^{2k-1-2j}{\hat{X}}^{2j},{\sum }_{j=1}^{\left[\tfrac{2k-1}{2}\right]}{C}_{2k-1}^{2j-1}{X}^{2k-2j}{\hat{X}}^{2j-1}\in {{SO}}_{2n}$, the specific forms of $X,\widehat{X}$ are given by the tridiagonal matrix,$\begin{eqnarray}X=\left(\begin{array}{ccccc}0 & {\alpha }_{1} & & & \\ -{\alpha }_{1} & 0 & \ddots & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & 0 & {\alpha }_{2n-1}\\ & & & -{\alpha }_{2n-1} & 0\end{array}\right),\end{eqnarray}$

$\begin{eqnarray}\widehat{X}=\left(\begin{array}{ccccc}0 & {\widehat{\alpha }}_{1} & & & \\ -{\widehat{\alpha }}_{1} & 0 & \ddots & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & 0 & {\widehat{\alpha }}_{2n-1}\\ & & & -{\widehat{\alpha }}_{2n-1} & 0\end{array}\right).\end{eqnarray}$In this way, we obtain all the even flows, which are called the generalized Kac-van Moerbeke hierarchy:$\begin{eqnarray}\left\{\begin{array}{l}\displaystyle \frac{\partial X}{\partial {t}_{2j}}=\left[\prod _{{so}}{X}^{2j}+2\varepsilon \sum _{i=1}^{j}{C}_{2j}^{2i}{X}^{2j-2i}{\widehat{X}}^{2i},X\right]+\varepsilon \left[\prod _{{so}}\sum _{i=1}^{j}{C}_{2j}^{2i-1}{X}^{2j-2i+1}{\widehat{X}}^{2i-1},\widehat{X}\right],\\ \displaystyle \frac{\partial \widehat{X}}{\partial {t}_{2j}}=\left[\prod _{{so}}\sum _{i=1}^{j}{C}_{2j}^{2i-1}{X}^{2j-2i+1}{\widehat{X}}^{2i-1},X\right]+\left[\prod _{{so}}{X}^{2j}+2\varepsilon \sum _{i=1}^{j}{C}_{2j}^{2i}{X}^{2j-2i}{\widehat{X}}^{2i},\widehat{X}\right].\end{array}\right.\end{eqnarray}$Consider the number of t2 flows when j=1,$\begin{eqnarray}\left\{\begin{array}{l}\displaystyle \frac{\partial {\alpha }_{k}}{\partial {t}_{2}}={\alpha }_{k}[({\alpha }_{k-1}^{2}-{\alpha }_{k+1}^{2})+\varepsilon {\alpha }_{k}({\widehat{\alpha }}_{k-1}^{2}-{\widehat{\alpha }}_{k+1}^{2})]\\ +2\varepsilon {\widehat{\alpha }}_{k}({\widehat{\alpha }}_{k-1}{\alpha }_{k-1}-{\widehat{\alpha }}_{k+1}{\alpha }_{k+1}),\\ \displaystyle \frac{\partial {\widehat{\alpha }}_{k}}{\partial {t}_{2}}={\widehat{\alpha }}_{k}[({\alpha }_{k-1}^{2}-{\alpha }_{k+1}^{2})+\varepsilon {\alpha }_{k}({\widehat{\alpha }}_{k-1}^{2}-{\widehat{\alpha }}_{k+1}^{2})]\\ +2{\alpha }_{k}({\widehat{\alpha }}_{k-1}{\alpha }_{k-1}-{\widehat{\alpha }}_{k+1}{\alpha }_{k+1}),\end{array}\right.\end{eqnarray}$with ${\alpha }_{0}={\widehat{\alpha }}_{0}={\widehat{\alpha }}_{2n}={\alpha }_{2n}=0$ and $k=1,\cdots ,2n-1$. From the t2 flow, we find that the symmetric Toda lattice is equivalent to this system , so X and $\widehat{X}$ can be expressed by the generalized matrices$\begin{eqnarray}\left\{\begin{array}{l}\,{X}^{2}+\varepsilon {\widehat{X}}^{2}={T}^{(1)}\otimes \left(\begin{array}{cc}1 & 0\\ 0 & 0\end{array}\right)\,+\,{T}^{(2)}\otimes \left(\begin{array}{cc}0 & 0\\ 0 & 1\end{array}\right),\\ X\widehat{X}+\widehat{X}X={\widehat{T}}^{(1)}\otimes \left(\begin{array}{cc}1 & 0\\ 0 & 0\end{array}\right)\,+\,{\widehat{T}}^{(2)}\otimes \left(\begin{array}{cc}0 & 0\\ 0 & 1\end{array}\right),\end{array}\right.\end{eqnarray}$where ${T}^{(i)}$ and ${\widehat{T}}^{(i)}$ (for i = 1, 2) are symmetric tridiagonal matrices, the specific forms of which are given as follows:$\begin{eqnarray}{T}^{(i)}=\left(\begin{array}{ccccc}{b}_{1}^{(i)} & {a}_{1}^{(i)} & & & \\ {a}_{2}^{(i)} & {b}_{2}^{(i)} & \ddots & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & {b}_{n-1}^{(i)} & {a}_{n-1}^{(i)}\\ & & & {a}_{n-1}^{(i)} & {b}_{n}^{(i)}\end{array}\right),\end{eqnarray}$$\begin{eqnarray}{\widehat{T}}^{(i)}=\left(\begin{array}{ccccc}{\widehat{b}}_{1}^{(i)} & {\widehat{a}}_{1}^{(i)} & & & \\ {\widehat{a}}_{2}^{(i)} & {\widehat{b}}_{2}^{(i)} & \ddots & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & {\widehat{b}}_{n-1}^{(i)} & {\widehat{a}}_{n-1}^{(i)}\\ & & & {\widehat{a}}_{n-1}^{(i)} & {\widehat{b}}_{n}^{(i)}\end{array}\right).\end{eqnarray}$According to [29], we then have$\begin{eqnarray}\left\{\begin{array}{l}{a}_{k}^{(1)}={\alpha }_{2k-1}{\alpha }_{2k}+\varepsilon {\widehat{\alpha }}_{2k-1}{\widehat{\alpha }}_{2k},\\ {\widehat{a}}_{k}^{(1)}={\widehat{\alpha }}_{2k-1}{\alpha }_{2k}+{\alpha }_{2k-1}{\widehat{\alpha }}_{2k},\end{array}\right.\left\{\begin{array}{l}{b}_{k}^{(1)}=-{\alpha }_{2k-2}^{2}-{\alpha }_{2k-1}^{2}-\varepsilon ({\widehat{\alpha }}_{2k-2}^{2}+{\widehat{\alpha }}_{2k-1}^{2}),\\ {\widehat{b}}_{k}^{(1)}=-2({\widehat{\alpha }}_{2k-2}{\alpha }_{2k-2}-{\widehat{\alpha }}_{2k-1}{\alpha }_{2k-1}),\end{array}\right.\end{eqnarray}$$\begin{eqnarray}\left\{\begin{array}{l}{a}_{k}^{(2)}={\alpha }_{2k}{\alpha }_{2k+1}+\varepsilon {\widehat{\alpha }}_{2k}{\widehat{\alpha }}_{2k+1},\\ {\widehat{a}}_{k}^{(2)}={\widehat{\alpha }}_{2k}{\alpha }_{2k+1}+{\alpha }_{2k}{\widehat{\alpha }}_{2k+1},\end{array}\right.\left\{\begin{array}{l}{b}_{k}^{(2)}=-{\alpha }_{2k-1}^{2}-{\alpha }_{2k}^{2}-\varepsilon ({\widehat{\alpha }}_{2k-1}^{2}+{\widehat{\alpha }}_{2k}^{2}),\\ {\widehat{b}}_{k}^{(2)}=-2({\widehat{\alpha }}_{2k-1}{\alpha }_{2k-1}-{\widehat{\alpha }}_{2k}{\alpha }_{2k}),\end{array}\right.\end{eqnarray}$from the structures of ${T}^{(i)}$ and ${\widehat{T}}^{(i)}$ (i=1, 2), the generalized Kac-van Moerbeke hierarchy for X2, ${\widehat{X}}^{2}$ can be split into generalized Toda lattices, and all of these equations are integrable systems.

4. Darboux transformation for the generalized Toda equations

We give two generalized affine Kac–Moody algebras $({g}_{1},{\widehat{g}}_{1})$, and the corresponding Toda equations are given as follows:$\begin{eqnarray}\left\{\begin{array}{l}{w}_{j,{xy}}={{\rm{e}}}^{\sum _{i=1}^{n}{C}_{{ji}}{w}_{i}}\cosh (\sqrt{\varepsilon }\sum _{i=1}^{n}{C}_{{ji}}{\widehat{w}}_{i})-{v}_{j}{e}^{\sum _{i=1}^{n}{C}_{0i}{w}_{i}}\cosh (\sqrt{\varepsilon }\sum _{i=1}^{n}{C}_{0i}{\widehat{w}}_{i}),\\ {\widehat{w}}_{j,{xy}}=\displaystyle \frac{1}{\sqrt{\varepsilon }}{e}^{\sum _{i=1}^{n}{C}_{{ji}}{w}_{i}}\sinh (\sqrt{\varepsilon }\sum _{i=1}^{n}{C}_{{ji}}{\widehat{w}}_{i})-\displaystyle \frac{{v}_{j}}{\sqrt{\varepsilon }}{{\rm{e}}}^{\sum _{i=1}^{n}{C}_{0i}{w}_{i}}\sinh (\sqrt{\varepsilon }\sum _{i=1}^{n}{C}_{0i}{\widehat{w}}_{i}),\end{array}\right.j=1,\ldots ,n,\end{eqnarray}$where Cij are generalized Cartan matrices mentioned, and ${v}_{j}(j=0,1,2\ldots ,n)$ satisfy $C({v}_{0},{v}_{1}$ $,\ldots ,{v}_{n}{)}^{T}=0$. When ${g}_{1}={\widehat{g}}_{1}={A}_{n}^{(1)}$, the equations (4.1) will be changed into the two-dimensional generalized Toda equations$\begin{eqnarray}\left\{\begin{array}{l}{u}_{j,{xy}}={{\rm{e}}}^{{u}_{j}-{u}_{j-1}}\cosh [\sqrt{\varepsilon }({\widehat{u}}_{j}-{\widehat{u}}_{j-1})]-{{\rm{e}}}^{{u}_{j+1}-{u}_{j}}\cosh [\sqrt{\varepsilon }({\widehat{u}}_{j+1}-{\widehat{u}}_{j})],\\ {\widehat{u}}_{j,{xy}}=\displaystyle \frac{1}{\sqrt{\varepsilon }}{{\rm{e}}}^{{u}_{j}-{u}_{j-1}}\sinh [\sqrt{\varepsilon }({\widehat{u}}_{j}-{\widehat{u}}_{j-1})]-\displaystyle \frac{1}{\sqrt{\varepsilon }}{{\rm{e}}}^{{u}_{j+1}-{u}_{j}}\sinh [\sqrt{\varepsilon }({\widehat{u}}_{j+1}-{\widehat{u}}_{j})].\end{array}\right.\end{eqnarray}$According to [30], any equation in (4.1) is integrable, and their Lax pairs can also be obtained. We consider the Lax pairs, based on the compatibility condition of the system (4.1), to be expressed as:$\begin{eqnarray}\left\{\begin{array}{l}{{\rm{\Phi }}}_{x}=(\lambda J+P){\rm{\Phi }}+\varepsilon \widehat{P}\widehat{{\rm{\Phi }}},\\ {\widehat{{\rm{\Phi }}}}_{x}=(\lambda J+P)\widehat{{\rm{\Phi }}}+\widehat{P}{\rm{\Phi }},\\ {{\rm{\Phi }}}_{y}=\displaystyle \frac{1}{\lambda }(Q{\rm{\Phi }}+\varepsilon \widehat{Q}\widehat{{\rm{\Phi }}}),\\ {\widehat{{\rm{\Phi }}}}_{y}=\displaystyle \frac{1}{\lambda }(\widehat{Q}{\rm{\Phi }}+Q\widehat{{\rm{\Phi }}}),\end{array}\right.\end{eqnarray}$where$\begin{eqnarray}\left\{\begin{array}{l}J=\sum _{j=0}^{n}{e}_{i},\\ P=\sum _{i=1}^{n}{P}_{i}{h}_{i},\\ \widehat{P}=\sum _{i=1}^{n}{\widehat{P}}_{i}{h}_{i},\\ Q=\sum _{i=0}^{n}{Q}_{i}{f}_{i},\\ \widehat{Q}=\sum _{i=0}^{n}{\widehat{Q}}_{i}{f}_{i},\end{array}\right.\end{eqnarray}$and ${e}_{i}={E}_{i,i+1}$, ${f}_{i}={E}_{i+1,i}$, ${h}_{i}={E}_{i,i}-{E}_{i+1,i+1}$, ($i=0,1,\ldots ,n$), are the basis of the algebra. The compatibility condition implies that ${P}_{j}={({w}_{j})}_{x}$, ${\widehat{P}}_{j}={({\widehat{w}}_{j})}_{x}$, ${Q}_{j}={{\rm{e}}}^{{\sum }_{i=1}^{n}{C}_{{ji}}{w}_{i}}$ and ${\widehat{Q}}_{j}={{\rm{e}}}^{{\sum }_{i=1}^{n}{C}_{{ji}}{\widehat{w}}_{i}}$. We let$\begin{eqnarray}\left\{\begin{array}{l}P=\displaystyle \frac{{V}_{x}V}{{V}^{2}-\varepsilon {\widehat{V}}^{2}}-\displaystyle \frac{\varepsilon {\widehat{V}}_{x}\widehat{V}}{{V}^{2}-\varepsilon {\widehat{V}}^{2}},\\ \widehat{P}=\displaystyle \frac{{\widehat{V}}_{x}V}{{V}^{2}-\varepsilon {\widehat{V}}^{2}}-\displaystyle \frac{{V}_{x}\widehat{V}}{{V}^{2}-\varepsilon {\widehat{V}}^{2}},\\ \end{array}\right.\left\{\begin{array}{l}Q=\displaystyle \frac{{{VJ}}^{T}V}{{V}^{2}-\varepsilon {\widehat{V}}^{2}}-\displaystyle \frac{\varepsilon \widehat{V}{J}^{T}\widehat{V}}{{V}^{2}-\varepsilon {\widehat{V}}^{2}},\\ \widehat{Q}=\displaystyle \frac{\widehat{V}{J}^{T}V}{{V}^{2}-\varepsilon {\widehat{V}}^{2}}-\displaystyle \frac{{{VJ}}^{T}\widehat{V}}{{V}^{2}-\varepsilon {\widehat{V}}^{2}},\end{array}\right.\end{eqnarray}$where $V={({V}_{{jk}})}_{1\leqslant j,k\leqslant N}$ and $\widehat{V}={({\widehat{V}}_{{jk}})}_{1\leqslant j,k\leqslant N}$ are N×N block diagonal matrices. From (4.3), the integrability conditions of Lax pairs are then expressed as$\begin{eqnarray}\left\{\begin{array}{l}{P}_{t}+[J,Q]=0,\\ {\widehat{P}}_{t}+[J,\widehat{Q}]=0.\end{array}\right.\end{eqnarray}$As $J,\,V,\,\widehat{V}$ satisfy certain symmetry conditions, there are two real symmetric matrices K, $\widehat{K}$ that satisfy$\begin{eqnarray}\left\{\begin{array}{l}{K}^{2}+\varepsilon {\widehat{K}}^{2}=I,\,\,{\rm{\Omega }}K{\rm{\Omega }}={\omega }^{2-m}K,\\ \widehat{K}K+K\widehat{K}=0,\,\,{\rm{\Omega }}\widehat{K}{\rm{\Omega }}={\omega }^{2-m}\widehat{K},\end{array}\right.\end{eqnarray}$and$\begin{eqnarray}\left\{\begin{array}{l}\overline{J}=J,\,\,{\rm{\Omega }}J{{\rm{\Omega }}}^{-1}=\omega J,\,\,{KJK}+\varepsilon \widehat{K}\widehat{J}\widehat{K}={J}^{{\rm{T}}},\\ \widehat{K}{JK}+{KJ}\widehat{K}=0,\end{array}\right.\end{eqnarray}$$\begin{eqnarray}\left\{\begin{array}{l}\overline{V}=V,\,\,{\rm{\Omega }}V{{\rm{\Omega }}}^{-1}=\pm V,\,\,{V}^{{\rm{T}}}{KV}+\varepsilon ({\widehat{V}}^{{\rm{T}}}\widehat{K}V+{\widehat{V}}^{{\rm{T}}}K\widehat{V}+{V}^{{\rm{T}}}\widehat{K}\widehat{V})=K,\\ \overline{\widehat{V}}=\widehat{V},\,\,{\rm{\Omega }}\widehat{V}{{\rm{\Omega }}}^{-1}=\pm \widehat{V},\,\,{\widehat{V}}^{{\rm{T}}}{KV}+{V}^{{\rm{T}}}\widehat{K}V+{V}^{{\rm{T}}}K\widehat{V}+\varepsilon {\widehat{V}}^{{\rm{T}}}\widehat{K}\widehat{V}=\widehat{K},\end{array}\right.\end{eqnarray}$where $\omega ={e}^{\tfrac{2\pi i}{N}}$, ${\rm{\Omega }}=\mathrm{diag}({\rm{N}},{\mathbb{C}})({{\rm{I}}}_{{r}_{1}},{\omega }^{-1}{{\rm{I}}}_{{r}_{2}},\ldots ,{\omega }^{-N+1}{{\rm{I}}}_{{r}_{N}})$. It is obvious that ${{\rm{\Omega }}}^{N}=I$, so we let $\theta ={e}^{\tfrac{\pi {\rm{i}}}{N}}$, ${\rm{\Theta }}=\mathrm{diag}({\rm{N}},{\mathbb{C}})({{\rm{I}}}_{{r}_{1}},{\theta }^{-1}{{\rm{I}}}_{{r}_{2}},\ldots ,{\theta }^{-N+1}{{\rm{I}}}_{{r}_{N}})$, and ${\theta }^{2}=\omega ,\,{{\rm{\Theta }}}^{2}={\rm{\Omega }}$. For the symmetry above, the selection of positive and negative signs does not effect the symmetry of Lax pairs as long as m is an integer. Except for ${A}_{n}^{(1)}$, the coefficient matrices of the Lax pairs for the two-dimensional generalized Toda equations produced by an infinite series of affine Kac–Moody algebras satisfy the symmetry above.

If $V(x,y)$ and $\widehat{V}(x,y)$ satisfy$\begin{eqnarray}\left\{\begin{array}{l}\overline{V}=V,\,\,{\rm{\Omega }}V{{\rm{\Omega }}}^{-1}=\pm V,\,\,{V}^{{\rm{T}}}{KV}+\varepsilon {\widehat{V}}^{{\rm{T}}}\widehat{K}V+\varepsilon ({\widehat{V}}^{{\rm{T}}}K\widehat{V}+{V}^{{\rm{T}}}\widehat{K}\widehat{V})=K,\\ \overline{\widehat{V}}=\widehat{V},\,\,{\rm{\Omega }}\widehat{V}{{\rm{\Omega }}}^{-1}=\pm \widehat{V},\,\,{\widehat{V}}^{{\rm{T}}}{KV}+{V}^{{\rm{T}}}\widehat{K}V+{V}^{{\rm{T}}}K\widehat{V}+\varepsilon {\widehat{V}}^{{\rm{T}}}\widehat{K}\widehat{V}=\widehat{K},\end{array}\right.\end{eqnarray}$then $P,\widehat{P}$, $Q,\widehat{Q}$ satisfy$\begin{eqnarray}\left\{\begin{array}{l}\overline{P}=P,\,\,{\rm{\Omega }}P{{\rm{\Omega }}}^{-1}=P,\,\,{KPK}+\varepsilon \widehat{K}\widehat{P}K+\varepsilon (K\widehat{P}\widehat{K}+\widehat{K}{PK})=-{P}^{{\rm{T}}},\\ \overline{\widehat{P}}=\widehat{P},\,\,{\rm{\Omega }}\widehat{P}{{\rm{\Omega }}}^{-1}=\widehat{P},\,\,\widehat{K}{PK}+K\widehat{P}K+\varepsilon (\widehat{K}\widehat{P}\widehat{K}+{KP}\widehat{K})=-\varepsilon {\widehat{P}}^{{\rm{T}}},\end{array}\right.\end{eqnarray}$$\begin{eqnarray}\left\{\begin{array}{l}\overline{Q}=Q,\,\,{\rm{\Omega }}Q{{\rm{\Omega }}}^{-1}=Q,\,\,{KPK}+\varepsilon \widehat{K}\widehat{Q}K+\varepsilon (K\widehat{Q}\widehat{K}+\widehat{K}{QK})={Q}^{{\rm{T}}},\\ \overline{\widehat{Q}}=\widehat{Q},\,\,{\rm{\Omega }}\widehat{Q}{{\rm{\Omega }}}^{-1}=\widehat{Q},\,\,\widehat{K}{QK}+K\widehat{Q}K+\varepsilon (\widehat{K}\widehat{Q}\widehat{K}+{KQ}\widehat{K})=\varepsilon {\widehat{Q}}^{{\rm{T}}}.\end{array}\right.\end{eqnarray}$

$\begin{eqnarray}\left\{\begin{array}{l}{K}^{{\prime} }={\theta }^{m-2}{\rm{\Theta }}K{\rm{\Theta }},\,\,{J}^{{\prime} }={\theta }^{-1}{{\rm{\Theta }}}^{-1}J{\rm{\Theta }},\,\,{Q}^{{\prime} }=\theta {{\rm{\Theta }}}^{-1}Q{\rm{\Theta }},\\ {\widehat{K}}^{{\prime} }={\theta }^{m-2}{\rm{\Theta }}\widehat{K}{\rm{\Theta }},\,\,{\widehat{Q}}^{{\prime} }=\theta {{\rm{\Theta }}}^{-1}\widehat{Q}{\rm{\Theta }},\end{array}\right.\end{eqnarray}$are real matrices, and ${K}^{{\prime} }$, ${\widehat{K}}^{{\prime} }$ are symmetric matrices.

By calculating the symmetry of the previous assumption, we can obtain lemma 1. According to (4.7), ${\omega }^{-(j-1)}{K}_{{jk}}{\omega }^{-(k-1)}={\omega }^{2-m}{K}_{{jk}}$, ${\omega }^{-(j-1)}{\widehat{K}}_{{jk}}{\omega }^{-(k-1)}={\omega }^{2-m}{\widehat{K}}_{{jk}}$, so ${K}_{{jk}}\ne 0$, ${\widehat{K}}_{{jk}}\ne 0$; we have $j+k\equiv m\,{mod}\,N$ because of ${\theta }^{N}=-1$. When ${K}_{{jk}}\ne 0$, ${\widehat{K}}_{{jk}}\ne 0$, ${\omega }^{-(j-1)}{\widehat{K}}_{{jk}}{\omega }^{-(k-1)}=\pm {\omega }^{2-(j+k)}{\widehat{K}}_{{jk}}=\pm {\omega }^{2-m}{\widehat{K}}_{{jk}}$, so ${\widehat{K}}_{{jk}}^{{\prime} }=\pm {\widehat{K}}_{{jk}}$; therefore, ${\widehat{K}}^{{\prime} }$ is a real symmetry matrix, and the expression of ${K}^{{\prime} }$ tells us that ${K}^{{\prime} }$ is also a real symmetry matrix. From (4.8), ${\omega }^{-(j-1)}{\widehat{J}}_{{jk}}{\omega }^{k-1}=\omega {\widehat{J}}_{{jk}}$, we obtain $K\equiv j+1\,{mod}\,N$ as ${\widehat{J}}_{{jk}}\ne 0$. When ${\widehat{J}}_{{jk}}\ne 0$, ${\omega }^{-(j-1)}{\widehat{J}}_{{jk}}{\omega }^{k-1}=\pm \theta {\widehat{J}}_{{jk}}$ then ${\widehat{J}}^{{\prime} }={\theta }^{-1}{{\rm{\Theta }}}^{-1}\widehat{J}{\rm{\Theta }}$ is a real matrix. ${Q}^{{\prime} },{\widehat{Q}}^{{\prime} },{J}^{{\prime} }$ can be proved similarly.

Assuming V, $\widehat{V}$ satisfy (4.9), then Φ, $\widehat{{\rm{\Phi }}}$ are the solutions of equation (4.3); when $\lambda ={\lambda }_{0}$, we can give the following conclusions:(1)${\rm{\Omega }}{\rm{\Phi }},\,{\rm{\Omega }}\widehat{{\rm{\Phi }}}$ are the solutions of (4.3) when $\lambda ={\lambda }_{0}$;
(2)$\overline{{\rm{\Phi }}},\,\overline{\widehat{{\rm{\Phi }}}}$ are the solutions of (4.3) when $\lambda ={\overline{\lambda }}_{0}$;
(3)$\left\{\begin{array}{l}{\rm{\Psi }}=K{\rm{\Phi }}+\varepsilon \widehat{K}\widehat{{\rm{\Phi }}},\\ \widehat{{\rm{\Psi }}}=\widehat{K}{\rm{\Phi }}+K\widehat{{\rm{\Phi }}},\end{array}\right.$ are the solutions of the conjugated Lax pairs when $\lambda =-{\lambda }_{0}$:
$\begin{eqnarray}\left\{\begin{array}{l}{{\rm{\Psi }}}_{x}=(-{\lambda }_{0}{J}^{{\rm{T}}}+{P}^{{\rm{T}}}){\rm{\Psi }}+(-{\lambda }_{0}{J}^{{\rm{T}}}+{\widehat{P}}^{{\rm{T}}})\widehat{{\rm{\Psi }}},\\ {\widehat{{\rm{\Psi }}}}_{x}=(-{\lambda }_{0}{J}^{{\rm{T}}}+\varepsilon {\widehat{P}}^{{\rm{T}}}){\rm{\Psi }}+(-{\lambda }_{0}{J}^{{\rm{T}}}+{P}^{{\rm{T}}})\widehat{{\rm{\Psi }}},\\ {{\rm{\Psi }}}_{y}=-\displaystyle \frac{1}{{\lambda }_{0}}({Q}^{{\rm{T}}}{\rm{\Psi }}+{\widehat{Q}}^{{\rm{T}}}\widehat{{\rm{\Psi }}}),\\ {\widehat{{\rm{\Psi }}}}_{y}=-\displaystyle \frac{1}{{\lambda }_{0}}({Q}^{{\rm{T}}}\widehat{{\rm{\Psi }}}+\varepsilon {\widehat{Q}}^{{\rm{T}}}{\rm{\Psi }});\end{array}\right.\end{eqnarray}$(1)$\left\{\begin{array}{l}{{\rm{\Phi }}}^{{\prime} }={{\rm{\Theta }}}^{-1}{\rm{\Phi }},\\ {\widehat{{\rm{\Phi }}}}^{{\prime} }={{\rm{\Theta }}}^{-1}\widehat{{\rm{\Phi }}},\end{array}\right.$ arethesolutionsof
$\begin{eqnarray}\left\{\begin{array}{l}{{\rm{\Phi }}}_{x}^{{\prime} }=(\lambda {J}^{{\prime} }+P){{\rm{\Phi }}}^{{\prime} }+\varepsilon (\lambda {J}^{{\prime} }+\widehat{P}){\widehat{{\rm{\Phi }}}}^{{\prime} },\\ {\widehat{{\rm{\Phi }}}}_{x}^{{\prime} }=(\lambda {J}^{{\prime} }+\widehat{P}){{\rm{\Phi }}}^{{\prime} }+(\lambda {J}^{{\prime} }+P){\widehat{{\rm{\Phi }}}}^{{\prime} },\\ {{\rm{\Phi }}}_{y}^{{\prime} }=\displaystyle \frac{1}{\lambda }({Q}^{{\prime} }{{\rm{\Phi }}}^{{\prime} }+\varepsilon {\widehat{Q}}^{{\prime} }{\widehat{{\rm{\Phi }}}}^{{\prime} }),\\ {\widehat{{\rm{\Phi }}}}_{y}=\displaystyle \frac{1}{\lambda }({\widehat{Q}}^{{\prime} }{{\rm{\Phi }}}^{{\prime} }+{Q}^{{\prime} }{\widehat{{\rm{\Phi }}}}^{{\prime} }),\end{array}\right.{as}\,\lambda ={\theta }^{-1}{\lambda }_{0},\end{eqnarray}$where ${J}^{{\prime} }$, ${Q}^{{\prime} }$ and ${\widehat{Q}}^{{\prime} }$ are given by lemma 2; when ${\lambda }_{0}$ is real, ${{\rm{\Phi }}}^{{\prime} }$, ${\widehat{{\rm{\Phi }}}}^{{\prime} }$ are real solutions.

From$\begin{eqnarray}\left\{\begin{array}{l}{\rm{\Omega }}{{\rm{\Phi }}}_{x}={\rm{\Omega }}({\lambda }_{0}J+P){\rm{\Phi }}+{\rm{\Omega }}({\lambda }_{0}J+\varepsilon \widehat{P})\widehat{{\rm{\Phi }}}=(\omega {\lambda }_{0}J+P){\rm{\Omega }}{\rm{\Phi }}+(\omega {\lambda }_{0}J+\varepsilon \widehat{P}){\rm{\Omega }}\widehat{{\rm{\Phi }}},\\ {\rm{\Omega }}{\widehat{{\rm{\Phi }}}}_{x}={\rm{\Omega }}({\lambda }_{0}J+\widehat{P}){\rm{\Phi }}+{\rm{\Omega }}({\lambda }_{0}J+P)\widehat{{\rm{\Phi }}}=(\omega {\lambda }_{0}J+\widehat{P}){\rm{\Omega }}{\rm{\Phi }}+(\omega {\lambda }_{0}J+P){\rm{\Omega }}\widehat{{\rm{\Phi }}},\end{array}\right.\end{eqnarray}$and$\begin{eqnarray}\left\{\begin{array}{l}{\left({\rm{\Omega }}{\rm{\Phi }}\right)}_{x}=\displaystyle \frac{1}{{\lambda }_{0}}\left(Q{\rm{\Phi }}+\varepsilon \widehat{Q}\widehat{{\rm{\Phi }}}\right)=\displaystyle \frac{1}{\omega {\lambda }_{0}}(Q{\rm{\Omega }}{\rm{\Phi }}+\varepsilon \widehat{Q}{\rm{\Omega }}\widehat{{\rm{\Phi }}}),\\ {\left({\rm{\Omega }}\widehat{{\rm{\Phi }}}\right)}_{x}=\displaystyle \frac{1}{{\lambda }_{0}}\left(Q{\rm{\Phi }}+\varepsilon \widehat{Q}\widehat{{\rm{\Phi }}}\right)=\displaystyle \frac{1}{\omega {\lambda }_{0}}\left(\widehat{Q}{\rm{\Omega }}{\rm{\Phi }}+Q{\rm{\Omega }}\widehat{{\rm{\Phi }}}\right),\end{array}\right.\end{eqnarray}$we can prove conclusions (1), (2). From$\begin{eqnarray}\left\{\begin{array}{l}K{{\rm{\Phi }}}_{x}+\varepsilon \widehat{K}{\widehat{{\rm{\Phi }}}}_{x}=K({\lambda }_{0}J+P){\rm{\Phi }}+\varepsilon \widehat{K}({\lambda }_{0}J+\widehat{P}){\rm{\Phi }}+\widehat{K}({\lambda }_{0}J+P)\widehat{{\rm{\Phi }}}+\varepsilon K({\lambda }_{0}J+\widehat{P})\widehat{{\rm{\Phi }}}\\ \widehat{K}{{\rm{\Phi }}}_{x}+K{\widehat{{\rm{\Phi }}}}_{x}=\widehat{K}({\lambda }_{0}J+P){\rm{\Phi }}+K({\lambda }_{0}J+\widehat{P}){\rm{\Phi }}+K({\lambda }_{0}J+P)\widehat{{\rm{\Phi }}}+\varepsilon \widehat{K}({\lambda }_{0}J+\widehat{P})\widehat{{\rm{\Phi }}}\\ =({\lambda }_{0}{J}^{T}-{P}^{T})K{\rm{\Phi }}+({\lambda }_{0}{J}^{T}-{P}^{T})\widehat{K}{\rm{\Phi }}+({\lambda }_{0}{J}^{T}-{\widehat{P}}^{T})K\widehat{{\rm{\Phi }}}+\varepsilon ({\lambda }_{0}{J}^{T}-{P}^{T})\widehat{K}\widehat{{\rm{\Phi }}}\\ =({\lambda }_{0}{J}^{T}-\varepsilon {\widehat{P}}^{T})K{\rm{\Phi }}+({\lambda }_{0}{J}^{T}-{P}^{T})\widehat{K}{\rm{\Phi }}+\varepsilon ({\lambda }_{0}{J}^{T}-\varepsilon {\widehat{P}}^{T})\widehat{K}\widehat{{\rm{\Phi }}}+({\lambda }_{0}{J}^{T}-{P}^{T})K\widehat{{\rm{\Phi }}},\end{array}\right.\end{eqnarray}$and$\begin{eqnarray}\left\{\begin{array}{l}K{{\rm{\Phi }}}_{y}+\varepsilon \widehat{K}{\widehat{{\rm{\Phi }}}}_{y}=\displaystyle \frac{1}{{\lambda }_{0}}({KQ}{\rm{\Phi }}+\varepsilon \widehat{K}\widehat{Q}{\rm{\Phi }}+\widehat{K}Q\widehat{{\rm{\Phi }}}+\varepsilon K\widehat{Q}\widehat{{\rm{\Phi }}}),\\ \widehat{K}{{\rm{\Phi }}}_{y}+K{\widehat{{\rm{\Phi }}}}_{y}=\displaystyle \frac{1}{{\lambda }_{0}}(\widehat{K}Q{\rm{\Phi }}+K\widehat{Q}{\rm{\Phi }}+{KQ}\widehat{{\rm{\Phi }}}+\varepsilon \widehat{K}\widehat{Q}\widehat{{\rm{\Phi }}}),\end{array}\right.\end{eqnarray}$we have proved conclusion (3). According to the expressions of ${J}^{{\prime} },{\widehat{J}}^{{\prime} },{Q}^{{\prime} }$ and ${\widehat{Q}}^{{\prime} }$, (4) is obvious.

Assume $G(x,y,\lambda ),\widehat{G}(x,y,\lambda )$ are M×M matrices given by:$\begin{eqnarray}\left\{\begin{array}{l}G(x,y,\lambda )=\sum _{j=0}^{L}G(x,y){\lambda }^{L-j},\\ \widehat{G}(x,y,\lambda )=\sum _{j=0}^{L}\widehat{G}(x,y){\lambda }^{L-j},\end{array}\right.\end{eqnarray}$where ${G}_{i},{\widehat{G}}_{i}$ $(i=1,2,\ldots ,L)$ are independent of λ and ${G}_{0}=I$, ${\widehat{G}}_{0}=0$. Thus, $V(x,y)$, $\widehat{V}(x,y)$ have a similar symmetry satisfying (4.10):$\begin{eqnarray}\left\{\begin{array}{l}\overline{\widetilde{V}}=\widetilde{V},\,\,{\rm{\Omega }}\widetilde{V}{{\rm{\Omega }}}^{-1}=\pm \widetilde{V},\,\,{\widetilde{V}}^{{\rm{T}}}K\widetilde{V}+\varepsilon ({\widehat{\widetilde{V}}}^{{\rm{T}}}\widehat{K}\widetilde{V}+{\widehat{\widetilde{V}}}^{{\rm{T}}}K\widehat{V}+{\widetilde{V}}^{{\rm{T}}}\widehat{K}\widehat{\widetilde{V}})=K,\\ \overline{\widehat{\widetilde{V}}}=\widehat{\widetilde{V}},\,\,{\rm{\Omega }}\widehat{\widetilde{V}}{{\rm{\Omega }}}^{-1}=\pm \widehat{\widetilde{V}},\,\,{\widehat{\widetilde{V}}}^{{\rm{T}}}K\widetilde{V}+{\widetilde{V}}^{{\rm{T}}}\widehat{K}\widetilde{V}+{V}^{{\rm{T}}}K\widehat{\widetilde{V}}+\varepsilon {\widehat{\widetilde{V}}}^{{\rm{T}}}\widehat{K}\widehat{\widetilde{V}}=\widehat{K},\end{array}\right.\end{eqnarray}$where $\widetilde{V}(x,y),\widehat{\widetilde{V}}(x,y)$ are partition diagonal matrices.

Let Φ, $\widehat{{\rm{\Phi }}}$ be the solutions of (4.3), so $\widetilde{{\rm{\Phi }}}=G{\rm{\Phi }}+\varepsilon \widehat{G}\widehat{{\rm{\Phi }}}$, $\widetilde{\widehat{{\rm{\Phi }}}}=\widehat{G}{\rm{\Phi }}+G\widehat{{\rm{\Phi }}}$ satisfy$\begin{eqnarray}\left\{\begin{array}{l}{\widetilde{{\rm{\Phi }}}}_{x}=(\lambda J+\widetilde{P})\widetilde{{\rm{\Phi }}}+\varepsilon (\lambda J+\widehat{\widetilde{P}})\widehat{\widetilde{{\rm{\Phi }}}},\\ {\widehat{\widetilde{{\rm{\Phi }}}}}_{x}=(\lambda J+\widehat{\widetilde{P}})\widetilde{{\rm{\Phi }}}+(\lambda J+\widetilde{P})\widehat{\widetilde{{\rm{\Phi }}}},\\ {\widetilde{{\rm{\Phi }}}}_{y}=\displaystyle \frac{1}{\lambda }(\widetilde{Q}\widetilde{{\rm{\Phi }}}+\varepsilon \widehat{\widetilde{Q}}\widehat{\widetilde{{\rm{\Phi }}}}),\\ {\widehat{\widetilde{{\rm{\Phi }}}}}_{y}=\displaystyle \frac{1}{\lambda }(\widehat{\widetilde{Q}}\widetilde{{\rm{\Phi }}}+\widetilde{Q}\widehat{\widetilde{{\rm{\Phi }}}}),\end{array}\right.\end{eqnarray}$where$\begin{eqnarray}\left\{\begin{array}{l}\widetilde{P}=\displaystyle \frac{{\widetilde{V}}_{x}\widetilde{V}}{{\widetilde{V}}^{2}-\varepsilon {\widehat{\widetilde{V}}}^{2}}-\displaystyle \frac{\varepsilon {\widehat{\widetilde{V}}}_{x}\widehat{\widetilde{V}}}{{\widetilde{V}}^{2}-\varepsilon {\widehat{\widetilde{V}}}^{2}},\\ \widehat{\widetilde{P}}=\displaystyle \frac{{\widehat{\widetilde{V}}}_{x}\widetilde{V}}{{\widetilde{V}}^{2}-\varepsilon {\widehat{\widetilde{V}}}^{2}}-\displaystyle \frac{{\widetilde{V}}_{x}\widehat{\widetilde{V}}}{{\widetilde{V}}^{2}-\varepsilon {\widehat{\widetilde{V}}}^{2}},\\ \end{array}\right.\left\{\begin{array}{l}\widetilde{Q}=\displaystyle \frac{\widetilde{V}{\widetilde{J}}^{{\rm{T}}}\widetilde{V}}{{\widetilde{V}}^{2}-\varepsilon {\widehat{\widetilde{V}}}^{2}}-\displaystyle \frac{\varepsilon \widehat{\widetilde{V}}{J}^{{\rm{T}}}\widehat{\widetilde{V}}}{{\widetilde{V}}^{2}-\varepsilon {\widehat{\widetilde{V}}}^{2}},\\ \widehat{\widetilde{Q}}=\displaystyle \frac{\widehat{\widetilde{V}}{J}^{{\rm{T}}}\widetilde{V}}{{\widetilde{V}}^{2}-\varepsilon {\widehat{\widetilde{V}}}^{2}}-\displaystyle \frac{\widetilde{V}{J}^{{\rm{T}}}\widehat{\widetilde{V}}}{{\widetilde{V}}^{2}-\varepsilon {\widehat{\widetilde{V}}}^{2}}.\end{array}\right.\end{eqnarray}$

An L-order two-dimensional Darboux transformation can be obtained by generalizing the method of [31]. Let $s(1\leqslant s\leqslant M-1)$ be a positive integer, $({\lambda }_{1},{\lambda }_{1},\ldots ,{\lambda }_{n})$ are different complex numbers and ${\overline{\lambda }}_{i}+{\lambda }_{k}\ne 0\,(j,k=1,2,\ldots ,L$), Hj, ${\widehat{H}}_{j}$ are the solutions of Lax pairs when $\lambda ={\lambda }_{j}$; we now have$\begin{eqnarray}\left\{\begin{array}{l}G(\lambda )=\prod _{l=1}^{L}(\lambda +{\overline{\lambda }}_{l})[E-\sum _{j,k=1}^{L}\displaystyle \frac{1}{(\lambda +{\overline{\lambda }}_{k})({T}^{2}-\varepsilon {\widehat{T}}^{2})}({H}_{j}{{TH}}_{k}^{* }K-\varepsilon {\widehat{H}}_{j}\widehat{T}{H}_{k}^{* }K+{\varepsilon }^{2}{\widehat{H}}_{j}{{TH}}_{k}^{* }K\\ \,\,\,\,\,\,\,\,\,-{\varepsilon }^{2}{H}_{j}\widehat{T}{H}_{k}^{* }K+{H}_{j}T{\widehat{H}}_{k}^{* }\widehat{K}-\varepsilon {\widehat{H}}_{j}\widehat{T}{\widehat{H}}_{k}^{* }\widehat{K}+\varepsilon {\widehat{H}}_{j}{{TH}}_{k}^{* }\widehat{K}-\varepsilon {H}_{j}\widehat{T}{H}_{k}^{* }\widehat{K})],\\ \widehat{G}(\lambda )=\prod _{l=1}^{L}(\lambda +{\overline{\lambda }}_{l})\sum _{j,k=1}^{L}\displaystyle \frac{-1}{(\lambda +{\overline{\lambda }}_{k})({T}^{2}-\varepsilon {\widehat{T}}^{2})}({\widehat{H}}_{j}{{TH}}_{k}^{* }K-{H}_{j}\widehat{T}{H}_{k}^{* }K+\varepsilon {H}_{j}T{\widehat{H}}_{k}^{* }K-\\ \,\,\,\,\,\,\,\,\,\varepsilon {\widehat{H}}_{j}\widehat{T}{\widehat{H}}_{k}^{* }K+{\widehat{H}}_{j}T{\widehat{H}}_{k}^{* }\widehat{K}+{H}_{j}\widehat{T}{\widehat{H}}_{k}^{* }\widehat{K}+{H}_{j}{{TH}}_{k}^{* }\widehat{K}-\varepsilon {\widehat{H}}_{j}\widehat{T}{\widehat{H}}_{k}^{* }\widehat{K}),\end{array}\right.\end{eqnarray}$where$\begin{eqnarray}\left\{\begin{array}{l}{T}_{{jk}}=\displaystyle \frac{1}{{\overline{\lambda }}_{j}+{\lambda }_{k}}({H}_{j}^{* }{{KH}}_{k}+{\widehat{H}}_{j}^{* }\widehat{K}{H}_{k}+{\widehat{H}}_{j}^{* }K{\widehat{H}}_{k}+\varepsilon {H}_{j}^{* }\widehat{K}{\widehat{H}}_{k}),\\ {\widehat{T}}_{{jk}}=\displaystyle \frac{1}{{\overline{\lambda }}_{j}+{\lambda }_{k}}({H}_{j}^{* }\widehat{K}{H}_{k}+\varepsilon {\widehat{H}}_{j}^{* }{{KH}}_{k}+{H}_{j}^{* }K{\widehat{H}}_{k}+{\varepsilon }^{2}{\widehat{H}}_{j}^{* }\widehat{K}{\widehat{H}}_{k}),\end{array}\right.j,k=1,\ldots ,L.\end{eqnarray}$Since $G(\lambda ),\,\widehat{G}(\lambda )$ are the L-degree polynomials of λ, this can be also written as:$\begin{eqnarray}\left\{\begin{array}{l}G(\lambda )={\lambda }^{L}E+{\lambda }^{L-1}{G}_{1}+{\lambda }^{L-2}{G}_{2}+\cdots +\lambda {G}_{L-1}+{G}_{L},\\ \widehat{G}(\lambda )={\lambda }^{L-1}{\widehat{G}}_{1}+{\lambda }^{L-2}{\widehat{G}}_{2}+\cdots +\lambda {\widehat{G}}_{L-1}+{\widehat{G}}_{L}.\end{array}\right.\end{eqnarray}$From (4.24), we have$\begin{eqnarray}\left\{\begin{array}{l}{G}_{1}=\sum _{l=1}^{L}{\overline{\lambda }}_{l}-\sum _{j,k=1}^{L}\displaystyle \frac{1}{{T}^{2}-\varepsilon {\widehat{T}}^{2}}({H}_{j}{{TH}}_{k}^{* }K-\varepsilon {\widehat{H}}_{j}\widehat{T}{H}_{k}^{* }K+{\varepsilon }^{2}{\widehat{H}}_{j}{{TH}}_{k}^{* }K-{\varepsilon }^{2}{H}_{j}\widehat{T}{H}_{k}^{* }K+\\ \,\,\,\,\,\,\,\,{H}_{j}T{\widehat{H}}_{k}^{* }\widehat{K}-\varepsilon {\widehat{H}}_{j}\widehat{T}{\widehat{H}}_{k}^{* }\widehat{K}+\varepsilon {\widehat{H}}_{j}{{TH}}_{k}^{* }\widehat{K}-\varepsilon {H}_{j}\widehat{T}{H}_{k}^{* }\widehat{K}),\\ {\widehat{G}}_{1}=\sum _{j,k=1}^{L}\displaystyle \frac{-1}{{T}^{2}-\varepsilon {\widehat{T}}^{2}}({\widehat{H}}_{j}{{TH}}_{k}^{* }K-{H}_{j}\widehat{T}{H}_{k}^{* }K+\varepsilon {H}_{j}T{\widehat{H}}_{k}^{* }K-\varepsilon {\widehat{H}}_{j}\widehat{T}{\widehat{H}}_{k}^{* }K+\\ \,\,\,\,\,\,\,\,\,{\widehat{H}}_{j}T{\widehat{H}}_{k}^{* }\widehat{K}+{H}_{j}\widehat{T}{\widehat{H}}_{k}^{* }\widehat{K}+{H}_{j}{{TH}}_{k}^{* }\widehat{K}-\varepsilon {\widehat{H}}_{j}\widehat{T}{\widehat{H}}_{k}^{* }\widehat{K}),\\ {G}_{L}=(\prod _{l=1}^{L}{\overline{\lambda }}_{l})[E-\sum _{j,k=1}^{L}\displaystyle \frac{1}{{\overline{\lambda }}_{k}({T}^{2}-\varepsilon {\widehat{T}}^{2})}({H}_{j}{{TH}}_{k}^{* }K-\varepsilon {\widehat{H}}_{j}\widehat{T}{H}_{k}^{* }K+{\varepsilon }^{2}{\widehat{H}}_{j}{{TH}}_{k}^{* }K-{\varepsilon }^{2}{H}_{j}\widehat{T}{H}_{k}^{* }K+\\ \,\,\,\,\,\,\,\,\,{H}_{j}T{\widehat{H}}_{k}^{* }\widehat{K}-\varepsilon {\widehat{H}}_{j}\widehat{T}{\widehat{H}}_{k}^{* }\widehat{K}+\varepsilon {\widehat{H}}_{j}{{TH}}_{k}^{* }\widehat{K}-\varepsilon {H}_{j}\widehat{T}{H}_{k}^{* }\widehat{K})],\\ {\widehat{G}}_{L}=(\prod _{l=1}^{L}{\overline{\lambda }}_{l})\sum _{j,k=1}^{L}\displaystyle \frac{-1}{{\overline{\lambda }}_{k}({T}^{2}-\varepsilon {\widehat{T}}^{2})}({\widehat{H}}_{j}{{TH}}_{k}^{* }K-{H}_{j}\widehat{T}{H}_{k}^{* }K+\varepsilon {H}_{j}T{\widehat{H}}_{k}^{* }K-\varepsilon {\widehat{H}}_{j}\widehat{T}{\widehat{H}}_{k}^{* }K+\\ \,\,\,\,\,\,\,\,\,{\widehat{H}}_{j}T{\widehat{H}}_{k}^{* }\widehat{K}+{H}_{j}\widehat{T}{\widehat{H}}_{k}^{* }\widehat{K}+{H}_{j}{{TH}}_{k}^{* }\widehat{K}-\varepsilon {\widehat{H}}_{j}\widehat{T}{\widehat{H}}_{k}^{* }\widehat{K}).\end{array}\right.\end{eqnarray}$Assuming $G(\lambda )$, $\widehat{G}(\lambda )$ are given by (4.24), then theorem 1 is established. According to [24], we have$\begin{eqnarray}\left\{\begin{array}{l}\widetilde{P}=P-[J,{G}_{1}],\\ \widehat{\widetilde{P}}=\widehat{P}-[J,{\widehat{G}}_{1}],\end{array}\right.\left\{\begin{array}{l}\widetilde{Q}=\displaystyle \frac{{G}_{L}{{QG}}_{L}-\varepsilon ({\widehat{G}}_{L}\widehat{Q}{G}_{L}+{G}_{L}\widehat{Q}{\widehat{G}}_{L}+{\widehat{G}}_{L}Q{\widehat{G}}_{L})}{{G}_{L}^{2}-\varepsilon {\widehat{G}}_{L}^{2}},\\ \widehat{\widetilde{Q}}=\displaystyle \frac{{\widehat{G}}_{L}{{QG}}_{L}+{G}_{L}\widehat{Q}{G}_{L}-{G}_{L}Q{\widehat{G}}_{L}-\varepsilon {\widehat{G}}_{L}\widehat{Q}{\widehat{G}}_{L}}{{G}_{L}^{2}-\varepsilon {\widehat{G}}_{L}^{2}},\end{array}\right.\end{eqnarray}$and if $\widetilde{V},\widehat{\widetilde{V}}$ satisfy$\begin{eqnarray}\left\{\begin{array}{l}\widetilde{V}={G}_{L}V+\varepsilon {\widehat{G}}_{L}\widehat{V},\\ \widehat{\widetilde{V}}={\widehat{G}}_{L}V+{G}_{L}\widehat{V},\end{array}\right.\end{eqnarray}$then$\begin{eqnarray}\left\{\begin{array}{l}\widetilde{P}=\displaystyle \frac{{\widetilde{V}}_{x}\widetilde{V}-\varepsilon {\widehat{\widetilde{V}}}_{x}\widehat{\widetilde{V}}}{{\widetilde{V}}^{2}-\varepsilon {\widehat{\widetilde{V}}}^{2}},\\ \widehat{\widetilde{P}}=\displaystyle \frac{{\widehat{\widetilde{V}}}_{x}\widetilde{V}-{\widetilde{V}}_{x}\widehat{\widetilde{V}}}{{\widetilde{V}}^{2}-\varepsilon {\widehat{\widetilde{V}}}^{2}},\end{array}\right.\left\{\begin{array}{l}\widetilde{Q}=\displaystyle \frac{\widetilde{V}{J}^{{\rm{T}}}\widetilde{V}-\varepsilon \widehat{\widetilde{V}}{J}^{{\rm{T}}}\widehat{\widetilde{V}}}{{\widetilde{V}}^{2}-\varepsilon {\widehat{\widetilde{V}}}^{2}},\\ \widehat{\widetilde{Q}}=\displaystyle \frac{\widehat{\widetilde{V}}{J}^{{\rm{T}}}\widetilde{V}-\widetilde{V}{J}^{{\rm{T}}}\widehat{\widetilde{V}}}{{\widetilde{V}}^{2}-\varepsilon {\widehat{\widetilde{V}}}^{2}},\end{array}\right.\end{eqnarray}$satisfies (4.28). From (4.25), we obtain$\begin{eqnarray}\left\{\begin{array}{l}{T}_{{jk},x}={H}_{j}^{* }{{KJH}}_{k}+{\widehat{H}}_{j}^{* }\widehat{K}{{JH}}_{k}+{\widehat{H}}_{j}^{* }{KJ}{\widehat{H}}_{k}+\varepsilon {H}_{j}^{* }\widehat{K}J{\widehat{H}}_{k},\\ {\widehat{T}}_{{jk},x}={H}_{j}^{* }\widehat{K}{{JH}}_{k}+{H}_{j}^{* }{KJ}{\widehat{H}}_{k}+\varepsilon {\widehat{H}}_{j}^{* }{{KJH}}_{k}+{\varepsilon }^{2}{\widehat{H}}_{j}^{* }\widehat{K}J{\widehat{H}}_{k},\end{array}\right.\end{eqnarray}$$\begin{eqnarray}\left\{\begin{array}{l}{T}_{{jk},y}=\displaystyle \frac{1}{{\overline{\lambda }}_{j}{\lambda }_{k}}[{H}_{j}^{* }{{KQH}}_{k}+{\widehat{H}}_{j}^{* }\widehat{K}{{QH}}_{k}+{\widehat{H}}_{j}^{* }K\widehat{Q}{H}_{k}+{\widehat{H}}_{j}^{* }{KQ}{\widehat{H}}_{k}+\\ \,\,\,\,\,\,\,\,\,\varepsilon ({H}_{j}^{* }\widehat{K}\widehat{Q}{H}_{k}+{H}_{j}^{* }K\widehat{Q}{\widehat{H}}_{k}+{\widehat{H}}_{j}^{* }\widehat{K}\widehat{Q}{\widehat{H}}_{k}+{H}_{j}^{* }\widehat{K}Q{\widehat{H}}_{k})],\\ {\widehat{T}}_{{jk},y}=\displaystyle \frac{1}{{\overline{\lambda }}_{j}{\lambda }_{k}}[{H}_{j}^{* }\widehat{K}{{QH}}_{k}+{H}_{j}^{* }K\widehat{Q}{H}_{k}+{H}_{j}^{* }{KQ}{\widehat{H}}_{k}+\varepsilon ({\widehat{H}}_{j}^{* }{{KQH}}_{k}+{H}_{j}^{* }\widehat{K}\widehat{Q}{\widehat{H}}_{k})\\ +{\varepsilon }^{2}({\widehat{H}}_{j}^{* }\widehat{K}\widehat{Q}{H}_{k}+{H}_{j}^{* }\widehat{K}Q{\widehat{H}}_{k}+{\widehat{H}}_{j}^{* }K\widehat{Q}{\widehat{H}}_{k})].\end{array}\right.\end{eqnarray}$According to (4.28), the following expressions are established for all λ:$\begin{eqnarray}\left\{\begin{array}{l}(\lambda J+\widetilde{P})G+\varepsilon \widehat{\widetilde{P}}\widehat{G}-G(\lambda J+P)-\varepsilon \widehat{G}\widehat{P}-{G}_{x}=0,\\ (\lambda J+\widetilde{P})\widehat{G}+\widehat{\widetilde{P}}G-\widehat{G}(\lambda J+P)-G\widehat{P}-{\widehat{G}}_{x}=0,\\ {\lambda }^{-1}(\widetilde{Q}G+\varepsilon \widehat{\widetilde{Q}}\widehat{G})-{\lambda }^{-1}({GQ}+\varepsilon \widehat{G}\widehat{Q})-{G}_{y}=0,\\ {\lambda }^{-1}(\widehat{\widetilde{Q}}G+\widetilde{Q}\widehat{G})-{\lambda }^{-1}(\widehat{G}Q+G\widehat{Q})-{\widehat{G}}_{y}=0,\end{array}\right.\end{eqnarray}$and the conclusion of theorem 1 is valid. In fact,$\begin{eqnarray}\left\{\begin{array}{l}\displaystyle \frac{\widetilde{V}J\widetilde{V}-\varepsilon \widehat{\widetilde{V}}J\widehat{\widetilde{V}}}{{\widetilde{V}}^{2}-\varepsilon {\widehat{\widetilde{V}}}^{2}}=\displaystyle \frac{{G}_{L}{{QG}}_{L}+\varepsilon {\widehat{G}}_{L}\widehat{Q}{G}_{L}-\varepsilon ({G}_{L}\widehat{Q}{\widehat{G}}_{L}+{\widehat{G}}_{L}Q{\widehat{G}}_{L})}{{G}_{L}^{2}-\varepsilon {\widehat{G}}_{L}^{2}},\\ \displaystyle \frac{\widehat{\widetilde{V}}J\widetilde{V}-\widetilde{V}J\widehat{\widetilde{V}}}{{\widetilde{V}}^{2}-\varepsilon {\widehat{\widetilde{V}}}^{2}}=\displaystyle \frac{{\widehat{G}}_{L}{{QG}}_{L}+{G}_{L}\widehat{Q}{G}_{L}-{G}_{L}Q{\widehat{G}}_{L}-\varepsilon {\widehat{G}}_{L}\widehat{Q}{\widehat{G}}_{L}}{{G}_{L}^{2}-\varepsilon {\widehat{G}}_{L}^{2}},\end{array}\right.\end{eqnarray}$are obvious; what we need to prove is that$\begin{eqnarray}\left\{\begin{array}{l}\displaystyle \frac{{\widetilde{V}}_{x}\widetilde{V}-\varepsilon {\widehat{\widetilde{V}}}_{x}\widehat{\widetilde{V}}}{{\widetilde{V}}^{2}-\varepsilon {\widehat{\widetilde{V}}}^{2}}=P-[J,{G}_{1}],\\ \displaystyle \frac{{\widehat{\widetilde{V}}}_{x}\widetilde{V}-{\widetilde{V}}_{x}\widehat{\widetilde{V}}}{{\widetilde{V}}^{2}-\varepsilon {\widehat{\widetilde{V}}}^{2}}=\widehat{P}-[J,{\widehat{G}}_{1}].\end{array}\right.\end{eqnarray}$From the first two equations of (4.34), the following equations are true,$\begin{eqnarray}\left\{\begin{array}{l}{G}_{x}+G(\lambda J+P)+\varepsilon \widehat{G}\widehat{P}=(\lambda J+P-[J,{G}_{1}])G+\varepsilon (\widehat{P}-[J,{\widehat{G}}_{1}])\widehat{G},\\ {\widehat{G}}_{x}+\widehat{G}(\lambda J+P)+G\widehat{P}=(\lambda J+P-[J,{G}_{1}])\widehat{G}+(\widehat{P}-[J,{\widehat{G}}_{1}])G,\end{array}\right.\end{eqnarray}$when $\lambda =0$. On the other hand, from (4.30), we get$\begin{eqnarray}\left\{\begin{array}{l}{G}_{L,x}+{G}_{L}P+\varepsilon {\widehat{G}}_{L}\widehat{P}=\displaystyle \frac{{\widetilde{V}}_{x}\widetilde{V}{G}_{L}-\varepsilon ({\widehat{\widetilde{V}}}_{x}\widehat{\widetilde{V}}{G}_{L}+{\widetilde{V}}_{x}\widehat{\widetilde{V}}{\widehat{G}}_{L}-{\widehat{\widetilde{V}}}_{x}\widetilde{V}{\widehat{G}}_{L})}{{\widetilde{V}}^{2}-\varepsilon {\widehat{\widetilde{V}}}^{2}},\\ {\widehat{G}}_{L,x}+{\widehat{G}}_{L}P+{G}_{L}\widehat{P}=\displaystyle \frac{{\widehat{\widetilde{V}}}_{x}\widetilde{V}{G}_{L}-{\widetilde{V}}_{x}\widehat{\widetilde{V}}{G}_{L}+{\widetilde{V}}_{x}\widetilde{V}{\widehat{G}}_{L}-\varepsilon {\widehat{\widetilde{V}}}_{x}\widehat{\widetilde{V}}{\widehat{G}}_{L}}{{\widetilde{V}}^{2}-\varepsilon {\widehat{\widetilde{V}}}^{2}},\end{array}\right.\end{eqnarray}$and the proof is complete.

Remarks:1.The equations and systems involved in this article are weakly coupled when $\varepsilon =0;$
2.The equations and systems involved in this article are strongly coupled when $\varepsilon =1$.


Acknowledgments

Chuanzhong Li is supported by the National Natural Science Foundation of China under Grant No. 12 071 237 and by the K C Wong Magna Fund in Ningbo University.


Reference By original order
By published year
By cited within times
By Impact factor

Hnon M 1974 Integrals of the Toda lattice
Phys. Rev. B 9 1921 1923

DOI:10.1103/PhysRevB.9.1921 [Cited within: 1]

Toda M 2007 Vibration of a chain with nonlinear interaction
J. Phys. Soc. Jpn. 22 431 436

DOI:10.1143/JPSJ.22.431 [Cited within: 1]

Flaschka H 1974 The Toda lattice: II. Existence of integrals
Phys. Rev. B 9 1924 1925

DOI:10.1103/PhysRevB.9.1924 [Cited within: 2]

Flaschka H 1974 On the Toda lattice: II. Inverse-scattering solution
Prog. Theor. Phys. 3 703 716

DOI:10.1143/PTP.51.703 [Cited within: 1]

Moser J 1975 Finitely many mass points on the line under the influence of an exponential potential-an integrable system
Dynamical Systems, Theory and Applications, Lecture Notes in Physics 38 467 497

[Cited within: 2]

Kodama Y Williams L 2015 The full Kostant-Toda hierarchy on the positive flag variety
Commun. Math. Phys. 335 247 283

DOI:10.1007/s00220-014-2203-x [Cited within: 1]

Casian L Kodama Y 2012 Toda lattice and toric varieties for real split semisimple Lie algebras
Pacific Journal of Mathematics XV 77



Casian L Kodama Y 2002 Blow-ups of the Toda lattices and their intersections with the Bruhat cells
Communications in Contemporary Mathematics 301 283 310

[Cited within: 1]

Kodama Y Ye J 1996 Toda lattices with indefinite metric II: Topology of the iso-spectral manifolds
Physica D 121 89 108

DOI:10.1016/S0167-2789(98)00033-5 [Cited within: 1]

Kodama Y Ye J 1996 Iso-spectral deformations of general matrix and their reductions on Lie algebras
Commun. Math. Phys. 178 765 788

DOI:10.1007/BF02108824

Kodama Y Ye J 1996 Toda hierarchy with indefinite metric
Physica D 91 321 339

DOI:10.1016/0167-2789(95)00269-3

Kodama Y Mclaughlin T R 1996 Explicit integration of the full symmetric Toda hierarchy and the sorting property
Lett. Math. Phys. 37 37 47

DOI:10.1007/BF00400137

Nakamura Y Kodama Y 1995 Moment Problem of Hamburger, Hierarchies of Integrable Systems, and The Positivity of Tau-Functions 95AmsterdamSpringer435 443
[Cited within: 1]

Mikhalov A V 1979 Integrability of the two-dimensional generalization of Toda chain
JETP Lett. 30 414 418

[Cited within: 1]

Yue Y F Huang L L Chen Y 2020 Modulation instability, rogue waves and spectral analysis for the sixth-order nonlinear Schrödinger equation
Commun. Nonlinear. Sci. 89 105284

DOI:10.1016/j.cnsns.2020.105284 [Cited within: 1]

Wang M M Chen Y 2019 Dynamic behaviors of mixed localized solutions for the three-component coupled Fokas-Lenells system
Nonlinear. Dynam. 98 1781 1794

DOI:10.1007/s11071-019-05285-y [Cited within: 1]

Mikhailov A V Olshanetsky M A Perelomov A M 1981 Two-dimensional generalized Toda lattice
Commun. Math. Phys. 79 473 488

DOI:10.1007/BF01209308 [Cited within: 1]

Álvarez-Fernández C Mañas M 2013 Orthogonal laurent polynomials on the unit circle, extended CMV ordering and 2D Toda type integrable hierarchies
Advances in Mathematics 240 132 193

DOI:10.1016/j.aim.2013.02.020

Matveev V B 1979 Darboux transformation and the explicit solutions of differential-difference and difference-difference evolution equations I
Lett. Math. Phys. 3 217 222

DOI:10.1007/BF00405296

Gomes J F Sotkov G M Zimerman A H 1999 Nonabelian Toda theories from parafermionic reductions of the WZW model
Ann. Phys. 274 289 362

DOI:10.1006/aphy.1999.5910

Hu H S 2002 Line congruences and integrable systems, differential geometry and integrable systems
Contemp. Math. 308 179 197



Mcintosh I 1994 Global solutions of the elliptic 2D periodic Toda lattice
Nonlinearity 7 85 108

DOI:10.1088/0951-7715/7/1/005

Razumov A V Saveliev M V 1994 Differential geometry of Toda systems
Communications in Analysis and Geometry 3 461 511

DOI:10.4310/CAG.1994.v2.n3.a5

Zhou Z X 2018 Darboux transformations for the Lax pairs related to two dimensional affine Toda equations
Scientia Sinica Mathematica 48 869 878

DOI:10.1360/N012017-00191 [Cited within: 2]

Symes W W 1982 The QR algorithm and scattering for the finite nonperiodic Toda lattice
Physica D 4 275 280

DOI:10.1016/0167-2789(82)90069-0 [Cited within: 1]

Rusev P 2010 Hermite polynomials and the zero-distribution of Riemann’s zeta-function
Fractional Calculus and Applied Analysis 13 85 95

[Cited within: 1]

Nakamura Y 1994 A tau-function of the finite nonperiodic Toda lattice
Phys. Lett. A 195 346 350

DOI:10.1016/0375-9601(94)90040-X [Cited within: 1]

Bertram K 1979 The solution to a generalized Toda lattice and representation theory
Advances in Mathematics 34 195 338

DOI:10.1016/0001-8708(79)90057-4 [Cited within: 1]

Gesztesy F 1993 On the Toda and Kac-Van Moerbeke systems
Transactions of the American Mathematical Society 339 849 868

DOI:10.1090/S0002-9947-1993-1153014-1 [Cited within: 1]

Leznov A N Savelev M V Smirnov V G 1981 Theory of group representations and integration of nonlinear dynamical systems
Theor. Math. Phys. 48 565 571

DOI:10.1007/BF01037979 [Cited within: 1]

Zakharov V E Mikhailov A V 1980 On the integrability of classical spinor models in two-dimensional space-time
Commun. Math. Phys. 74 21 40

DOI:10.1007/BF01197576 [Cited within: 1]

相关话题/Generalizations finite nonperiodic