删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Dynamics of exact soliton solutions to the coupled nonlinear system using reliable analytical mathem

本站小编 Free考研考试/2022-01-02

Muhammad Bilal, Usman Younas, Jingli Ren,Henan Academy of Big Data/School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China

Received:2021-03-28Revised:2021-05-17Accepted:2021-05-19Online:2021-07-02


Abstract
Nonlinear Schrödinger-type equations are important models that have emerged from a wide variety of fields, such as fluids, nonlinear optics, the theory of deep-water waves, plasma physics, and so on. In this work, we obtain different soliton solutions to coupled nonlinear Schrödinger-type (CNLST) equations by applying three integration tools known as the $\left(\tfrac{{G}^{{\prime} }}{{G}^{2}}\right)$-expansion function method, the modified direct algebraic method (MDAM), and the generalized Kudryashov method. The soliton and other solutions obtained by these methods can be categorized as single (dark, singular), complex, and combined soliton solutions, as well as hyperbolic, plane wave, and trigonometric solutions with arbitrary parameters. The spectrum of the solitons is enumerated along with their existence criteria. Moreover, 2D, 3D, and contour profiles of the reported results are also plotted by choosing suitable values of the parameters involved, which makes it easier for researchers to comprehend the physical phenomena of the governing equation. The solutions acquired demonstrate that the proposed techniques are efficient, valuable, and straightforward when constructing new solutions for various types of nonlinear partial differential equation that have important applications in applied sciences and engineering. All the reported solutions are verified by substitution back into the original equation through the software package Mathematica.
Keywords: soliton solutions;exact solutions;CNLST equations;$\left(\tfrac{{G}^{{\prime} }}{{G}^{2}}\right)$-expansion function method;MDAM;generalized Kudryashov method


PDF (1481KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Muhammad Bilal, Usman Younas, Jingli Ren. Dynamics of exact soliton solutions to the coupled nonlinear system using reliable analytical mathematical approaches. Communications in Theoretical Physics, 2021, 73(8): 085005- doi:10.1088/1572-9494/ac02b5

1. Introduction

For many years, investigating the exact solutions of nonlinear partial differential equations (NLPDEs) has turned out to be a charming and challenging area of research for mathematicians and research communities, because they play a broad and significant role in the study of nonlinear physical phenomena in mathematical studies and applied physics, with essential applications in several areas of engineering and natural science including fluid mechanics, chemistry, thermodynamics, physics, electromagnetism, biomathematics, mathematical physics, and so on. Scholars have focused on exact or analytical solutions, due to their essential contribution to the analysis of the real features of nonlinear problems. Due to their wide utilization and applications in the domain of nonlinear sciences, interest in the study of NLPDEs has been increasing [19].

Moreover, solitons are also famous as a particular type of solitary wave, which are the solutions to various kinds of NLPDE. This incredible type of solitary waves has various and substantial use in different fields because of its specific characteristic of stability. In short, waves (mainly dispersive in nature) inelastically scatter solitary waves and lose energy due to radiation phenomena; as a result of the solitary wave’s disappearance, the dispersive waves hold their shape and speed after a fully nonlinear connection. Soliton theory has made a significant contribution to the narration and expression of the physical behavior and meaning of nonlinear phenomena. Soliton theory has involved researchers in exploratory investigations due to its use in such diverse fields as media transmission, design, numerical materials science, mathematical physics, and different parts of nonlinear science [1017]. Therefore, it has recently become more appealing for the research community to acquire exact solutions by the use of capable computational packages that alleviate the complex and tedious algebraic computations. In the literature, various powerful computational techniques have been designed to describe the natures of the diverse forms of the solutions [1821] that have been established for nonlinear physical models.

To the best of our knowledge, it is known that in the existing literature, the solutions of the governing model have not been investigated using the $\left(\tfrac{{G}^{{\prime} }}{{G}^{2}}\right)$-expansion function method [22], the modified direct algebraic method (MDAM) [23], and the generalized Kudryashov method [24]. Motivated by this, we employed these three mathematical techniques to obtain different forms of the solution. The proposed methodologies are powerful, reliable, capable of examining NLPDEs, consistent with computer algebra, and yield more general solutions. The discovered constructed solutions are novel and have potential applications in the nonlinear sciences.

The structure of the rest of this paper is organized as follows. In section 2, the governing equation is presented. In section 3, we discuss the application of the proposed methods. In section 4, the results and a discussion are presented. Finally, the conclusions are revealed in section 5.

2. Governing equation

This paper is concerned with the CNLST system, as presented by Ma and Geng [25],$\begin{eqnarray}\begin{array}{rcl}{\theta }_{{xt}} & = & {\theta }_{{xx}}+\displaystyle \frac{2}{1-{\vartheta }^{2}}| \theta {| }^{2}\theta +\theta (\varphi -\psi ),\\ {\varphi }_{t} & = & -\displaystyle \frac{{\left(| \theta {| }^{2}\right)}_{t}}{1+\vartheta }+(1+\vartheta ){\varphi }_{x},\\ {\psi }_{t} & = & \displaystyle \frac{{\left(| \theta {| }^{2}\right)}_{t}}{1-\vartheta }+(1-\vartheta ){\psi }_{x},\end{array}\end{eqnarray}$where ϑ ≠ ±1 is a real constant, φ and ψ represent real functions of the spatial variable x and the temporal variable t, respectively, while θ is a complex function.

In the following section, the applications of three methods are discussed.

3. Mathematical preliminaries

To solve the above equation (1), we utilize the traveling-wave transformations θ(x, t) = U(η)e, φ(x, t) = H(η), and ψ(x, t) = Q(η), where Φ = ρxϖt and η = xct + ζ0. Here ρ, ϖ, c, and ζ0 represent the wave number, frequency, velocity, and phase constant, respectively. Imposing these transformations onto equation (1) yields$\begin{eqnarray}(1+c){U}^{{\prime\prime} }-\rho (\rho +\varpi )U+\displaystyle \frac{2}{1-{\vartheta }^{2}}{U}^{3}+(H-Q)U=0,\end{eqnarray}$$\begin{eqnarray}H=-\displaystyle \frac{c\,{U}^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}Q=\displaystyle \frac{c\,{U}^{2}}{(\vartheta -1)(\vartheta -1-c)},\end{eqnarray}$$\begin{eqnarray}\varpi =-\rho (2+c).\end{eqnarray}$By substituting equations (3)–(5) into equation (2), we obtain the following ODE,$\begin{eqnarray}{U}^{{\prime\prime} }-\displaystyle \frac{2}{{\vartheta }^{2}-{\left(c+1\right)}^{2}}{U}^{3}+{\rho }^{2}U=0.\end{eqnarray}$

3.1. $(\tfrac{{G}^{{\prime} }}{{G}^{2}})$-expansion method

Using the homogeneous balance rule that equation (6) yields, n = 1. The solution of equation (6) reduces to:$\begin{eqnarray*}U(\eta )={\beta }_{0}+\sum _{j=1}^{n}\left({\beta }_{j}{\left(\displaystyle \frac{{G}^{{\prime} }}{{G}^{2}}\right)}^{j}+{\delta }_{j}{\left(\displaystyle \frac{{G}^{{\prime} }}{{G}^{2}}\right)}^{-j}\right),\end{eqnarray*}$$\begin{eqnarray}U(\eta )={\beta }_{0}+{\beta }_{1}\left(\displaystyle \frac{{G}^{{\prime} }}{{G}^{2}}\right)+{\delta }_{1}{\left(\displaystyle \frac{{G}^{{\prime} }}{{G}^{2}}\right)}^{-1}.\end{eqnarray}$Substituting equation (7) into equation (6) together with ${\left(\tfrac{{G}^{{\prime} }}{{G}^{2}}\right)}^{{\prime} }={\rm{\Upsilon }}+{\rm{\Omega }}{\left(\tfrac{{G}^{{\prime} }}{{G}^{2}}\right)}^{2}$, and after comparing the coefficients, a set of strategic equations are obtained. By using a software package such as Mathematica, we get solution sets as follows:$\begin{eqnarray*}\begin{array}{rcl}{Set}-1 & : & {\beta }_{0}=0,{\beta }_{1}={\rm{\Omega }}\sqrt{(\vartheta -(c+1))(\vartheta +c+1)},\\ & & {\delta }_{1}=0,\rho ={\rm{i}}\sqrt{2}\sqrt{{\rm{\Upsilon }}}\sqrt{{\rm{\Omega }}}.\\ {Set}-2 & : & {\beta }_{0}=0,{\beta }_{1}=0,\\ & & {\delta }_{1}={\rm{i}}{\rm{\Upsilon }}\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)},\\ & & \rho =-{\rm{i}}\sqrt{2}\sqrt{{\rm{\Upsilon }}}\sqrt{{\rm{\Omega }}}.\\ {Set}-3 & : & {\beta }_{0}=0,{\beta }_{1}=-{\rm{i}}{\rm{\Omega }}\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)},\\ & & {\delta }_{1}=-{\rm{i}}{\rm{\Upsilon }}\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)},\\ & & \rho =-2\sqrt{{\rm{\Upsilon }}}\sqrt{{\rm{\Omega }}}.\\ {Set}-4 & : & {\beta }_{0}=0,{\beta }_{1}={\rm{i}}{\rm{\Omega }}\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)},\\ & & {\delta }_{1}=-{\rm{i}}{\rm{\Upsilon }}\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)},\\ & & \rho =-2{\rm{i}}\sqrt{2}\sqrt{{\rm{\Upsilon }}}\sqrt{{\rm{\Omega }}}.\end{array}\end{eqnarray*}$

For Set 1,

Case-1 (Trigonometric solutions:

If ϒΩ > 0,$\begin{eqnarray}\begin{array}{l}{\theta }_{\mathrm{1,1}}(x,t)\\ =\displaystyle \frac{\sqrt{{\rm{\Upsilon }}}\sqrt{{\rm{\Omega }}}\sqrt{(\vartheta -c-1)(\vartheta +c+1)}\left({{\rm{\Xi }}}_{1}\sin \left(\eta \sqrt{{\rm{\Upsilon }}{\rm{\Omega }}}\right)+{{\rm{\Xi }}}_{2}\cos \left(\eta \sqrt{{\rm{\Upsilon }}{\rm{\Omega }}}\right)\right)}{{{\rm{\Xi }}}_{2}\cos \left(\eta \sqrt{{\rm{\Upsilon }}{\rm{\Omega }}}\right)-{{\rm{\Xi }}}_{1}\sin \left(\eta \sqrt{{\rm{\Upsilon }}{\rm{\Omega }}}\right)}\times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{array}\end{eqnarray}$$\begin{eqnarray}{\varphi }_{\mathrm{1,1}}(x,t)=-\displaystyle \frac{c{\left|{\theta }_{\mathrm{1,1}}(x,t)\right|}^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{\mathrm{1,1}}(x,t)=\displaystyle \frac{c{\left|{\theta }_{\mathrm{1,1}}(x,t)\right|}^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$

Case-2 (Hyperbolic solution:

If ϒΩ < 0,$\begin{eqnarray}\begin{array}{l}{\theta }_{\mathrm{1,2}}(x,t)\ =\\ -\ \displaystyle \frac{\sqrt{{\vartheta }^{2}-{c}^{2}-2c-1}\sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\left({{\rm{\Xi }}}_{1}\left(\sinh \left(2\eta \sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\right)+\cosh \left(2\eta \sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\right)\right)+{{\rm{\Xi }}}_{2}\right)}{{{\rm{\Xi }}}_{1}\left(\sinh \left(2\eta \sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\right)+\cosh \left(2\eta \sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\right)\right)-{{\rm{\Xi }}}_{2}}\times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{array}\end{eqnarray}$$\begin{eqnarray}{\varphi }_{\mathrm{1,2}}(x,t)=-\displaystyle \frac{c{\left|{\theta }_{\mathrm{1,2}}(x,t)\right|}^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{\mathrm{1,2}}(x,t)=\displaystyle \frac{c{\left|{\theta }_{\mathrm{1,2}}(x,t)\right|}^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$For the soliton solution, taking ξ1 = ξ2, we get a singular wave solution as follows:$\begin{eqnarray}\begin{array}{rcl}{\theta }_{\mathrm{1,2}}(x,t) & = & -\sqrt{{\vartheta }^{2}-{\left(c+1\right)}^{2}}\sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\coth \left(\sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\eta \right)\\ & & \times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{array}\end{eqnarray}$$\begin{eqnarray}{\varphi }_{\mathrm{1,2}}(x,t)=-\displaystyle \frac{c{\left|{\theta }_{\mathrm{1,2}}(x,t)\right|}^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{\mathrm{1,2}}(x,t)=\displaystyle \frac{c{\left|{\theta }_{\mathrm{1,2}}(x,t)\right|}^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$

For Set 2,

Case-1 (Trigonometric solutions:

If ϒΩ > 0,$\begin{eqnarray}\begin{array}{l}{\theta }_{\mathrm{2,1}}(x,t)\\ =\ \displaystyle \frac{i\sqrt{{\rm{\Upsilon }}}\sqrt{{\rm{\Omega }}}\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)}\left({{\rm{\Xi }}}_{2}\cos \left(\eta \sqrt{{\rm{\Upsilon }}{\rm{\Omega }}}\right)-{{\rm{\Xi }}}_{1}\sin \left(\eta \sqrt{{\rm{\Upsilon }}{\rm{\Omega }}}\right)\right)}{{{\rm{\Xi }}}_{1}\sin \left(\eta \sqrt{{\rm{\Upsilon }}{\rm{\Omega }}}\right)+{{\rm{\Xi }}}_{2}\cos \left(\eta \sqrt{{\rm{\Upsilon }}{\rm{\Omega }}}\right)}\times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{array}\end{eqnarray}$$\begin{eqnarray}{\varphi }_{\mathrm{2,1}}(x,t)=-\displaystyle \frac{c{\left|{\theta }_{\mathrm{2,1}}(x,t)\right|}^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{\mathrm{2,1}}(x,t)=\displaystyle \frac{c{\left|{\theta }_{\mathrm{2,1}}(x,t)\right|}^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$

Case-2 (Hyperbolic solution:

If ϒΩ < 0,$\begin{eqnarray}{\theta }_{\mathrm{2,2}}(x,t)=-\displaystyle \frac{i{\rm{\Upsilon }}{\rm{\Omega }}\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)}\left({{\rm{\Xi }}}_{1}\sinh \left(2\eta \sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\right)+{{\rm{\Xi }}}_{1}\cosh \left(2\eta \sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\right)-{{\rm{\Xi }}}_{2}\right)}{\sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\left({{\rm{\Xi }}}_{1}\sinh \left(2\eta \sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\right)+{{\rm{\Xi }}}_{1}\cosh \left(2\eta \sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\right)+{{\rm{\Xi }}}_{2}\right)}\times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{eqnarray}$$\begin{eqnarray}{\varphi }_{\mathrm{2,2}}(x,t)=-\displaystyle \frac{c{\left|{\theta }_{\mathrm{2,2}}(x,t)\right|}^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{\mathrm{2,2}}(x,t)=\displaystyle \frac{c{\left|{\theta }_{\mathrm{2,2}}(x,t)\right|}^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$For the soliton solution, if we take ξ1 = ξ2, we get a dark soliton solution, as follows:$\begin{eqnarray}\begin{array}{rcl}{\theta }_{\mathrm{2,2}}(x,t) & = & -i\sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)}\\ & & \times \tanh \left(\sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\eta \right)\times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{array}\end{eqnarray}$$\begin{eqnarray}{\varphi }_{\mathrm{2,2}}(x,t)=-\displaystyle \frac{c{\left|{\theta }_{\mathrm{2,2}}(x,t)\right|}^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{\mathrm{2,2}}(x,t)=\displaystyle \frac{c{\left|{\theta }_{\mathrm{2,2}}(x,t)\right|}^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$

For Set 3,

Case-1 (Trigonometric solutions:

If ϒΩ > 0,$\begin{eqnarray}{\theta }_{\mathrm{3,1}}(x,t)=\displaystyle \frac{2i\sqrt{{\rm{\Upsilon }}}\sqrt{{\rm{\Omega }}}\sqrt{-{\vartheta }^{2}+{c}^{2}+2c+1}\left({{\rm{\Xi }}}_{1}^{2}{\sin }^{2}\left(\eta \sqrt{{\rm{\Upsilon }}{\rm{\Omega }}}\right)+{{\rm{\Xi }}}_{2}^{2}{\cos }^{2}\left(\eta \sqrt{{\rm{\Upsilon }}{\rm{\Omega }}}\right)\right)}{{{\rm{\Xi }}}_{1}^{2}{\sin }^{2}\left(\eta \sqrt{{\rm{\Upsilon }}{\rm{\Omega }}}\right)-{{\rm{\Xi }}}_{2}^{2}{\cos }^{2}\left(\eta \sqrt{{\rm{\Upsilon }}{\rm{\Omega }}}\right)}\times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{eqnarray}$$\begin{eqnarray}{\varphi }_{\mathrm{3,1}}(x,t)=-\displaystyle \frac{c{\left|{\theta }_{\mathrm{3,1}}(x,t)\right|}^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{\mathrm{3,1}}(x,t)=\displaystyle \frac{c{\left|{\theta }_{\mathrm{3,1}}(x,t)\right|}^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$For the soliton solution, if we take ξ1 = ξ2, we get a periodic wave solution, as follows:$\begin{eqnarray}\begin{array}{rcl}{\theta }_{\mathrm{3,1}}(x,t) & = & -2i\sqrt{{\rm{\Upsilon }}}\sqrt{{\rm{\Omega }}}\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)}\\ & & \times \sec \left(2\sqrt{{\rm{\Upsilon }}{\rm{\Omega }}}\eta \right)\times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{array}\end{eqnarray}$$\begin{eqnarray}{\varphi }_{\mathrm{3,1}}(x,t)=-\displaystyle \frac{c{\left|{\theta }_{\mathrm{3,1}}(x,t)\right|}^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{\mathrm{3,1}}(x,t)=\displaystyle \frac{c{\left|{\theta }_{\mathrm{3,1}}(x,t)\right|}^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$

Case-2 (Hyperbolic solution:

If ϒΩ < 0,$\begin{eqnarray}\begin{array}{rcl}{\theta }_{\mathrm{3,2}}(x,t) & = & \displaystyle \frac{i{\rm{\Upsilon }}{\rm{\Omega }}\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)}\left({{\rm{\Xi }}}_{1}\sinh \left(2\eta \sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\right)+{{\rm{\Xi }}}_{1}\cosh \left(2\eta \sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\right)-{{\rm{\Xi }}}_{2}\right)}{\sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\left({{\rm{\Xi }}}_{1}\sinh \left(2\eta \sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\right)+{{\rm{\Xi }}}_{1}\cosh \left(2\eta \sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\right)+{{\rm{\Xi }}}_{2}\right)}\\ & & +\displaystyle \frac{i\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)}\sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\left({{\rm{\Xi }}}_{1}\sinh \left(2\eta \sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\right)+{{\rm{\Xi }}}_{1}\cosh \left(2\eta \sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\right)+{{\rm{\Xi }}}_{2}\right)}{{{\rm{\Xi }}}_{1}\sinh \left(2\eta \sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\right)+{{\rm{\Xi }}}_{1}\cosh \left(2\eta \sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\right)-{{\rm{\Xi }}}_{2}}\times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{array}\end{eqnarray}$$\begin{eqnarray}{\varphi }_{\mathrm{3,2}}(x,t)=-\displaystyle \frac{c{\left|{\theta }_{\mathrm{3,2}}(x,t)\right|}^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{\mathrm{3,2}}(x,t)=\displaystyle \frac{c{\left|{\theta }_{\mathrm{3,2}}(x,t)\right|}^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$For the soliton solution, if we take ξ1 = ξ2, we get a combined dark–singular wave solution, as follows:$\begin{eqnarray}{\theta }_{\mathrm{3,2}}(x,t)=\displaystyle \frac{{\rm{i}}\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)}\tanh \left(\sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\eta \right)\left(\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|{\coth }^{2}\left(\sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\eta \right)+{\rm{\Upsilon }}{\rm{\Omega }}\right)}{\sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}}\times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{eqnarray}$$\begin{eqnarray}{\varphi }_{\mathrm{3,2}}(x,t)=-\displaystyle \frac{c{\left|{\theta }_{\mathrm{3,2}}(x,t)\right|}^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{\mathrm{3,2}}(x,t)=\displaystyle \frac{c{\left|{\theta }_{\mathrm{3,2}}(x,t)\right|}^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$

Case-3 (Rational solutions:

If ϒ = 0, Ω ≠ 0,$\begin{eqnarray}\begin{array}{rcl}{\theta }_{\mathrm{3,3}}(x,t) & = & \displaystyle \frac{{\rm{i}}{{\rm{\Xi }}}_{1}\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)}}{{{\rm{\Xi }}}_{1}\eta +{{\rm{\Xi }}}_{2}}\\ & & \times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{array}\end{eqnarray}$$\begin{eqnarray}{\varphi }_{\mathrm{3,3}}(x,t)=-\displaystyle \frac{c{\left|{\theta }_{\mathrm{3,3}}(x,t)\right|}^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{\mathrm{3,3}}(x,t)=\displaystyle \frac{c{\left|{\theta }_{\mathrm{3,3}}(x,t)\right|}^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$If we take ξ1 = ξ2, a plane-wave solution is obtained:$\begin{eqnarray}\begin{array}{rcl}{\theta }_{\mathrm{3,3}}(x,t) & = & \displaystyle \frac{{\rm{i}}\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)}}{\eta +1}\\ & & \times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{array}\end{eqnarray}$$\begin{eqnarray}{\varphi }_{\mathrm{3,3}}(x,t)=-\displaystyle \frac{c{\left|{\theta }_{\mathrm{3,3}}(x,t)\right|}^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{\mathrm{3,3}}(x,t)=\displaystyle \frac{c{\left|{\theta }_{\mathrm{3,3}}(x,t)\right|}^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$

For Set 4,

Case-1 (Trigonometric solutions:

If ϒΩ > 0,$\begin{eqnarray}{\theta }_{\mathrm{4,1}}(x,t)=-\displaystyle \frac{2{\rm{i}}\sqrt{{\rm{\Upsilon }}}{{\rm{\Xi }}}_{1}{{\rm{\Xi }}}_{2}\sqrt{{\rm{\Omega }}}\sqrt{-{\vartheta }^{2}+{c}^{2}+2c+1}\sin \left(2\eta \sqrt{{\rm{\Upsilon }}{\rm{\Omega }}}\right)}{{{\rm{\Xi }}}_{1}^{2}{\sin }^{2}\left(\eta \sqrt{{\rm{\Upsilon }}{\rm{\Omega }}}\right)-{{\rm{\Xi }}}_{2}^{2}{\cos }^{2}\left(\eta \sqrt{{\rm{\Upsilon }}{\rm{\Omega }}}\right)}\times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{eqnarray}$$\begin{eqnarray}{\varphi }_{\mathrm{4,1}}(x,t)=-\displaystyle \frac{c{\left|{\theta }_{\mathrm{4,1}}(x,t)\right|}^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{\mathrm{4,1}}(x,t)=\displaystyle \frac{c{\left|{\theta }_{\mathrm{4,1}}(x,t)\right|}^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$For the soliton solution, if we take ξ1 = ξ2, we get a periodic wave solution, as follows:$\begin{eqnarray}\begin{array}{rcl}{\theta }_{\mathrm{4,1}}(x,t) & = & 2i\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)}\sqrt{{\rm{\Upsilon }}{\rm{\Omega }}}\\ & & \times \tan \left(2\sqrt{{\rm{\Upsilon }}}\sqrt{{\rm{\Omega }}}\eta \right)\times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{array}\end{eqnarray}$$\begin{eqnarray}{\varphi }_{\mathrm{4,1}}(x,t)=-\displaystyle \frac{c{\left|{\theta }_{\mathrm{4,1}}(x,t)\right|}^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{\mathrm{4,1}}(x,t)=\displaystyle \frac{c{\left|{\theta }_{\mathrm{4,1}}(x,t)\right|}^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$

Case-2 (Hyperbolic solution:

If ϒΩ < 0,$\begin{eqnarray}\begin{array}{rcl}{\theta }_{\mathrm{4,2}}(x,t) & = & \displaystyle \frac{{\rm{i}}{\rm{\Upsilon }}{\rm{\Omega }}\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)}\left({{\rm{\Xi }}}_{1}\sinh \left(2\eta \sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\right)+{{\rm{\Xi }}}_{1}\cosh \left(2\eta \sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\right)-{{\rm{\Xi }}}_{2}\right)}{\sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\left({{\rm{\Xi }}}_{1}\sinh \left(2\eta \sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\right)+{{\rm{\Xi }}}_{1}\cosh \left(2\eta \sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\right)+{{\rm{\Xi }}}_{2}\right)}\\ & & -\displaystyle \frac{{\rm{i}}\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)}\sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\left({{\rm{\Xi }}}_{1}\sinh \left(2\eta \sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\right)+{{\rm{\Xi }}}_{1}\cosh \left(2\eta \sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\right)+{{\rm{\Xi }}}_{2}\right)}{{{\rm{\Xi }}}_{1}\sinh \left(2\eta \sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\right)+{{\rm{\Xi }}}_{1}\cosh \left(2\eta \sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\right)-{{\rm{\Xi }}}_{2}}\times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{array}\end{eqnarray}$$\begin{eqnarray}{\varphi }_{\mathrm{4,2}}(x,t)=-\displaystyle \frac{c{\left|{\theta }_{\mathrm{4,2}}(x,t)\right|}^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{\mathrm{4,2}}(x,t)=\displaystyle \frac{c{\left|{\theta }_{\mathrm{4,2}}(x,t)\right|}^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$For the soliton solution, if we take ξ1 = ξ2, we obtain a combined dark–singular wave solution, as follows:$\begin{eqnarray}{\theta }_{\mathrm{4,2}}(x,t)=-\displaystyle \frac{{\rm{i}}\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)}\tanh \left(\sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\eta \right)\left(\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|{\coth }^{2}\left(\sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}\eta \right)-{\rm{\Upsilon }}{\rm{\Omega }}\right)}{\sqrt{\left|{\rm{\Upsilon }}{\rm{\Omega }}\right|}}\times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{eqnarray}$$\begin{eqnarray}{\varphi }_{\mathrm{4,2}}(x,t)=-\displaystyle \frac{c{\left|{\theta }_{\mathrm{4,2}}(x,t)\right|}^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{\mathrm{4,2}}(x,t)=\displaystyle \frac{c{\left|{\theta }_{\mathrm{4,2}}(x,t)\right|}^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$For all the above sets, η = −ct + ζ0 + x.

3.2. MDAM

By utilizing the homogeneous balance rule on equation (6), we obtain n = 1, which implies the solution of equation (6) is as follows:$\begin{eqnarray}U(\eta )={a}_{0}+{a}_{1}Z+{b}_{1}{Z}^{-1},\end{eqnarray}$where a0, a1, and b1 are parameters. In order to find the parameters involved in equation (56), we substitute equation (56) along with (Z′ = χ + Z2) into equation (6), and we get a cluster of equations on equating the same power coefficients of of Z. Furthermore, by using Mathematica, we obtain a cluster of solutions, as follows:$\begin{eqnarray*}\begin{array}{rcl}{Set}-1 & : & {a}_{0}=0,{a}_{1}=\sqrt{{\vartheta }^{2}-{\left(c+1\right)}^{2}},\\ & & {b}_{1}=0,\chi =-\displaystyle \frac{{\rho }^{2}}{2}.\\ {Set}-2 & : & {a}_{0}=0,{a}_{1}=0,\\ & & {b}_{1}=\displaystyle \frac{1}{2}{\rm{i}}{\rho }^{2}\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)},\\ & & \chi =-\displaystyle \frac{{\rho }^{2}}{2}.\\ {Set}-3 & : & {a}_{0}=0,{a}_{1}=\sqrt{{\vartheta }^{2}-{\left(c+1\right)}^{2}},\\ & & {b}_{1}=\displaystyle \frac{1}{8}{\rho }^{2}\sqrt{{\vartheta }^{2}-{\left(c+1\right)}^{2}},\chi =-\displaystyle \frac{{\rho }^{2}}{8}.\end{array}\end{eqnarray*}$

For Set 1

Case-1 :

When χ < 0, we get the following solutions.

Dark soliton structure:$\begin{eqnarray}{\theta }_{1}(x,t)=-\displaystyle \frac{\rho \sqrt{{\vartheta }^{2}-{\left(c+1\right)}^{2}}\tanh \left(\tfrac{\eta \rho }{\sqrt{2}}\right)}{\sqrt{2}}\times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{eqnarray}$$\begin{eqnarray}{\varphi }_{1}(x,t)=-\displaystyle \frac{c{\left|{\theta }_{1}(x,t)\right|}^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{1}(x,t)=\displaystyle \frac{c{\left|{\theta }_{1}(x,t)\right|}^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$Singular wave structure:$\begin{eqnarray}{\theta }_{2}(x,t)=\displaystyle \frac{\rho \sqrt{{\vartheta }^{2}-{\left(c+1\right)}^{2}}\coth \left(\tfrac{\eta \rho }{\sqrt{2}}\right)}{\sqrt{2}}\times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{eqnarray}$$\begin{eqnarray}{\varphi }_{2}(x,t)=-\displaystyle \frac{c| {\theta }_{2}(x,t){| }^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{2}(x,t)=\displaystyle \frac{c| {\theta }_{2}(x,t){| }^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$

Case-2 :

When χ > 0, then the following periodic solutions of different forms are obtained:$\begin{eqnarray}\begin{array}{rcl}{\theta }_{3}(x,t) & = & -\displaystyle \frac{\sqrt{-{\rho }^{2}}\sqrt{{\vartheta }^{2}-{\left(c+1\right)}^{2}}\tan \left(\tfrac{\eta \sqrt{-{\rho }^{2}}}{\sqrt{2}}\right)}{\sqrt{2}}\\ & & \times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{array}\end{eqnarray}$$\begin{eqnarray}{\varphi }_{3}(x,t)=-\displaystyle \frac{c| {\theta }_{3}(x,t){| }^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{3}(x,t)=\frac{c| {\theta }_{3}(x,t){| }^{2}}{(\vartheta -1)(\vartheta -1-c)},\end{eqnarray}$and$\begin{eqnarray}\begin{array}{rcl}{\theta }_{4}(x,t) & = & \displaystyle \frac{\sqrt{-{\rho }^{2}}\sqrt{{\vartheta }^{2}-{\left(c+1\right)}^{2}}\cot \left(\tfrac{\eta \sqrt{-{\rho }^{2}}}{\sqrt{2}}\right)}{\sqrt{2}}\\ & & \times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{array}\end{eqnarray}$$\begin{eqnarray}{\varphi }_{4}(x,t)=-\displaystyle \frac{c{\left|{\theta }_{4}(x,t)\right|}^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{4}(x,t)=\displaystyle \frac{c{\left|{\theta }_{4}(x,t)\right|}^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$

For Set 2

Case-1 :

When χ < 0, we get the singular and dark soliton structures, respectively:$\begin{eqnarray}\begin{array}{rcl}{\theta }_{5}(x,t) & = & -\displaystyle \frac{{\rm{i}}\rho \sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)}\coth \left(\tfrac{\eta \rho }{\sqrt{2}}\right)}{\sqrt{2}}\\ & & \times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{array}\end{eqnarray}$$\begin{eqnarray}{\varphi }_{5}(x,t)=-\displaystyle \frac{c{\left|{\theta }_{5}(x,t)\right|}^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{5}(x,t)=\frac{c{\left|{\theta }_{5}(x,t)\right|}^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$and$\begin{eqnarray}\begin{array}{rcl}{\theta }_{6}(x,t) & = & -\displaystyle \frac{i\rho \sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)}\tanh \left(\tfrac{\eta \rho }{\sqrt{2}}\right)}{\sqrt{2}}\\ & & \times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{array}\end{eqnarray}$$\begin{eqnarray}{\varphi }_{6}(x,t)=-\displaystyle \frac{c{\left|{\theta }_{6}(x,t)\right|}^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{6}(x,t)=\displaystyle \frac{c{\left|{\theta }_{6}(x,t)\right|}^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$

Case-2 :

When χ > 0, then the periodic solutions are:$\begin{eqnarray}\begin{array}{rcl}{\theta }_{7}(x,t) & = & -\displaystyle \frac{{\rm{i}}\sqrt{-{\rho }^{2}}\sqrt{-{\vartheta }^{2}+{c}^{2}+2c+1}\cot \left(\tfrac{\eta \sqrt{-{\rho }^{2}}}{\sqrt{2}}\right)}{\sqrt{2}}\\ & & \times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{array}\end{eqnarray}$$\begin{eqnarray}{\varphi }_{7}(x,t)=-\displaystyle \frac{c{\left|{\theta }_{7}(x,t)\right|}^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{7}(x,t)=\frac{c{\left|{\theta }_{7}(x,t)\right|}^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$and$\begin{eqnarray}\begin{array}{rcl}{\theta }_{8}(x,t) & = & \displaystyle \frac{i\sqrt{-{\rho }^{2}}\sqrt{-{\vartheta }^{2}+{c}^{2}+2c+1}\tan \left(\tfrac{\eta \sqrt{-{\rho }^{2}}}{\sqrt{2}}\right)}{\sqrt{2}}\\ & & \times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{array}\end{eqnarray}$$\begin{eqnarray}{\varphi }_{8}(x,t)=-\displaystyle \frac{c{\left|{\theta }_{8}(x,t)\right|}^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{8}(x,t)=\displaystyle \frac{c{\left|{\theta }_{8}(x,t)\right|}^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$

For Set 3

Case-1 :

When χ < 0, we get the following mixed hyperbolic solution:$\begin{eqnarray}\begin{array}{rcl}{\theta }_{9}(x,t) & = & -\displaystyle \frac{\sqrt{{\rho }^{2}}\sqrt{{\vartheta }^{2}-{\left(c+1\right)}^{2}}\tanh \left(\tfrac{\eta \sqrt{{\rho }^{2}}}{2\sqrt{2}}\right)}{2\sqrt{2}}\\ & & -\displaystyle \frac{\sqrt{{\rho }^{2}}\sqrt{{\vartheta }^{2}-{\left(c+1\right)}^{2}}\coth \left(\tfrac{\eta \sqrt{{\rho }^{2}}}{2\sqrt{2}}\right)}{2\sqrt{2}}\\ & & \times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{array}\end{eqnarray}$$\begin{eqnarray}{\varphi }_{9}(x,t)=-\displaystyle \frac{c| {\theta }_{9}(x,t){| }^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{9}(x,t)=\displaystyle \frac{c| {\theta }_{9}(x,t){| }^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$

Case-2 :

When χ > 0, then the periodic solution is expressed as:$\begin{eqnarray}\begin{array}{rcl}{\theta }_{10}(x,t) & = & \displaystyle \frac{\sqrt{-{\rho }^{2}}\sqrt{{\vartheta }^{2}-{\left(c+1\right)}^{2}}\tan \left(\tfrac{\eta \sqrt{-{\rho }^{2}}}{2\sqrt{2}}\right)}{2\sqrt{2}}\\ & & +\displaystyle \frac{{\rho }^{2}\sqrt{{\vartheta }^{2}-{\left(c+1\right)}^{2}}\cot \left(\tfrac{\eta \sqrt{-{\rho }^{2}}}{2\sqrt{2}}\right)}{2\sqrt{2}\sqrt{-{\rho }^{2}}}\\ & & \times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{array}\end{eqnarray}$$\begin{eqnarray}{\varphi }_{10}(x,t)=-\displaystyle \frac{c{\left|{\theta }_{10}(x,t)\right|}^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{10}(x,t)=\displaystyle \frac{c{\left|{\theta }_{10}(x,t)\right|}^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$For all the above sets, η = −ct + ζ0 + x.

3.3. Generalized Kudryashov method

In this section, we apply the above method to obtain the solutions of the governing model. To begin with, we take account of the fact that the homogeneous balance between U3 and U″ gives the relation T = H + 1. In particular, for H = 1, we get T = 2. Therefore, equation (6) along with (G′(η) = G2(η) − G(η)) take the following form of the solution:$\begin{eqnarray}U(\eta )=\displaystyle \frac{{a}_{0}+{a}_{1}G(\eta )+{a}_{2}{G}^{2}(\eta )}{{b}_{0}+{b}_{1}G(\eta )},\end{eqnarray}$where a0, a1, a2, b0 and b1 are to be determined. Also,$\begin{eqnarray}G(\eta )=\displaystyle \frac{1}{1\pm S{{\rm{e}}}^{\eta }}.\end{eqnarray}$Now, solving equations (6) and (87), the following system of equations is obtained:$\begin{eqnarray}\left\{\begin{array}{l}-{\vartheta }^{2}{a}_{0}{b}_{0}^{2}{\rho }^{2}+{a}_{0}{b}_{0}^{2}{c}^{2}{\rho }^{2}+2{a}_{0}{b}_{0}^{2}c{\rho }^{2}+{a}_{0}{b}_{0}^{2}{\rho }^{2}+2{a}_{0}^{3}=0.\\ -{\vartheta }^{2}{a}_{1}{b}_{0}^{2}{\rho }^{2}-2{\vartheta }^{2}{a}_{0}{b}_{0}{b}_{1}{\rho }^{2}-{\vartheta }^{2}{a}_{1}{b}_{0}^{2}+{\vartheta }^{2}{a}_{0}{b}_{0}{b}_{1}+{a}_{1}{b}_{0}^{2}{c}^{2}{\rho }^{2}+2{a}_{0}{b}_{0}{b}_{1}{c}^{2}{\rho }^{2}+{a}_{1}{b}_{0}^{2}{c}^{2}\\ -{a}_{0}{b}_{0}{b}_{1}{c}^{2}+2{a}_{1}{b}_{0}^{2}c{\rho }^{2}+4{a}_{0}{b}_{0}{b}_{1}c{\rho }^{2}+2{a}_{1}{b}_{0}^{2}c-2{a}_{0}{b}_{0}{b}_{1}c+{a}_{1}{b}_{0}^{2}{\rho }^{2}+2{a}_{0}{b}_{0}{b}_{1}{\rho }^{2}+{a}_{1}{b}_{0}^{2}-{a}_{0}{b}_{0}{b}_{1}+6{a}_{0}^{2}{a}_{1}=0.\\ -{\vartheta }^{2}{a}_{2}{b}_{0}^{2}{\rho }^{2}-{\vartheta }^{2}{a}_{0}{b}_{1}^{2}{\rho }^{2}-2{\vartheta }^{2}{a}_{1}{b}_{0}{b}_{1}{\rho }^{2}+3{\vartheta }^{2}{a}_{1}{b}_{0}^{2}-4{\vartheta }^{2}{a}_{2}{b}_{0}^{2}-{\vartheta }^{2}{a}_{0}{b}_{1}^{2}-3{\vartheta }^{2}{a}_{0}{b}_{0}{b}_{1}+{\vartheta }^{2}{a}_{1}{b}_{0}{b}_{1}+{a}_{2}{b}_{0}^{2}{c}^{2}{\rho }^{2}\\ +{a}_{0}{b}_{1}^{2}{c}^{2}{\rho }^{2}+2{a}_{1}{b}_{0}{b}_{1}{c}^{2}{\rho }^{2}-3{a}_{1}{b}_{0}^{2}{c}^{2}+4{a}_{2}{b}_{0}^{2}{c}^{2}+{a}_{0}{b}_{1}^{2}{c}^{2}+3{a}_{0}{b}_{0}{b}_{1}{c}^{2}-{a}_{1}{b}_{0}{b}_{1}{c}^{2}+2{a}_{2}{b}_{0}^{2}c{\rho }^{2}+2{a}_{0}{b}_{1}^{2}c{\rho }^{2}\\ +4{a}_{1}{b}_{0}{b}_{1}c{\rho }^{2}-6{a}_{1}{b}_{0}^{2}c+8{a}_{2}{b}_{0}^{2}c+2{a}_{0}{b}_{1}^{2}c+6{a}_{0}{b}_{0}{b}_{1}c-2{a}_{1}{b}_{0}{b}_{1}c+{a}_{2}{b}_{0}^{2}{\rho }^{2}+{a}_{0}{b}_{1}^{2}{\rho }^{2}+2{a}_{1}{b}_{0}{b}_{1}{\rho }^{2}-3{a}_{1}{b}_{0}^{2}\\ +4{a}_{2}{b}_{0}^{2}+{a}_{0}{b}_{1}^{2}+3{a}_{0}{b}_{0}{b}_{1}-{a}_{1}{b}_{0}{b}_{1}+36{a}_{0}{a}_{1}^{2}+6{a}_{0}^{2}{a}_{2}=0.\\ -{\vartheta }^{2}{a}_{1}{b}_{1}^{2}{\rho }^{2}-2{\vartheta }^{2}{a}_{2}{b}_{0}{b}_{1}{\rho }^{2}-2{\vartheta }^{2}{a}_{1}{b}_{0}^{2}-{\vartheta }^{2}{a}_{1}{b}_{0}{b}_{1}+10{\vartheta }^{2}{a}_{2}{b}_{0}^{2}+{\vartheta }^{2}{a}_{0}{b}_{1}^{2}+2{\vartheta }^{2}{a}_{0}{b}_{0}{b}_{1}-3{\vartheta }^{2}{a}_{2}{b}_{0}{b}_{1}\\ +{a}_{1}{b}_{1}^{2}{c}^{2}{\rho }^{2}+2{a}_{2}{b}_{0}{b}_{1}{c}^{2}{\rho }^{2}+2{a}_{1}{b}_{0}^{2}{c}^{2}+{a}_{1}{b}_{0}{b}_{1}{c}^{2}-10{a}_{2}{b}_{0}^{2}{c}^{2}-{a}_{0}{b}_{1}^{2}{c}^{2}-2{a}_{0}{b}_{0}{b}_{1}{c}^{2}+3{a}_{2}{b}_{0}{b}_{1}{c}^{2}+2{a}_{1}{b}_{1}^{2}c{\rho }^{2}\\ +4{a}_{2}{b}_{0}{b}_{1}c{\rho }^{2}+4{a}_{1}{b}_{0}^{2}c+2{a}_{1}{b}_{0}{b}_{1}c-20{a}_{2}{b}_{0}^{2}c-2{a}_{0}{b}_{1}^{2}c-4{a}_{0}{b}_{0}{b}_{1}c+6{a}_{2}{b}_{0}{b}_{1}c+{a}_{1}{b}_{1}^{2}{\rho }^{2}+2{a}_{2}{b}_{0}{b}_{1}{\rho }^{2}\\ +2{a}_{1}{b}_{0}^{2}+{a}_{1}{b}_{0}{b}_{1}-10{a}_{2}{b}_{0}^{2}-{a}_{0}{b}_{1}^{2}-2{a}_{0}{b}_{0}{b}_{1}+3{a}_{2}{b}_{0}{b}_{1}+2{a}_{1}^{3}+12{a}_{0}{a}_{2}{a}_{1}=0.\\ -{\vartheta }^{2}{a}_{2}{b}_{1}^{2}{\rho }^{2}-6{\vartheta }^{2}{a}_{2}{b}_{0}^{2}-{\vartheta }^{2}{a}_{2}{b}_{1}^{2}+9{\vartheta }^{2}{a}_{2}{b}_{0}{b}_{1}+{a}_{2}{b}_{1}^{2}{c}^{2}{\rho }^{2}+6{a}_{2}{b}_{0}^{2}{c}^{2}+{a}_{2}{b}_{1}^{2}{c}^{2}-9{a}_{2}{b}_{0}{b}_{1}{c}^{2}\\ +2{a}_{2}{b}_{1}^{2}c{\rho }^{2}+12{a}_{2}{b}_{0}^{2}c+2{a}_{2}{b}_{1}^{2}c-18{a}_{2}{b}_{0}{b}_{1}c+{a}_{2}{b}_{1}^{2}{\rho }^{2}+6{a}_{2}{b}_{0}^{2}+{a}_{2}{b}_{1}^{2}-9{a}_{2}{b}_{0}{b}_{1}+6{a}_{0}{a}_{2}^{2}+6{a}_{1}^{2}{a}_{2}=0.\\ 3{\vartheta }^{2}{a}_{2}{b}_{1}^{2}-6{\vartheta }^{2}{a}_{2}{b}_{0}{b}_{1}-3{a}_{2}{b}_{1}^{2}{c}^{2}+6{a}_{2}{b}_{0}{b}_{1}{c}^{2}-6{a}_{2}{b}_{1}^{2}c+12{a}_{2}{b}_{0}{b}_{1}c-3{a}_{2}{b}_{1}^{2}+6{a}_{2}{b}_{0}{b}_{1}+6{a}_{1}{a}_{2}^{2}=0.\\ -2{\vartheta }^{2}{a}_{2}{b}_{1}^{2}+2{a}_{2}{b}_{1}^{2}{c}^{2}+4{a}_{2}{b}_{1}^{2}c+2{a}_{2}{b}_{1}^{2}+2{a}_{2}^{3}=0.\end{array}\right.\end{eqnarray}$With the assistance of computational software such as Mathematica, we solve system 89, and a variety of solution sets is obtained, as follows:

Set 1$\begin{eqnarray*}\begin{array}{rcl}{a}_{1} & = & 0,{b}_{1}=-2{b}_{0},\\ {a}_{0} & = & -\displaystyle \frac{1}{2}{{\rm{i}}{b}}_{0}\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)},\\ \rho & = & -\displaystyle \frac{1}{\sqrt{2}},{a}_{2}=0.\end{array}\end{eqnarray*}$On substituting the above values of parameters into equation (87) and setting S = 1 in equation (88), we secure the soliton solution to equation (1) in terms of hyperbolic functions.$\begin{eqnarray}\begin{array}{rcl}{\theta }_{1}(x,t) & = & -\displaystyle \frac{1}{2}{\rm{i}}\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)}\tanh \left(\displaystyle \frac{\eta }{2}\right)\\ & & \times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{array}\end{eqnarray}$$\begin{eqnarray}{\varphi }_{1}(x,t)=-\displaystyle \frac{c{\left|{\theta }_{1}(x,t)\right|}^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{1}(x,t)=\displaystyle \frac{c{\left|{\theta }_{1}(x,t)\right|}^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$

Set 2$\begin{eqnarray*}\begin{array}{rcl}{a}_{1} & = & -{{\rm{i}}{b}}_{0}\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)},\\ {b}_{1} & = & -\left(1+\sqrt{29}\right){b}_{0},\\ {a}_{0} & = & -\displaystyle \frac{1}{2}{{\rm{i}}{b}}_{0}\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)},\\ \rho & = & -\displaystyle \frac{1}{\sqrt{2}},{a}_{2}=0.\end{array}\end{eqnarray*}$For S = 1, and solving equations (87) and (88) together, we get a soliton solution, as follows:$\begin{eqnarray}\begin{array}{rcl}{\theta }_{2}(x,t) & = & \displaystyle \frac{i\sqrt{-{\vartheta }^{2}+{c}^{2}+2c+1}\left(\sinh (\eta )+\cosh (\eta )+3\right)}{2\left(-\sinh (\eta )-\cosh (\eta )+\sqrt{29}\right)}\\ & & \times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{array}\end{eqnarray}$$\begin{eqnarray}{\varphi }_{2}(x,t)=-\displaystyle \frac{c| {\theta }_{2}(x,t){| }^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{2}(x,t)=\displaystyle \frac{c| {\theta }_{2}(x,t){| }^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$

Set 3$\begin{eqnarray*}\begin{array}{rcl}{a}_{1} & = & -\displaystyle \frac{1}{2}{{\rm{i}}{b}}_{1}\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)},\\ {a}_{0} & = & 0,{b}_{0}=0,\rho =\displaystyle \frac{1}{\sqrt{2}},\\ {a}_{2} & = & {{\rm{i}}{b}}_{1}\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)}.\end{array}\end{eqnarray*}$For S = 1, and solving equations (87) and (88) together, we get a singular soliton solution as follows:$\begin{eqnarray}\begin{array}{rcl}{\theta }_{3}(x,t) & = & -\displaystyle \frac{1}{2}{\rm{i}}\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)}\coth \left(\displaystyle \frac{\eta }{2}\right)\\ & & \times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{array}\end{eqnarray}$$\begin{eqnarray}{\varphi }_{3}(x,t)=-\displaystyle \frac{c| {\theta }_{3}(x,t){| }^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{3}(x,t)=\displaystyle \frac{c| {\theta }_{3}(x,t){| }^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$

Set 4$\begin{eqnarray*}\begin{array}{rcl}{a}_{1} & = & 0,{b}_{1}=2{b}_{0},\\ {a}_{0} & = & \displaystyle \frac{1}{2}{{\rm{i}}{b}}_{0}\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)},\rho =\displaystyle \frac{1}{\sqrt{2}},\\ {a}_{2} & = & -2{{\rm{i}}{b}}_{0}\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)}.\end{array}\end{eqnarray*}$For S = 1, and solving equations (87) and (88) together, we get the dark soliton solution as follows:$\begin{eqnarray}\begin{array}{rcl}{\theta }_{4}(x,t) & = & \displaystyle \frac{1}{2}i\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)}\tanh \left(\displaystyle \frac{\eta }{2}\right)\\ & & \times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{array}\end{eqnarray}$$\begin{eqnarray}{\varphi }_{4}(x,t)=-\displaystyle \frac{c{\left|{\theta }_{4}(x,t)\right|}^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{4}(x,t)=\displaystyle \frac{c{\left|{\theta }_{4}(x,t)\right|}^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$

Set 5$\begin{eqnarray*}\begin{array}{rcl}{a}_{1} & = & \displaystyle \frac{{{\rm{i}}{b}}_{1}\rho \sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)}}{\sqrt{2}},\\ {a}_{0} & = & 0,{b}_{0}=0,{a}_{2}=0.\end{array}\end{eqnarray*}$For S = 1, and solving equations (87) and (88) together, the plane-wave solution can be expressed as:$\begin{eqnarray}{\theta }_{5}(x,t)=\displaystyle \frac{i\rho \sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)}}{\sqrt{2}}\times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{eqnarray}$$\begin{eqnarray}{\varphi }_{5}(x,t)=-\displaystyle \frac{c{\left|{\theta }_{5}(x,t)\right|}^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{5}(x,t)=\displaystyle \frac{c{\left|{\theta }_{5}(x,t)\right|}^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$

Set 6$\begin{eqnarray*}\begin{array}{rcl}{a}_{1} & = & 2{{\rm{i}}{b}}_{0}\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)},{b}_{1}=-2{b}_{0},\\ {a}_{0} & = & 0,\rho ={\rm{i}},{a}_{2}=-2{{\rm{i}}{b}}_{0}\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)}.\end{array}\end{eqnarray*}$For S = 1, and solving equations (87) and (88) together, we obtain a singular wave solution as follows:$\begin{eqnarray}\begin{array}{rcl}{\theta }_{6}(x,t) & = & -i\sqrt{\left(-\vartheta +c+1\right)(\vartheta +c+1)}\mathrm{csch}(\eta )\\ & & \times {{\rm{e}}}^{{\rm{i}}\left((c+2)\rho t+\rho x\right)},\end{array}\end{eqnarray}$$\begin{eqnarray}{\varphi }_{6}(x,t)=-\displaystyle \frac{c{\left|{\theta }_{6}(x,t)\right|}^{2}}{(1+\vartheta )(1+\vartheta +c)},\end{eqnarray}$$\begin{eqnarray}{\psi }_{6}(x,t)=\displaystyle \frac{c{\left|{\theta }_{6}(x,t)\right|}^{2}}{(\vartheta -1)(\vartheta -1-c)}.\end{eqnarray}$For all the above sets, η = −ct + ζ0 + x.

4. Results and discussion

In this section, a comparison is made between our outcomes and some existing results in published works. In this work, we utilized an analytical mathematical method to solve the CNLST equations. A variety of solutions were extracted, such as single (dark, singular), complex, and combined solitons as well as hyperbolic, plane wave, and trigonometric solutions. In published works, we have observed that Elboree [26] only discussed one solution for the CNLST system using He’s semi-inverse variational principle, whereas Ma et al [25] only presented two solutions through the Darboux transformation. Yong et al [27] introduced eight solutions for the CNLST system using the truncated Painleve expansion and the direct quadrature method. Abdelrahman et al [28] discussed exact soliton solutions and employed three methods. If we compare these methods and the three proposed methods in this paper, our methods are more effective at providing many solutions than those other methods. Consequently, these methods are proficient, adequate, and robust for handling other NLPDEs in mathematical physics and applied mathematics. We observe that the results presented in this study could be helpful in explaining the physical meaning of various NLPDEs arising in the different fields of nonlinear sciences. To aid clear and good understanding, the absolute physical behaviors of some of the reported solutions are exhibited through 3D, 2D and contour graphs using suitable parameter values. To visualize the dynamics of trigonometric, dark, dark–singular, dark, and complex combined soliton and plane wave solutions which appear in equations (20), (29), (53), (57), (69), (84), (90), and (105), we present figures 18, respectively. From the physical description of some solutions and our discussion of the results, we conclude that our modified mathematical methods presented here are fruitful tools for investigating further results of nonlinear wave problems in applied science.

Figure 1.

New window|Download| PPT slide
Figure 1.The plots of equation (20) are presented in 3D, 2D and contour wave profiles, respectively.


Figure 2.

New window|Download| PPT slide
Figure 2.The plots of equation (29) are presented in 3D, 2D and contour wave profiles, respectively.


Figure 3.

New window|Download| PPT slide
Figure 3.The plots of equation (53) are presented in 3D, 2D and contour wave profiles, respectively.


Figure 4.

New window|Download| PPT slide
Figure 4.The plots of equation (57) are presented in 3D, 2D and contour wave profiles, respectively.


Figure 5.

New window|Download| PPT slide
Figure 5.The plots of equation (69) are presented in 3D, 2D and contour wave profiles, respectively.


Figure 6.

New window|Download| PPT slide
Figure 6.The plots of equation (84) are presented in 3D, 2D and contour wave profiles, respectively.


Figure 7.

New window|Download| PPT slide
Figure 7.The plots of equation (90) are presented in 3D, 2D and contour wave profiles, respectively.


Figure 8.

New window|Download| PPT slide
Figure 8.The plots of equation (105) are presented in 3D, 2D and contour wave profiles, respectively.


5. Conclusion

In this study, three innovative integration norms have been effectively implemented for the CNLST equations that have emerged in several fields of applied sciences. Different types of solution, such as single (dark, singular), complex, and combined solitons as well as hyperbolic, plane-wave, and trigonometric solutions were successfully obtained. All the solutions obtained were verified by substituting them back into the original equation via the software package Mathematica. The graphical representations of some solutions were also depicted using 2D, 3D and contour profiles that displayed the physical behaviors of some of the solutions obtained. These diverse solutions demonstrate the power, capability, consistency, and effectiveness of these methods and can be used to solve many other NLPDEs in mathematical physics. We observe that the results presented in this study could be helpful in explaining the physical meanings of various nonlinear evolution equations that have arisen in the different fields of nonlinear sciences. For instance, hyperbolic functions appears in different areas such as the calculation of special relativity, the Langevin function for magnetic polarization, the gravitational potential of a cylinder, and the calculation of the Roche limit in the profile of a laminar jet [29]. The wave results obtained confirm the value of this research and also have significant applications in mathematics and physics. Hence, our techniques, fortified by symbolic computation, provide an active and potent mathematical implement for solving diverse interesting nonlinear wave problems.

Acknowledgments

The authors would like to acknowledge the financial support provided for this research via the National Natural Science Foundation of China (11771407-52071298), ZhongYuan Science and Technology Innovation Leadership Program (214200510010), and the MOST Innovation Methodproject (2019IM050400). They also thank the reviewers for their valuable reviews and kind suggestions.

Conflict of interest

The authors declare that there are no conflicts of interest.


Reference By original order
By published year
By cited within times
By Impact factor

Sulaiman T A 2020 Three-component coupled nonlinear Schrödinger equation: optical soliton and modulation instability analysis
Phys. Scr. 95 065201

DOI:10.1088/1402-4896/ab7c77 [Cited within: 1]

Bulut H Sulaiman T A Demirdag B 2018 Dynamics of soliton solutions in the chiral nonlinear Schrödinger equations
Nonlinear Dyn. 91 1985 1991

DOI:10.1007/s11071-017-3997-9

Savaissou N Gambo B Rezazadeh H Bekir A Doka S Y 2020 Exact optical solitons to the perturbed nonlinear Schrödinger equation with dual-power law of nonlinearity
Opt. Quant. Electron. 52 1 16

DOI:10.1007/s11082-020-02412-7

Yokus A Baskonus H M Sulaiman T A Bulut H 2018 Numerical simulations and solutions of the two component second order KdV evolutionary system
NMPDE 34 211 227



Sulaiman T A Yokus A Baskonus H M 2019 On the exact and numerical solutions to the coupled Boussinesq equation arising in ocean engineering
Indian J. Phys. 93 647 656

DOI:10.1007/s12648-018-1322-1

Osman M S Ghanbari B 2018 New optical solitary wave solutions of Fokas-Lenells equation in presence of perturbation terms by a novel approach
Optik 175 328 333

DOI:10.1016/j.ijleo.2018.08.007

Hosseini K Mirzazadeh M 2020 Soliton and other solutions to the (1 + 2)-dimensional chiral nonlinear Schrödinger equation
Commun. Theor. Phys. 72 125008

DOI:10.1088/1572-9494/abb87b

Rezazadeh H Kumar D Neirameh A Eslami M Mirzazadeh M 2020 Applications of three methods for obtaining optical soliton solutions for the Lakshmanan-Porsezian-Daniel model with Kerr law nonlinearity
Pramana 94 1 11

DOI:10.1007/s12043-019-1881-5

Hosseini K Sadri K Mirzazadeh M Chu Y M Ahmadian A Pansera B A Salahshour S 2021 A high-order nonlinear Schrödinger equation with the weak non-local nonlinearity and its optical solitons
Results Phys. 23 104035

DOI:10.1016/j.rinp.2021.104035 [Cited within: 1]

Ghanbari B Yusuf A Baleanu D Bayram M 2020 Families of exact solutions of Biswas-Milovic equation by an exponential rational function method
Tbil. Math. J. 13 39 65

DOI:10.32513/tbilisi/1593223219 [Cited within: 1]

Bilal M Hu W Ren J 2021 Different wave structures to the Chen-Lee-Liu equation of monomode fibers and its modulation instability analysis
Eur. Phys. J. Plus. 136 385

DOI:10.1140/epjp/s13360-021-01383-2

Jhangeer A Baskonus H M Yel G Gao W 2021 New exact solitary wave solutions, bifurcation analysis and first order conserved quantities of resonance nonlinear Shrödinger’s equation with Kerr law nonlinearity
J. King Saud Univ. Sci. 33 101180

DOI:10.1016/j.jksus.2020.09.007

Seadawy A R Rehman S U Younis M Rizvi S T R Althobaiti S Makhlouf M M 2021 Modulation instability analysis and longitudinal wave propagation in an elastic cylindrical rod modelled with Pochhammer-Chree equation
Phys. scr. 96 045202

DOI:10.1088/1402-4896/abdcf7

Rehman S U Seadawy A R Younis M Rizvi S T R Sulaiman T A Yusuf A 2020 Modulation instability analysis and optical solitons of the generalized model for description of propagation pulses in optical fiber with four non-linear terms
Mod. Phys. Lett. B 35 2150112

DOI:10.1142/S0217984921501128

Younas U Ren J 2021 Investigation of exact soliton solutions in magneto-optic waveguides and its stability analysis
Results Phys. 21 103816

DOI:10.1016/j.rinp.2021.103816

Rehman S U Ahmad J 2020 Modulation instability analysis and optical solitons in birefringent fibers to RKL equation without four wave mixing
Alex. Eng. J. 60 1339 1354

DOI:10.1016/j.aej.2020.10.055

Rezazadeh H Inc M Baleanu D 2020 New solitary wave solutions for variants of (3+1)-dimensional Wazwaz-Benjamin-Bona-Mahony equations
Front. Phys. 8 332

DOI:10.3389/fphy.2020.00332 [Cited within: 1]

Younis M Younas U Rehman S R Bilal M Waheed A 2017 Optical bright-dark and Gaussian soliton with third order dispersion
Optik 134 233 238

DOI:10.1016/j.ijleo.2017.01.053 [Cited within: 1]

Pinar Z Rezazadeh H Eslami M 2020 Generalized logistic equation method for Kerr law and dual power law Schrödinger equations
Opt. Quantum Electron. 52 1 16

DOI:10.1007/s11082-020-02611-2

Lu D Tariq K U Osman M S Baleanu D Younis M Khater M M A 2019 New analytical wave structures for the (3 + 1)-dimensional Kadomtsev-Petviashvili and the generalized Boussinesq models and their applications
Results Phys. 14 102491

DOI:10.1016/j.rinp.2019.102491

Gao W Yel G Baskonus H M Cattani C 2020 Complex solitons in the conformable (2 + 1)-dimensional Ablowitz-Kaup-Newell-Segur equation
Aims Math. 5 507 521

DOI:10.3934/math.2020034 [Cited within: 1]

Baskonus H M Cattani C Ciancio A 2019 Periodic, complex and kink-type solitons for the nonlinear model in microtubules
Appl. Sci. 21 34 45

[Cited within: 1]

Lu D Seadawy A R Asghar A 2018 Applications of exact traveling wave solutions of modified liouville and the symmetric regularized long wave equations via two new techniques
Results Phys. 9 1403 1410

DOI:10.1016/j.rinp.2018.04.039 [Cited within: 1]

Kudryashov N A 2012 One method for finding exact solutions of nonlinear differential equations
Commun. Nonlinear Sci. Numer. Simulat. 17 2248 2253

DOI:10.1016/j.cnsns.2011.10.016 [Cited within: 1]

Ma Y L Geng X G 2009 A coupled nonlinear Schrödinger type equation and its explicit solutions
Chaos Solitons Fractals 42 2949 2953

DOI:10.1016/j.chaos.2009.04.037 [Cited within: 2]

Elboree M K 2015 Deriving the soliton solutions for the nonlinear evolution equations by using He’s variational principle
Appl. Math. Model. 39 4196 4201

DOI:10.1016/j.apm.2014.11.053 [Cited within: 1]

Yong X Gao J Zhang Z 2011 Singularity analysis and explicit solutions of a new coupled nonlinear Schrödinger type equation
Commun. Nonlinear Sci. Numer. Simul. 16 2513 2518

DOI:10.1016/j.cnsns.2010.09.025 [Cited within: 1]

Abdelrahman M A E Hassan S Z Inc M 2020 The coupled nonlinear Schrödinger-type equations
Mod. Phys. Lett. B 34 2050078

DOI:10.1142/S0217984920500785 [Cited within: 1]

Weisstein E W 2002 Concise Encyclopedia of Mathematics 2nd ednNew YorkCRC Press
[Cited within: 1]

闂傚倸鍊烽懗鍫曞箠閹剧粯鍋ら柕濞炬櫅缁€澶愭煙閻戞ɑ鈷愰悗姘煼閺岋綁寮崒姘闁诲孩纰嶅畝鎼佸蓟濞戞ǚ鏋庣€广儱鎳庢慨搴ㄦ⒑鏉炴媽顔夐柡鍛█楠炲啰鎹勭悰鈩冾潔闁哄鐗冮弲娑氭暜閵娧呯=濞达絼绮欓崫铏圭磼鐠囪尙澧曢柣锝呭槻椤繄鎹勯崫鍕偓鍧楁⒑閸濆嫭鍌ㄩ柛銊ヮ煼瀹曪綁骞囬悧鍫㈠幗闂佺粯锚瀵爼骞栭幇顒夌唵鐟滃瞼鍒掑▎鎾虫槬闁靛繈鍊栭崵鍐煃閸濆嫬鈧悂鎯冮锔解拺闁告稑锕ユ径鍕煕閹炬潙鍝洪柟顔斤耿楠炲洭鎮ч崼姘闂備礁鎲¢幐鍡涘礃瑜嶉ˉ姘舵⒑濮瑰洤鐒洪柛銊ゅ嵆椤㈡岸顢橀悢渚锤闂佸憡绋戦敃銉х礊閸ャ劊浜滈柟鎵虫櫅閻忊晜顨ラ悙宸剶婵﹥妞藉畷妤呮偂鎼粹€承戦梻浣规偠閸ㄨ偐浜搁鍫澪﹂柟鎵閺呮悂鏌ㄩ悤鍌涘40%闂傚倸鍊风粈浣革耿鏉堚晛鍨濇い鏍仜缁€澶愭煛瀹ュ骸骞栭柛銊ュ€归幈銊ノ熼崸妤€鎽甸柣蹇撶箰鐎涒晠骞堥妸銉庣喖宕归鎯у缚闂佽绻愬ù姘椤忓牆钃熼柕濞垮劗濡插牓鏌ц箛锝呬簻妞ゅ骏鎷�
闂傚倸鍊峰ù鍥綖婢跺顩插ù鐘差儏缁€澶屸偓鍏夊亾闁逞屽墰閸掓帞鎷犲顔兼倯闂佹悶鍎崝宀勬儍椤愨懇鏀芥い鏃囶潡瑜版帒鏄ラ柡宥庡亗閻掑﹥銇勮箛鎾跺闁绘挻绋戦…璺ㄦ崉閻氭潙浼愰梺鍝勬閸犳劗鎹㈠☉娆忕窞婵☆垰鎼猾宥嗙節绾版ê澧查柟绋垮暱閻g兘骞掗幋鏃€鏂€闂佸綊鍋婇崜姘额敊閺囩偐鏀介柣鎰▕閸ょ喎鈹戦姘煎殶缂佽京鍋ら崺鈧い鎺戝閻撳繘鏌涢埄鍐炬當闁哄棴绲块埀顒冾潐濞测晝绱炴笟鈧妴浣糕槈閵忊€斥偓鐑芥煃鏉炵増顦峰瑙勬礀閳规垿顢欓惌顐簽婢规洟顢橀悩鍏哥瑝闂佸搫绋侀悘鎰版偡閹靛啿鐗氶梺鍛婃处閸嬪棝顢栭崟顒傜閻庣數枪瀛濋梺缁橆殔缁绘帒危閹版澘绫嶉柛顐g箘椤撴椽姊虹紒妯忣亪鎮樺璺虹畾闁挎繂顦伴埛鎺戙€掑顒佹悙濞存粍绻堥弻锛勪沪鐠囨彃顬嬪┑鐐叉閸ㄤ粙骞冨▎鎴斿亾閻㈢數銆婇柡瀣墵濮婅櫣绱掑Ο铏逛桓闁藉啴浜堕弻鐔兼偪椤栨瑥鎯堢紓浣介哺鐢€愁嚕椤曗偓閸┾偓妞ゆ帒瀚崑锟犳煥閺冨倸浜鹃柡鍡樼矌閹叉悂鎮ч崼婵堫儌閻庤鎸风欢姘跺蓟濞戔懇鈧箓骞嬪┑鍥╁蒋闂備礁鎲¢懝楣冨箠鎼淬劍绠掗梻浣稿悑缁佹挳寮插☉婧惧彺闂傚倷绶氶埀顒傚仜閼活垱鏅堕鐐粹拺闁兼亽鍎遍埛濂濆┑鐘垫暩閸嬬偛岣垮▎鎾宠Е閻庯綆鍠楅崵灞轿旈敐鍛殭缂佺姷鍠栭弻鐔煎箚閻楀牜妫勯梺璇茬箺濞呮洜鎹㈠┑瀣瀭妞ゆ劧绲介弳妤冪磽娴f彃浜炬繝銏e煐閸旀牠鎮¢悢鍏肩厓鐟滄粓宕滃▎鎰箚濞寸姴顑嗛悡鏇㈡煃閸濆嫬鈧煤閹绢喗鐓涢悘鐐跺Г閸h銇勯锝囩畵闁伙絿鍏樺畷鍫曞煛閸愨晜鐦掗梻鍌欐祰瀹曞灚鎱ㄩ弶鎳ㄦ椽濡堕崼娑楁睏闂佺粯鍔曢幖顐︽嚋鐟欏嫨浜滈柟鐑樺灥閳ь剙缍婂畷鎴濐潨閳ь剟寮婚弴鐔虹鐟滃秶鈧凹鍣e鎶芥偐缂佹ǚ鎷洪梺鍛婄☉閿曘倗绮幒鎾茬箚妞ゆ劧绲鹃ˉ鍫熶繆椤愩垺鍤囬柛鈺嬬節瀹曘劑顢欓幆褍鍙婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鍔曠欢鐐碘偓骞垮劚椤︿即鎮″▎鎾村€垫繛鎴炵憽缂傛艾顭胯閸撶喖寮婚悢鍏煎剬闁告縿鍎宠ⅵ婵°倗濮烽崑娑㈡煀閿濆棔绻嗛柣鎴f鎯熼梺闈涱檧婵″洦绂嶅畡鎵虫斀闁绘劖娼欓悘锔芥叏婵犲嫭鍤€妞ゎ厼鐏濋~婊堝焵椤掑嫮宓侀柛鎰╁壆閺冨牆宸濇い鏃囧Г閻濐偊鏌f惔鈥冲辅闁稿鎹囬弻娑㈠箛椤撶偛濮㈠┑鐐茬墢閸嬫挾鎹㈠☉姘e亾閻㈢櫥褰掝敁閹惧墎纾界€广儰绀佹禍楣冩⒒娓氣偓濞佳兾涘Δ鍛柈闁圭虎鍠栫粻鐘绘煏韫囨洖啸闁哄棗顑夐弻鈩冨緞鎼淬垻銆婇梺璇″櫙閹凤拷40%闂傚倸鍊风粈浣革耿鏉堚晛鍨濇い鏍仜缁€澶愭煛瀹ュ骸骞栭柛銊ュ€归幈銊ノ熼幐搴c€愰弶鈺傜箞濮婅櫣绮欓幐搴㈡嫳缂備浇顕х粔鐟扮暦閻㈠憡鏅濋柍褜鍓熷﹢渚€姊虹紒妯兼噧闁硅櫕鍔楃划鏃堫敆閸曨剛鍘梺绯曞墲椤ㄥ懘寮抽悢鍏肩厵鐎瑰嫭澹嗙粔鐑樸亜閵忊埗顏堝煘閹达箑鐐婄憸婊勫閸℃稒鈷掑ù锝呮啞閹牓鏌eΔ浣虹煉鐎规洘绮岄埥澶愬閳ュ厖鎴锋俊鐐€栭悧妤冪矙閹炬眹鈧懘鎮滈懞銉ヤ化婵炶揪绲介幗婊堟晬瀹ュ洨纾煎璺猴功娴犮垽妫佹径瀣瘈鐟滃繑鎱ㄩ幘顔肩柈妞ゆ牜鍋涚粻姘舵煕瀹€鈧崑鐐烘偂閵夛妇绠鹃柟瀵稿€戦崷顓涘亾濮樺崬顣肩紒缁樼洴閹剝鎯旈埥鍡楀Ψ缂傚倷绀侀崐鍝ョ矓瑜版帇鈧線寮撮姀鐙€娼婇梺缁樶缚閺佹瓕鈪�9闂傚倸鍊烽懗鍫曘€佹繝鍥ф槬闁哄稁鍓欑紞姗€姊绘笟鈧埀顒傚仜閼活垱鏅堕鈧弻娑欑節閸愨晛鈧劙鏌熼姘殻濠殿喒鍋撻梺闈涚墕閹虫劙藝椤愶附鈷戠紒顖涙礀婢у弶绻涢懠顒€鏋涢柟顕嗙節閸╋繝宕ㄩ瑙勫闂備礁鎲¢幐鍡涘礃瑜嶉ˉ姘舵⒑濮瑰洤鐒洪柛銊╀憾楠炴劙鎼归锛勭畾闁诲孩绋掕摫濠殿垱鎸抽幃宄扳枎韫囨搩浠奸梻鍌氬亞閸ㄨ泛顫忛搹瑙勫厹闁告侗鍨伴悧姘舵⒑缁嬪潡顎楃€规洦鍓熷﹢浣糕攽椤斿浠滈柛瀣崌閺岀喖顢欓妸銉︽悙闁绘劕锕弻宥夊传閸曨偅娈查梺璇″灲缂嶄礁顫忓ú顏勭閹艰揪绲哄Σ鍫ユ⒑閸忓吋銇熼柛銊ф暬婵$敻骞囬弶璺紲闂佺粯鍔樼亸娆撍囬锔解拺闁告繂瀚峰Σ瑙勩亜閹寸偟鎳囩€规洘绻堝畷銊р偓娑欋缚閸樻悂鎮楃憴鍕鞍闁告繂閰e畷鎰板Χ婢跺﹦鏌堥梺鍓插亖閸庢煡鎮¢弴鐘冲枑閹艰揪绲块惌娆撶叓閸ャ劎鈽夐柣鎺戠仛閵囧嫰骞嬮敐鍛Х闂佺ǹ绻愰張顒傛崲濞戙垹宸濇い鎰╁灩椤姊虹拠鈥崇仭婵☆偄鍟村顐﹀礃閳哄倸顎撶紓浣割儓濞夋洘绂掗銏♀拻濞达絽鎲¢崯鐐烘煟閵婏妇鐭嬮柟宄版嚇楠炴捇骞掑鍜佹婵犵數鍋犻幓顏嗙礊娓氣偓瀵煡鎳犻鍐ㄐ¢梺瑙勫劶婵倝鎮¢弴鐔剁箚闁靛牆瀚ˇ锕傛煙閸忓吋鍊愰柡灞界Х椤т線鏌涜箛鏃傘€掔紒顔肩墛閹峰懘宕烽褎閿ら梻浣告惈濞层劑宕伴幘璇茬厴鐎广儱顦粻鎶芥煙閹増顥夐柣鎺戠仛閵囧嫰骞嬪┑鍫滆檸闂佺ǹ锕ュΣ瀣磽閸屾艾鈧绮堟笟鈧鐢割敆閳ь剟鈥旈崘顔藉癄濠㈠厜鏅滈惄顖氱暦缁嬭鏃堝焵椤掑啰绠芥繝鐢靛仩閹活亞绱為埀顒佺箾閸滃啰绉€规洩缍侀崺鈧い鎺嶈兌缁犻箖鏌熺€电ǹ浠﹂柣鎾卞劤缁辨帡濡搁敂濮愪虎闂佺硶鏂侀崑鎾愁渻閵堝棗鐏﹂悗绗涘懐鐭堝ù鐓庣摠閻撶喐銇勮箛鎾村櫤閻忓骏绠撻弻鐔碱敊閼恒儯浠㈤梺杞扮劍閸旀瑥鐣烽崼鏇炵厸闁稿本绋戦崝姗€姊婚崒娆戭槮闁硅绻濋幊婵嬪礈瑜夐崑鎾愁潩閻撳骸鈷嬫繝纰夌磿閺佽鐣烽崼鏇ㄦ晢闁稿本姘ㄩ妶锕傛⒒娴e憡鍟為柛鏃€鐗為妵鎰板礃椤旂晫鍘愰梻渚囧墮缁夌敻鎮¤箛娑欑厱闁宠棄妫楅獮妤呮倵濮樼偓瀚�
相关话题/Dynamics exact soliton