Abstract In this paper, we mainly study the time-space fractional strain wave equation in microstructured solids. He’s variational method, combined with the two-scale transform are implemented to seek the solitary and periodic wave solutions of the time-space strain wave equation. The main advantage of the variational method is that it can reduce the order of the differential equation, thus simplifying the equation, making the solving process more intuitive and avoiding the tedious solving process. Finally, the numerical results are shown in the form of 3D and 2D graphs to prove the applicability and effectiveness of the method. The obtained results in this work are expected to shed a bright light on the study of fractional nonlinear partial differential equations in physics. Keywords:solitary wave solutions;periodic wave solutions;fractional strain wave equation;variational principle;He’s variational method
PDF (713KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite Cite this article Kang-Jia Wang. On the new exact traveling wave solutions of the time-space fractional strain wave equation in microstructured solids via the variational method. Communications in Theoretical Physics, 2021, 73(4): 045001- doi:10.1088/1572-9494/abdea1
1. Introduction
Nonlinear partial differential equations (NPDEs) play an important role in describing various natural phenomena arising in physics [1–3], chemistry [4, 5], biology medical [6, 7] and so on [8–11]. The theory of solitons is one of the most important topics and there have been many solutions available such as generalized hyperbolic-function method [12], asymptotic methods [13], exp(−φ(ξ)) method [14], Hirota bilinear method [15], Hirota method [16], sinh-Gordon function method [17] and so on [18–20]. In this paper, we mainly study the nonlinear strain wave equation in microstructured solids which is governed as [21, 22]:$\begin{eqnarray}\begin{array}{l}{\varphi }_{tt}-{\varphi }_{xx}-\kappa {\lambda }_{1}{\left({\varphi }^{2}\right)}_{xx}-\alpha {\lambda }_{2}{\varphi }_{txx}+\varepsilon {\lambda }_{3}{\varphi }_{xxxx}\\ \,-\,\left(\varepsilon {\lambda }_{4}-{\alpha }^{2}{\lambda }_{7}\right){\varphi }_{ttxx}+\alpha \varepsilon \left({\lambda }_{5}{\varphi }_{txxxx}+{\lambda }_{6}{\varphi }_{tttxx}\right)=0,\end{array}\end{eqnarray}$where $\kappa $ denotes elastic strains, $\varepsilon $ is the ratio between the microstructure size and the wavelength, $\alpha $ characterizes the influence of dissipation and ${\lambda }_{i}\left(i=1,2,\mathrm{...},5,6,7\right)$ are constants. The special case of $\alpha =0$ leads to the non dissipative form of the micro strain wave, which can be expressed as:$\begin{eqnarray}{\varphi }_{tt}-{\varphi }_{xx}-\kappa {\lambda }_{1}{\left({\varphi }^{2}\right)}_{xx}+\varepsilon {\lambda }_{3}{\varphi }_{xxxx}-\varepsilon {\lambda }_{4}{\varphi }_{ttxx}=0.\end{eqnarray}$
Recently, the fractional calculus and fractal calculus are the hot topics and have been widely used to model many complex problems involving in physics [23], filter [24–26], biological [27, 28], circuit [29, 30] and so on [31–33]. Inspired by recent research results on the fractional calculus, we extend the nonlinear strain wave equation into its time-space fractional form by applying the fractional calculus to equation (1.2) as:$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{{\partial }_{\hslash }^{2}}{\partial {t}^{2\eta }}\left(\varphi \right)-\displaystyle \frac{{\partial }_{\hslash }^{2}}{\partial {x}^{2\varsigma }}\left(\varphi \right)-\kappa {\lambda }_{1}\displaystyle \frac{{\partial }_{\hslash }^{2}}{\partial {x}^{2\varsigma }}\left({\varphi }^{2}\right)+\varepsilon {\lambda }_{3}\displaystyle \frac{{\partial }_{\hslash }^{4}}{\partial {x}^{4\varsigma }}\left(\varphi \right)\\ \,-\,\varepsilon {\lambda }_{4}\displaystyle \frac{{\partial }_{\hslash }^{2}}{\partial {t}^{2\eta }}\displaystyle \frac{{\partial }_{\hslash }^{2}}{\partial {x}^{2\varsigma }}\left(\varphi \right)=0.\end{array}\end{eqnarray}$
Among the above equation, $0\lt \eta \leqslant 1,$ $0\lt \varsigma \leqslant 1,$ $\tfrac{{\partial }_{\hslash }}{\partial {t}^{\eta }}$ and $\tfrac{{\partial }_{\hslash }}{\partial {x}^{\varsigma }}$ are the fractional derivatives with respect to $t$ and $x$ that defined as [34, 35]:$\begin{eqnarray}\displaystyle \frac{{\partial }_{\hslash }}{\partial {t}^{\eta }}\left(\phi \left(x,{t}_{0}\right)\right)={\rm{\Gamma }}\left(1+\eta \right)\mathop{\mathrm{lim}}\limits_{\begin{array}{l}t-{t}_{0}={\rm{\Delta }}t\\ {\rm{\Delta }}t\ne 0\end{array}}\displaystyle \frac{\varphi \left(x,t\right)-\varphi \left(x,{t}_{0}\right)}{{\left(t-{t}_{0}\right)}^{\eta }},\end{eqnarray}$$\begin{eqnarray}\displaystyle \frac{{\partial }_{\hslash }}{\partial {x}^{\varsigma }}\left(\phi \left({x}_{0},t\right)\right)={\rm{\Gamma }}\left(1+\varsigma \right)\mathop{\mathrm{lim}}\limits_{\begin{array}{l}x-{x}_{0}={\rm{\Delta }}x\\ {\rm{\Delta }}x\ne 0\end{array}}\displaystyle \frac{\varphi \left(x,t\right)-\varphi \left({x}_{0},t\right)}{{\left(x-{x}_{0}\right)}^{\varsigma }}.\end{eqnarray}$
For the special case $\eta =\varsigma =1,$ the fractional nonlinear strain wave equation of equation (1.3) converts into the classic strain wave equation as shown in equation (1.2).
2. The two-scale transform
The two-scale transform [36, 37], proposed by Ji-huan He, is a new transform method that has been successfully used to solve many fractional problems.
Suppose there is the following time-space fractional equation:$\begin{eqnarray}\displaystyle \frac{{\partial }_{\hslash }\varphi }{\partial {t}^{\eta }}+\displaystyle \frac{{\partial }_{\hslash }\varphi }{\partial {x}^{\varsigma }}+F\left(\varphi \right)=0.\end{eqnarray}$
The definitions of the fractional derivatives are given in equations (1.4) and (1.5).
We introduce the two-scale transforms as:$\begin{eqnarray}T={t}^{\eta },\end{eqnarray}$$\begin{eqnarray}X={x}^{\varsigma }.\end{eqnarray}$
Applying above transforms for equation (2.1), then equation (2.1) can be converted into its partner as:$\begin{eqnarray}\displaystyle \frac{\partial \varphi }{\partial T}+\displaystyle \frac{\partial \varphi }{\partial X}+F(\varphi )=0.\end{eqnarray}$
Thus equation (2.4) can be solved by many classical methods such as Homotopy perturbation method, variational iteration method, Taylor series method, Exp-function method and so on.
3. Variational formulation
Considering the following two-scale transforms:$\begin{eqnarray}T={t}^{\eta },\end{eqnarray}$$\begin{eqnarray}X={x}^{\varsigma }.\end{eqnarray}$
Then we can convert equation (1.3) into the following form:$\begin{eqnarray}{\varphi }_{TT}-{\varphi }_{XX}-\kappa {\lambda }_{1}{\left({\varphi }^{2}\right)}_{XX}+\varepsilon {\lambda }_{3}{\varphi }_{XXXX}-\varepsilon {\lambda }_{4}{\varphi }_{TTXX}=0.\end{eqnarray}$
Applying the following transformation for equation (3.3):$\begin{eqnarray}\varphi \left(X,T\right)=\varphi \left({\rm{\Xi }}\right),{\rm{\Xi }}=X-vT+{{\rm{\Xi }}}_{0}.\end{eqnarray}$
By bringing equation (3.4) into (3.3), it gives:$\begin{eqnarray}\begin{array}{l}\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right){\varphi }^{\left(4\right)}\left({\rm{\Xi }}\right)+\left({v}^{2}-1\right)\varphi ^{\prime\prime} \left({\rm{\Xi }}\right)\\ \,-\,2\kappa {\lambda }_{1}\left[{\left(\varphi ^{\prime} \left({\rm{\Xi }}\right)\right)}^{2}+\varphi \left({\rm{\Xi }}\right)\varphi ^{\prime\prime} \left({\rm{\Xi }}\right)\right]=0.\end{array}\end{eqnarray}$
Take a integration for above equation and neglect the integration constant, we have:$\begin{eqnarray}\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right){\varphi }^{\left(3\right)}\left({\rm{\Xi }}\right)+\left({v}^{2}-2\kappa {\lambda }_{1}\varphi \left({\rm{\Xi }}\right)-1\right)\varphi ^{\prime} \left({\rm{\Xi }}\right)=0.\end{eqnarray}$
Take the same operation for equation (3.6) yields:$\begin{eqnarray}\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right)\varphi ^{\prime\prime} \left({\rm{\Xi }}\right)-\kappa {\lambda }_{1}{\varphi }^{2}\left({\rm{\Xi }}\right)+\left({v}^{2}-1\right)\varphi \left({\rm{\Xi }}\right)=0.\end{eqnarray}$
Using the semi-inverse method [38–50], the variational formulation of equation (3.7) can be easily obtained as:$\begin{eqnarray}\begin{array}{l}J\left(\varphi \right)=\displaystyle \int \left\{-\displaystyle \frac{1}{2}\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right){\left(\varphi ^{\prime} \right)}^{2}-\displaystyle \frac{1}{3}\kappa {\lambda }_{1}{\varphi }^{3}\right.\\ \,\,\,+\,\left.\displaystyle \frac{1}{2}\left({v}^{2}-1\right){\varphi }^{2}\right\}{\rm{d}}{\rm{\Xi }},\end{array}\end{eqnarray}$which can be re-written as:$\begin{eqnarray}J\left(\varphi \right)=\displaystyle \int \left\{\psi {\left(\varphi ^{\prime} \right)}^{2}-\delta {\varphi }^{3}+\sigma {\varphi }^{2}\right\}{\rm{d}}{\rm{\Xi }},\end{eqnarray}$where $\psi =-\tfrac{1}{2}\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right),$ $\delta =\tfrac{1}{3}\kappa {\lambda }_{1},$ $\sigma =\tfrac{1}{2}\left({v}^{2}-1\right).$
By comparing equations (3.9) and (3.7), it can be seen that the order of the differential equation has been reduced by the variational method.
4. Solitary wave solutions
In this section, we aim to seek the solitary solution of equation (1.3) by the variational theory. According to He’s variational method [51–53], we suppose the solution of equation (3.7) with the following form:$\begin{eqnarray}\varphi =p\text{sec}{{\rm{h}}}^{2}\left(q{\rm{\Xi }}\right),q\gt 0,\end{eqnarray}$where $p$ and $q$ are unknown constants that can be determined later. Now we substitute equation (4.1) into (3.9), it yields:$\begin{eqnarray}\begin{array}{l}J\left(p,q\right)=\displaystyle {\int }_{0}^{\infty }\left\{\psi {\left(\varphi ^{\prime} \right)}^{2}-\delta {\varphi }^{3}+\sigma {\varphi }^{2}\right\}{\rm{d}}{\rm{\Xi }}\\ \,\,\,\,=\,\displaystyle {\int }_{0}^{\infty }\left\{4\psi {p}^{2}{q}^{2}\text{sec}{{\rm{h}}}^{4}(q{\rm{\Xi }}){\tanh }^{2}(q{\rm{\Xi }})\right.\\ \,\,\,\,-\,\left.\delta {p}^{3}\text{sec}{{\rm{h}}}^{6}(q{\rm{\Xi }})+\sigma {p}^{2}\text{sec}{{\rm{h}}}^{4}(q{\rm{\Xi }})\right\}{\rm{d}}{\rm{\Xi }}\\ \,\,\,\,=\,\displaystyle {\int }_{0}^{\infty }\left\{4\psi {p}^{2}q\text{sec}{{\rm{h}}}^{4}(\omega ){\tanh }^{2}(\omega )\right.\\ \,\,\,\,-\,\left.\displaystyle \frac{\delta {p}^{3}}{q}\text{sec}{{\rm{h}}}^{6}(\omega )+\displaystyle \frac{\sigma {p}^{2}}{q}\text{sec}{{\rm{h}}}^{4}(\omega )\right\}{\rm{d}}\omega \\ \,\,\,\,=\,4\psi {p}^{2}{q}^{2}\displaystyle {\int }_{0}^{\infty }\text{sec}{{\rm{h}}}^{4}(\omega ){\tanh }^{2}(\omega ){\rm{d}}\omega \\ \,\,\,\,-\,\displaystyle \frac{\delta {p}^{3}}{q}\displaystyle {\int }_{0}^{\infty }\text{sec}{{\rm{h}}}^{6}(\omega ){\rm{d}}\omega +\displaystyle \frac{\sigma {p}^{2}}{q}\displaystyle {\int }_{0}^{\infty }\text{sec}{{\rm{h}}}^{4}(\omega ){\rm{d}}\omega \\ \,\,\,\,=\,\displaystyle \frac{2{p}^{2}\left(5\sigma -4\delta p+4\psi {q}^{2}\right)}{15q}.\end{array}\end{eqnarray}$
On basis of He’s variational method [51–53], there are:$\begin{eqnarray}\displaystyle \frac{\partial J}{\partial p}=0,\end{eqnarray}$$\begin{eqnarray}\displaystyle \frac{\partial J}{\partial q}=0.\end{eqnarray}$
The following results can be obtained by calculating equations (4.3) and (4.4):$\begin{eqnarray}\displaystyle \frac{4p\left(5\sigma -6\delta p+4\psi {q}^{2}\right)}{15q}=0,\end{eqnarray}$$\begin{eqnarray}\displaystyle \frac{2{p}^{2}\left(-5\sigma +4\delta p+4\psi {q}^{2}\right)}{15{q}^{2}}=0,\end{eqnarray}$where$\begin{eqnarray}\psi =-\displaystyle \frac{1}{2}\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right),\delta =\displaystyle \frac{1}{3}\kappa {\lambda }_{1},\sigma =\displaystyle \frac{1}{2}\left({v}^{2}-1\right).\end{eqnarray}$
Solving equations (4.5) and (4.6), we have:$\begin{eqnarray}p=\displaystyle \frac{\sigma }{\delta },\end{eqnarray}$$\begin{eqnarray}q=\displaystyle \frac{1}{2}\sqrt{\displaystyle \frac{\sigma }{\psi }}.\end{eqnarray}$
Substituting equation (4.7) into the above formulas, the unknown constants $p$ and $q$ can be determined as:$\begin{eqnarray}p=\displaystyle \frac{3\left({v}^{2}-1\right)}{\kappa {\lambda }_{1}},\end{eqnarray}$$\begin{eqnarray}q=\displaystyle \frac{1}{2}\sqrt{\displaystyle \frac{{v}^{2}-1}{\varepsilon \left({\lambda }_{4}{v}^{2}-{\lambda }_{3}\right)}}.\end{eqnarray}$
With this, the solution of equation (3.7) can be obtained as:$\begin{eqnarray}\varphi \left({\rm{\Xi }}\right)=\displaystyle \frac{3\left({v}^{2}-1\right)}{\kappa {\lambda }_{1}}\text{sec}{{\rm{h}}}^{2}\left(\displaystyle \frac{1}{2}\sqrt{\displaystyle \frac{{v}^{2}-1}{\varepsilon \left({\lambda }_{4}{v}^{2}-{\lambda }_{3}\right)}}{\rm{\Xi }}\right).\end{eqnarray}$
Then we can get the solitary wave solution of equation (3.3) via equation (3.4) as:$\begin{eqnarray}\begin{array}{l}\varphi \left(X,T\right)=\displaystyle \frac{3\left({v}^{2}-1\right)}{\kappa {\lambda }_{1}}\text{sec}{{\rm{h}}}^{2}\left(\displaystyle \frac{1}{2}\sqrt{\displaystyle \frac{{v}^{2}-1}{\varepsilon \left({\lambda }_{4}{v}^{2}-{\lambda }_{3}\right)}}\right.\\ \,\,\,\,\,\times \,\left.\left(X-vT+{{\rm{\Xi }}}_{0}\right)\right).\end{array}\end{eqnarray}$
Thus the solitary solution of equation (1.3) can be obtained by using the two-scale transforms of equations (3.1) and (3.2) as:$\begin{eqnarray}\begin{array}{l}\varphi \left(x,t\right)=\displaystyle \frac{3\left({v}^{2}-1\right)}{\kappa {\lambda }_{1}}\text{sec}{{\rm{h}}}^{2}\left(\displaystyle \frac{1}{2}\sqrt{\displaystyle \frac{{v}^{2}-1}{\varepsilon \left({\lambda }_{4}{v}^{2}-{\lambda }_{3}\right)}}\right.\\ \,\,\,\,\times \,\left.\left({x}^{\varsigma }-v{t}^{\eta }+{{\rm{\Xi }}}_{0}\right)\right).\end{array}\end{eqnarray}$When $\eta =\varsigma =1,$ the above solution becomes the solitary wave solution of the classic strain wave equation as shown in equation (1.2).
It must be pointed out that we can obtain other soliton solutions by setting $\varphi \left({\rm{\Xi }}\right)=p\csc {\rm{h}}\left(q{\rm{\Xi }}\right),$ $\varphi \left({\rm{\Xi }}\right)=p\,\tanh \left(q{\rm{\Xi }}\right)$ and $\varphi \left({\rm{\Xi }}\right)=p\,\coth \left(q{\rm{\Xi }}\right)$ using the same method.
5. Periodic wave solutions
In this section, we will try to obtain the periodic wave solution of equation (1.3). In the light of He’s variational method [54–56], the periodic solution of equation (3.7) is assumed to take the form as:$\begin{eqnarray}\varphi \left({\rm{\Xi }}\right)={\rm{\Lambda }}\,\cos \left(\varpi {\rm{\Xi }}\right),\varpi \gt 0,\end{eqnarray}$
Therefore, we can get the periodic wave solution of equation (3.3) via equation (3.4) as:$\begin{eqnarray}\begin{array}{l}\varphi \left(X,T\right)={\rm{\Lambda }}\,\cos \left(\sqrt{-\displaystyle \frac{8{\rm{\Lambda }}\kappa {\lambda }_{1}}{3\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right)\pi }+\displaystyle \frac{\left({v}^{2}-1\right)}{\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right)}}\right.\\ \,\,\,\,\,\times \,\left.\left(X-vT+{{\rm{\Xi }}}_{0}\right)\right).\end{array}\end{eqnarray}$
With the help of the the two-scale transforms of equations (3.1) and (3.2), the periodic wave solution of equation (1.3) can be approximated as:$\begin{eqnarray}\begin{array}{l}\phi \left(x,t\right)={\rm{\Lambda }}\,\cos \left(\sqrt{-\displaystyle \frac{8{\rm{\Lambda }}\kappa {\lambda }_{1}}{3\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right)\pi }+\displaystyle \frac{\left({v}^{2}-1\right)}{\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right)}}\right.\\ \,\,\,\times \,\left.\left({x}^{\varsigma }-v{t}^{\eta }+{{\rm{\Xi }}}_{0}\right)\right),\end{array}\end{eqnarray}$which is the exact periodic wave solution of the fractional strain wave equation in microstructured solids in equation (1.3).
When $\eta =\varsigma =1,$ equation (5.9) becomes the periodic wave solution of the classic strain wave equation as shown in equation (1.2).
It must be noted that we can obtain another periodic wave solution by assuming $\varphi \left({\rm{\Xi }}\right)={\rm{\Lambda }}\,\sin \left(\varpi {\rm{\Xi }}\right)$ via the same method.
6. One example
In this section, we use an example to illustrate the effectiveness and reliability of the proposed method. Here we set ${\lambda }_{1}=1,$ ${\lambda }_{3}=2,$ ${\lambda }_{4}=1,$ $\kappa =2,$ $\varepsilon =1,$ $v=2,$ then equation (1.3) can be written as:$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{{\partial }_{\hslash }^{2}}{\partial {t}^{2\eta }}\left(\varphi \right)-\displaystyle \frac{{\partial }_{\hslash }^{2}}{\partial {x}^{2\varsigma }}\left(\varphi \right)-2\displaystyle \frac{{\partial }_{\hslash }^{2}}{\partial {x}^{2\varsigma }}\left({\varphi }^{2}\right)+2\displaystyle \frac{{\partial }_{\hslash }^{4}}{\partial {x}^{4\varsigma }}\left(\varphi \right)\\ \,-\,\displaystyle \frac{{\partial }_{\hslash }^{2}}{\partial {t}^{2\eta }}\displaystyle \frac{{\partial }_{\hslash }^{2}}{\partial {x}^{2\varsigma }}\left(\varphi \right)=0.\end{array}\end{eqnarray}$
6.1. The solitary wave solution
According to equation (4.14), we can get the solitary wave solution of equation (6.1) as:$\begin{eqnarray}\varphi \left(x,t\right)=\displaystyle \frac{9}{2}\text{sec}{{\rm{h}}}^{2}\left(\displaystyle \frac{1}{2}\sqrt{\displaystyle \frac{3}{2}}\left({x}^{\varsigma }-2{t}^{\eta }+{{\rm{\Xi }}}_{0}\right)\right).\end{eqnarray}$
Then we plot the behavior of equation (6.2) with different fractional orders of $\eta $ and $\varsigma $ in figure 1.
Figure 1.
New window|Download| PPT slide Figure 1.The behavior of equation (6.2) with different fractional orders $\eta $ and $\varsigma $ at ${{\rm{\Xi }}}_{0}=4$ in the form of 3D and 2D contours.
Form the 3D and 2D plots of equation (6.2) with different fractional orders $\eta $ and $\varsigma ,$ it can be found that the smaller the fractional orders are, the slower the solitary wave changes. In addition, when the $\eta \gg \varsigma ,$ the peak of solitary wave tends to be parallel to x-direction. On the contrary, it tends to the vertical x-direction. When $\eta =\varsigma =1,$ the plots in figures 1(i)–(j) are perfect bright solitary waves, which are the solitary waves of the classic strain wave equation.
6.2. The periodic wave solution
For ${\rm{\Lambda }}=4,$ the periodic wave solution of of equation (6.1) can be obtained by equation (5.9) as:$\begin{eqnarray}\varphi \left(x,t\right)=4\,\cos \left(\sqrt{\displaystyle \frac{64-9\pi }{6\pi }}\left({x}^{\varsigma }-2{t}^{\eta }+{{\rm{\Xi }}}_{0}\right)\right).\end{eqnarray}$
Then we plot the behaviors of equation (6.3) with different fractional orders of $\eta $ and $\varsigma $ in figure 2.
Figure 2.
New window|Download| PPT slide Figure 2.The behaviors of equation (6.3) with different fractional orders $\eta $ and $\varsigma $ at ${{\rm{\Xi }}}_{0}=4$ in the form of 3D and 2D contours.
Figure 2 presents the periodic waves obtained by equation (6.3), we can observe that when $\eta \lt 1$ and $\varsigma \lt 1,$ the contours are kinky periodic waves. And the smaller the fractional orders are, the larger the period is. Besides, when the $\eta \gt $ $\varsigma ,$ the propagation direction of periodic wave tends to be perpendicular to x-direction. On the contrary, it tends to be parallel to x-direction. When $\eta =\varsigma =1,$ the plots in figures 2(k), (l) are perfect periodic waves, which are the periodic waves of the classic strain wave equation.
7. Conclusion
In this paper, He’s variational method together with the two-scale transform are used to find the solitary and periodic wave solutions of the time-space fractional strain wave equation in microstructured solids. The main advantage of variational approach is that it can reduce the order of differential equation and make the equation more simple. One example is given to verify the applicability and effectiveness of the method through the 3D and 2D contours. It shows that the variational method is simple and straightforward, and can avoid the tedious calculation process, which is expected to open some new perspectives towards the study of fractional NPDEs arsing in physics.
Acknowledgments
This work is supported by Program of Henan Polytechnic University (No. B2018-40), Innovative Scientists and Technicians Team of Henan Provincial High Education (21IRTSTHN016) and the Fundamental Research Funds for the Universities of Henan Province.
KhaterM M AAttiaR A MParkCLuD2020On the numerical investigation of the interaction in plasma between (high & low) frequency of (Langmuir & ion–acoustic) waves 103317 [Cited within: 1]
WangK J2021A simple approach for the fractal riccati differential equation 7 177181
KbulutAKaplanMTascanF2016Conservation laws and exact solutions of Phi-Four (Phi-4) equation via the (G/G,1/G)-expansion method 71 439444 DOI:10.1515/zna-2016-0010 [Cited within: 1]
JananiMDevadharshiniSHariharanG2019Analytical expressions of amperometric enzyme kinetics pertaining to the substrate concentration using wavelets 57 11911200 DOI:10.1007/s10910-019-01017-0 [Cited within: 1]
KhaterM M AAttiaR A MAbdel-AtyA-HAlharbiWLuD2020Abundant analytical and numerical solutions of the fractional microbiological densities model in bacteria cell as a result of diffusion mechanisms 136 109824 DOI:10.1016/j.chaos.2020.109824 [Cited within: 1]
BaleanuDMohammadiHRezapourS2020Analysis of the model of HIV-1 infection of CD4+T-cell with a new approach of fractional derivative 117 DOI:10.1186/s13662-020-02544-w [Cited within: 1]
KhaterM M Aet al. 2020Novel soliton waves of two fluid nonlinear evolutions models in the view of computational scheme 34 2050096 DOI:10.1142/S0217979220500964 [Cited within: 1]
WangK-L2020A novel Perspective for the fractal Schrodinger equation
WazwazA-M2008The Hirota’s bilinear method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Kadomtsev-Petviashvili equation 200 160166 DOI:10.1016/j.amc.2007.11.001 [Cited within: 1]
LixinM A2014The multi-soliton solutions to The KdV equation by Hirota Method 8 3035 [Cited within: 1]
YokusASulaimanT AGulluogluM TBulutH2018Stability analysis, numerical and exact solutions of the (1+1)-dimensional NDMBBM equation 22 01064 DOI:10.1051/itmconf/20182201064 [Cited within: 1]
SeadawyA R2016Three-dimensional nonlinear modified Zakharov-Kuznetsov equation of ion-acoustic waves in a magnetized plasma 71 201212 DOI:10.1016/j.camwa.2015.11.006 [Cited within: 1]
SeadawyA R2018Three-dimensional weakly nonlinear shallow water waves regime and its traveling wave solutions 15 1850017-1-185001712 DOI:10.1142/S0219876218500172
SilambarasanRBaskonusH MBulutH2019Jacobi elliptic function solutions of the double dispersive equation in the Murnaghan’s rod 134 125 DOI:10.1140/epjp/i2019-12541-2 [Cited within: 1]
KumarSKumarAWazwazA M2020New exact solitary wave solutions of the strain wave equation in microstructured solids via the generalized exponential rational function method 135 117 DOI:10.1140/epjp/s13360-020-00883-x [Cited within: 1]
KhaterM M Aet al. 2020Abundant analytical and numerical solutions of the fractional microbiological densities model in bacteria cell as a result of diffusion mechanisms 136 109824 DOI:10.1016/j.chaos.2020.109824 [Cited within: 1]
WangK Jet al. 2020The transient analysis for zero-input response of fractal RC circuit based on local fractional derivative 59 46694675 DOI:10.1016/j.aej.2020.08.024 [Cited within: 1]
LiuJ-GYangX-JFengY-Y2019On integrability of the time fractional nonlinear heat conduction equation 144 190198 DOI:10.1016/j.geomphys.2019.06.004
SunWLiuQ2020Hadamard type local fractional integral inequalities for generalized harmonically convex functions and applications 43 57765787 DOI:10.1002/mma.6319 [Cited within: 1]
HeJ-H1997Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics 14 2328 DOI:10.1515/TJJ.1997.14.1.23 [Cited within: 1]
HeJ-H1998A family of variational principles for compressible rotational blade-to-blade flow using semi-inverse method 15 95100 DOI:10.1515/TJJ.1998.15.2.95
WangK L2020Variational principle for nonlinear oscillator arising in a fractal nano/microelectromechanical system
HeJ H2020Variational principle for the generalized KdV-burgers equation with fractal derivatives for shallow water waves 6 735740
WangK J2020A variational principle for the (3+1)-dimensional extended quantum Zakharov-Kuznetsov equation in plasma physics 132 44002 DOI:10.1209/0295-5075/132/44002
WangK JWangG D2021Periodic solution of the (2+1)-dimensional nonlinear electrical transmission line equation via variational method 20 103666 DOI:10.1016/j.rinp.2020.103666
LeW K2020A novel approach for fractal Burgers-BBM equation and its variational principle
ElboreeM K2020Soliton solutions for some nonlinear partial differential equations in mathematical physics using He’s Variational method 21 147158 DOI:10.1515/ijnsns-2018-0188
WangK JWangG D2021Solitary and periodic wave solutions of the generalized fourth order boussinesq equation via He’s variational methods