删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

On the new exact traveling wave solutions of the time-space fractional strain wave equation in micro

本站小编 Free考研考试/2022-01-02

Kang-Jia Wang,School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454003, China

Received:2020-11-21Revised:2021-01-21Accepted:2021-01-22Online:2021-02-16


Abstract
In this paper, we mainly study the time-space fractional strain wave equation in microstructured solids. He’s variational method, combined with the two-scale transform are implemented to seek the solitary and periodic wave solutions of the time-space strain wave equation. The main advantage of the variational method is that it can reduce the order of the differential equation, thus simplifying the equation, making the solving process more intuitive and avoiding the tedious solving process. Finally, the numerical results are shown in the form of 3D and 2D graphs to prove the applicability and effectiveness of the method. The obtained results in this work are expected to shed a bright light on the study of fractional nonlinear partial differential equations in physics.
Keywords: solitary wave solutions;periodic wave solutions;fractional strain wave equation;variational principle;He’s variational method


PDF (713KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Kang-Jia Wang. On the new exact traveling wave solutions of the time-space fractional strain wave equation in microstructured solids via the variational method. Communications in Theoretical Physics, 2021, 73(4): 045001- doi:10.1088/1572-9494/abdea1

1. Introduction

Nonlinear partial differential equations (NPDEs) play an important role in describing various natural phenomena arising in physics [13], chemistry [4, 5], biology medical [6, 7] and so on [811]. The theory of solitons is one of the most important topics and there have been many solutions available such as generalized hyperbolic-function method [12], asymptotic methods [13], exp(−φ(ξ)) method [14], Hirota bilinear method [15], Hirota method [16], sinh-Gordon function method [17] and so on [1820]. In this paper, we mainly study the nonlinear strain wave equation in microstructured solids which is governed as [21, 22]:$\begin{eqnarray}\begin{array}{l}{\varphi }_{tt}-{\varphi }_{xx}-\kappa {\lambda }_{1}{\left({\varphi }^{2}\right)}_{xx}-\alpha {\lambda }_{2}{\varphi }_{txx}+\varepsilon {\lambda }_{3}{\varphi }_{xxxx}\\ \,-\,\left(\varepsilon {\lambda }_{4}-{\alpha }^{2}{\lambda }_{7}\right){\varphi }_{ttxx}+\alpha \varepsilon \left({\lambda }_{5}{\varphi }_{txxxx}+{\lambda }_{6}{\varphi }_{tttxx}\right)=0,\end{array}\end{eqnarray}$where $\kappa $ denotes elastic strains, $\varepsilon $ is the ratio between the microstructure size and the wavelength, $\alpha $ characterizes the influence of dissipation and ${\lambda }_{i}\left(i=1,2,\mathrm{...},5,6,7\right)$ are constants. The special case of $\alpha =0$ leads to the non dissipative form of the micro strain wave, which can be expressed as:$\begin{eqnarray}{\varphi }_{tt}-{\varphi }_{xx}-\kappa {\lambda }_{1}{\left({\varphi }^{2}\right)}_{xx}+\varepsilon {\lambda }_{3}{\varphi }_{xxxx}-\varepsilon {\lambda }_{4}{\varphi }_{ttxx}=0.\end{eqnarray}$

Recently, the fractional calculus and fractal calculus are the hot topics and have been widely used to model many complex problems involving in physics [23], filter [2426], biological [27, 28], circuit [29, 30] and so on [3133]. Inspired by recent research results on the fractional calculus, we extend the nonlinear strain wave equation into its time-space fractional form by applying the fractional calculus to equation (1.2) as:$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{{\partial }_{\hslash }^{2}}{\partial {t}^{2\eta }}\left(\varphi \right)-\displaystyle \frac{{\partial }_{\hslash }^{2}}{\partial {x}^{2\varsigma }}\left(\varphi \right)-\kappa {\lambda }_{1}\displaystyle \frac{{\partial }_{\hslash }^{2}}{\partial {x}^{2\varsigma }}\left({\varphi }^{2}\right)+\varepsilon {\lambda }_{3}\displaystyle \frac{{\partial }_{\hslash }^{4}}{\partial {x}^{4\varsigma }}\left(\varphi \right)\\ \,-\,\varepsilon {\lambda }_{4}\displaystyle \frac{{\partial }_{\hslash }^{2}}{\partial {t}^{2\eta }}\displaystyle \frac{{\partial }_{\hslash }^{2}}{\partial {x}^{2\varsigma }}\left(\varphi \right)=0.\end{array}\end{eqnarray}$

Among the above equation, $0\lt \eta \leqslant 1,$ $0\lt \varsigma \leqslant 1,$ $\tfrac{{\partial }_{\hslash }}{\partial {t}^{\eta }}$ and $\tfrac{{\partial }_{\hslash }}{\partial {x}^{\varsigma }}$ are the fractional derivatives with respect to $t$ and $x$ that defined as [34, 35]:$\begin{eqnarray}\displaystyle \frac{{\partial }_{\hslash }}{\partial {t}^{\eta }}\left(\phi \left(x,{t}_{0}\right)\right)={\rm{\Gamma }}\left(1+\eta \right)\mathop{\mathrm{lim}}\limits_{\begin{array}{l}t-{t}_{0}={\rm{\Delta }}t\\ {\rm{\Delta }}t\ne 0\end{array}}\displaystyle \frac{\varphi \left(x,t\right)-\varphi \left(x,{t}_{0}\right)}{{\left(t-{t}_{0}\right)}^{\eta }},\end{eqnarray}$$\begin{eqnarray}\displaystyle \frac{{\partial }_{\hslash }}{\partial {x}^{\varsigma }}\left(\phi \left({x}_{0},t\right)\right)={\rm{\Gamma }}\left(1+\varsigma \right)\mathop{\mathrm{lim}}\limits_{\begin{array}{l}x-{x}_{0}={\rm{\Delta }}x\\ {\rm{\Delta }}x\ne 0\end{array}}\displaystyle \frac{\varphi \left(x,t\right)-\varphi \left({x}_{0},t\right)}{{\left(x-{x}_{0}\right)}^{\varsigma }}.\end{eqnarray}$

And the following chain rules are given:$\begin{eqnarray}\displaystyle \frac{{\partial }_{\hslash }^{2}}{\partial {t}^{2\eta }}=\displaystyle \frac{{\partial }_{\hslash }}{\partial {t}^{\eta }}\displaystyle \frac{{\partial }_{\hslash }}{\partial {t}^{\eta }},\end{eqnarray}$$\begin{eqnarray}\displaystyle \frac{{\partial }_{\hslash }^{2}}{\partial {x}^{2\varsigma }}=\displaystyle \frac{{\partial }_{\hslash }}{\partial {x}^{\varsigma }}\displaystyle \frac{{\partial }_{\hslash }}{\partial {x}^{\varsigma }},\end{eqnarray}$$\begin{eqnarray}\displaystyle \frac{{\partial }_{\hslash }}{\partial {x}^{\varsigma }}\displaystyle \frac{{\partial }_{\hslash }^{2}}{\partial {t}^{2\eta }}=\displaystyle \frac{{\partial }_{\hslash }}{\partial {x}^{\varsigma }}\displaystyle \frac{{\partial }_{\hslash }}{\partial {t}^{\eta }}\displaystyle \frac{{\partial }_{\hslash }}{\partial {t}^{\eta }}.\end{eqnarray}$

For the special case $\eta =\varsigma =1,$ the fractional nonlinear strain wave equation of equation (1.3) converts into the classic strain wave equation as shown in equation (1.2).

2. The two-scale transform

The two-scale transform [36, 37], proposed by Ji-huan He, is a new transform method that has been successfully used to solve many fractional problems.

Suppose there is the following time-space fractional equation:$\begin{eqnarray}\displaystyle \frac{{\partial }_{\hslash }\varphi }{\partial {t}^{\eta }}+\displaystyle \frac{{\partial }_{\hslash }\varphi }{\partial {x}^{\varsigma }}+F\left(\varphi \right)=0.\end{eqnarray}$

The definitions of the fractional derivatives are given in equations (1.4) and (1.5).

We introduce the two-scale transforms as:$\begin{eqnarray}T={t}^{\eta },\end{eqnarray}$$\begin{eqnarray}X={x}^{\varsigma }.\end{eqnarray}$

Applying above transforms for equation (2.1), then equation (2.1) can be converted into its partner as:$\begin{eqnarray}\displaystyle \frac{\partial \varphi }{\partial T}+\displaystyle \frac{\partial \varphi }{\partial X}+F(\varphi )=0.\end{eqnarray}$

Thus equation (2.4) can be solved by many classical methods such as Homotopy perturbation method, variational iteration method, Taylor series method, Exp-function method and so on.

3. Variational formulation

Considering the following two-scale transforms:$\begin{eqnarray}T={t}^{\eta },\end{eqnarray}$$\begin{eqnarray}X={x}^{\varsigma }.\end{eqnarray}$

Then we can convert equation (1.3) into the following form:$\begin{eqnarray}{\varphi }_{TT}-{\varphi }_{XX}-\kappa {\lambda }_{1}{\left({\varphi }^{2}\right)}_{XX}+\varepsilon {\lambda }_{3}{\varphi }_{XXXX}-\varepsilon {\lambda }_{4}{\varphi }_{TTXX}=0.\end{eqnarray}$

Applying the following transformation for equation (3.3):$\begin{eqnarray}\varphi \left(X,T\right)=\varphi \left({\rm{\Xi }}\right),{\rm{\Xi }}=X-vT+{{\rm{\Xi }}}_{0}.\end{eqnarray}$

By bringing equation (3.4) into (3.3), it gives:$\begin{eqnarray}\begin{array}{l}\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right){\varphi }^{\left(4\right)}\left({\rm{\Xi }}\right)+\left({v}^{2}-1\right)\varphi ^{\prime\prime} \left({\rm{\Xi }}\right)\\ \,-\,2\kappa {\lambda }_{1}\left[{\left(\varphi ^{\prime} \left({\rm{\Xi }}\right)\right)}^{2}+\varphi \left({\rm{\Xi }}\right)\varphi ^{\prime\prime} \left({\rm{\Xi }}\right)\right]=0.\end{array}\end{eqnarray}$

Take a integration for above equation and neglect the integration constant, we have:$\begin{eqnarray}\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right){\varphi }^{\left(3\right)}\left({\rm{\Xi }}\right)+\left({v}^{2}-2\kappa {\lambda }_{1}\varphi \left({\rm{\Xi }}\right)-1\right)\varphi ^{\prime} \left({\rm{\Xi }}\right)=0.\end{eqnarray}$

Take the same operation for equation (3.6) yields:$\begin{eqnarray}\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right)\varphi ^{\prime\prime} \left({\rm{\Xi }}\right)-\kappa {\lambda }_{1}{\varphi }^{2}\left({\rm{\Xi }}\right)+\left({v}^{2}-1\right)\varphi \left({\rm{\Xi }}\right)=0.\end{eqnarray}$

Using the semi-inverse method [3850], the variational formulation of equation (3.7) can be easily obtained as:$\begin{eqnarray}\begin{array}{l}J\left(\varphi \right)=\displaystyle \int \left\{-\displaystyle \frac{1}{2}\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right){\left(\varphi ^{\prime} \right)}^{2}-\displaystyle \frac{1}{3}\kappa {\lambda }_{1}{\varphi }^{3}\right.\\ \,\,\,+\,\left.\displaystyle \frac{1}{2}\left({v}^{2}-1\right){\varphi }^{2}\right\}{\rm{d}}{\rm{\Xi }},\end{array}\end{eqnarray}$which can be re-written as:$\begin{eqnarray}J\left(\varphi \right)=\displaystyle \int \left\{\psi {\left(\varphi ^{\prime} \right)}^{2}-\delta {\varphi }^{3}+\sigma {\varphi }^{2}\right\}{\rm{d}}{\rm{\Xi }},\end{eqnarray}$where $\psi =-\tfrac{1}{2}\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right),$ $\delta =\tfrac{1}{3}\kappa {\lambda }_{1},$ $\sigma =\tfrac{1}{2}\left({v}^{2}-1\right).$

By comparing equations (3.9) and (3.7), it can be seen that the order of the differential equation has been reduced by the variational method.

4. Solitary wave solutions

In this section, we aim to seek the solitary solution of equation (1.3) by the variational theory. According to He’s variational method [5153], we suppose the solution of equation (3.7) with the following form:$\begin{eqnarray}\varphi =p\text{sec}{{\rm{h}}}^{2}\left(q{\rm{\Xi }}\right),q\gt 0,\end{eqnarray}$where $p$ and $q$ are unknown constants that can be determined later. Now we substitute equation (4.1) into (3.9), it yields:$\begin{eqnarray}\begin{array}{l}J\left(p,q\right)=\displaystyle {\int }_{0}^{\infty }\left\{\psi {\left(\varphi ^{\prime} \right)}^{2}-\delta {\varphi }^{3}+\sigma {\varphi }^{2}\right\}{\rm{d}}{\rm{\Xi }}\\ \,\,\,\,=\,\displaystyle {\int }_{0}^{\infty }\left\{4\psi {p}^{2}{q}^{2}\text{sec}{{\rm{h}}}^{4}(q{\rm{\Xi }}){\tanh }^{2}(q{\rm{\Xi }})\right.\\ \,\,\,\,-\,\left.\delta {p}^{3}\text{sec}{{\rm{h}}}^{6}(q{\rm{\Xi }})+\sigma {p}^{2}\text{sec}{{\rm{h}}}^{4}(q{\rm{\Xi }})\right\}{\rm{d}}{\rm{\Xi }}\\ \,\,\,\,=\,\displaystyle {\int }_{0}^{\infty }\left\{4\psi {p}^{2}q\text{sec}{{\rm{h}}}^{4}(\omega ){\tanh }^{2}(\omega )\right.\\ \,\,\,\,-\,\left.\displaystyle \frac{\delta {p}^{3}}{q}\text{sec}{{\rm{h}}}^{6}(\omega )+\displaystyle \frac{\sigma {p}^{2}}{q}\text{sec}{{\rm{h}}}^{4}(\omega )\right\}{\rm{d}}\omega \\ \,\,\,\,=\,4\psi {p}^{2}{q}^{2}\displaystyle {\int }_{0}^{\infty }\text{sec}{{\rm{h}}}^{4}(\omega ){\tanh }^{2}(\omega ){\rm{d}}\omega \\ \,\,\,\,-\,\displaystyle \frac{\delta {p}^{3}}{q}\displaystyle {\int }_{0}^{\infty }\text{sec}{{\rm{h}}}^{6}(\omega ){\rm{d}}\omega +\displaystyle \frac{\sigma {p}^{2}}{q}\displaystyle {\int }_{0}^{\infty }\text{sec}{{\rm{h}}}^{4}(\omega ){\rm{d}}\omega \\ \,\,\,\,=\,\displaystyle \frac{2{p}^{2}\left(5\sigma -4\delta p+4\psi {q}^{2}\right)}{15q}.\end{array}\end{eqnarray}$

On basis of He’s variational method [5153], there are:$\begin{eqnarray}\displaystyle \frac{\partial J}{\partial p}=0,\end{eqnarray}$$\begin{eqnarray}\displaystyle \frac{\partial J}{\partial q}=0.\end{eqnarray}$

The following results can be obtained by calculating equations (4.3) and (4.4):$\begin{eqnarray}\displaystyle \frac{4p\left(5\sigma -6\delta p+4\psi {q}^{2}\right)}{15q}=0,\end{eqnarray}$$\begin{eqnarray}\displaystyle \frac{2{p}^{2}\left(-5\sigma +4\delta p+4\psi {q}^{2}\right)}{15{q}^{2}}=0,\end{eqnarray}$where$\begin{eqnarray}\psi =-\displaystyle \frac{1}{2}\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right),\delta =\displaystyle \frac{1}{3}\kappa {\lambda }_{1},\sigma =\displaystyle \frac{1}{2}\left({v}^{2}-1\right).\end{eqnarray}$

Solving equations (4.5) and (4.6), we have:$\begin{eqnarray}p=\displaystyle \frac{\sigma }{\delta },\end{eqnarray}$$\begin{eqnarray}q=\displaystyle \frac{1}{2}\sqrt{\displaystyle \frac{\sigma }{\psi }}.\end{eqnarray}$

Substituting equation (4.7) into the above formulas, the unknown constants $p$ and $q$ can be determined as:$\begin{eqnarray}p=\displaystyle \frac{3\left({v}^{2}-1\right)}{\kappa {\lambda }_{1}},\end{eqnarray}$$\begin{eqnarray}q=\displaystyle \frac{1}{2}\sqrt{\displaystyle \frac{{v}^{2}-1}{\varepsilon \left({\lambda }_{4}{v}^{2}-{\lambda }_{3}\right)}}.\end{eqnarray}$

With this, the solution of equation (3.7) can be obtained as:$\begin{eqnarray}\varphi \left({\rm{\Xi }}\right)=\displaystyle \frac{3\left({v}^{2}-1\right)}{\kappa {\lambda }_{1}}\text{sec}{{\rm{h}}}^{2}\left(\displaystyle \frac{1}{2}\sqrt{\displaystyle \frac{{v}^{2}-1}{\varepsilon \left({\lambda }_{4}{v}^{2}-{\lambda }_{3}\right)}}{\rm{\Xi }}\right).\end{eqnarray}$

Then we can get the solitary wave solution of equation (3.3) via equation (3.4) as:$\begin{eqnarray}\begin{array}{l}\varphi \left(X,T\right)=\displaystyle \frac{3\left({v}^{2}-1\right)}{\kappa {\lambda }_{1}}\text{sec}{{\rm{h}}}^{2}\left(\displaystyle \frac{1}{2}\sqrt{\displaystyle \frac{{v}^{2}-1}{\varepsilon \left({\lambda }_{4}{v}^{2}-{\lambda }_{3}\right)}}\right.\\ \,\,\,\,\,\times \,\left.\left(X-vT+{{\rm{\Xi }}}_{0}\right)\right).\end{array}\end{eqnarray}$

Thus the solitary solution of equation (1.3) can be obtained by using the two-scale transforms of equations (3.1) and (3.2) as:$\begin{eqnarray}\begin{array}{l}\varphi \left(x,t\right)=\displaystyle \frac{3\left({v}^{2}-1\right)}{\kappa {\lambda }_{1}}\text{sec}{{\rm{h}}}^{2}\left(\displaystyle \frac{1}{2}\sqrt{\displaystyle \frac{{v}^{2}-1}{\varepsilon \left({\lambda }_{4}{v}^{2}-{\lambda }_{3}\right)}}\right.\\ \,\,\,\,\times \,\left.\left({x}^{\varsigma }-v{t}^{\eta }+{{\rm{\Xi }}}_{0}\right)\right).\end{array}\end{eqnarray}$When $\eta =\varsigma =1,$ the above solution becomes the solitary wave solution of the classic strain wave equation as shown in equation (1.2).

It must be pointed out that we can obtain other soliton solutions by setting $\varphi \left({\rm{\Xi }}\right)=p\csc {\rm{h}}\left(q{\rm{\Xi }}\right),$ $\varphi \left({\rm{\Xi }}\right)=p\,\tanh \left(q{\rm{\Xi }}\right)$ and $\varphi \left({\rm{\Xi }}\right)=p\,\coth \left(q{\rm{\Xi }}\right)$ using the same method.

5. Periodic wave solutions

In this section, we will try to obtain the periodic wave solution of equation (1.3). In the light of He’s variational method [5456], the periodic solution of equation (3.7) is assumed to take the form as:$\begin{eqnarray}\varphi \left({\rm{\Xi }}\right)={\rm{\Lambda }}\,\cos \left(\varpi {\rm{\Xi }}\right),\varpi \gt 0,\end{eqnarray}$

Substituting equation (5.1) into (3.8) yields:$\begin{eqnarray}\begin{array}{l}J\left(\varphi \right)=\displaystyle {\int }_{0}^{\tfrac{T}{4}}\left\{-\displaystyle \frac{1}{2}\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right){\left(\varphi ^{\prime} \right)}^{2}-\displaystyle \frac{1}{3}\kappa {\lambda }_{1}{\varphi }^{3}\right.\\ \,\,\,+\,\left.\displaystyle \frac{1}{2}\left({v}^{2}-1\right){\varphi }^{2}\right\}{\rm{d}}{\rm{\Xi }}\\ \,\,\,=\displaystyle {\int }_{0}^{\tfrac{T}{4}}\left\{-\displaystyle \frac{1}{2}\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right){\left[-{\rm{\Lambda }}\varpi \sin \left(\varpi {\rm{\Xi }}\right)\right]}^{2}\right.\\ \,\,\,-\,\displaystyle \frac{1}{3}\kappa {\lambda }_{1}{\left[{\rm{\Lambda }}\cos \left(\varpi {\rm{\Xi }}\right)\right]}^{3}+\displaystyle \frac{1}{2}\left({v}^{2}-1\right)\\ \,\,\,\times \,\left.{\left[{\rm{\Lambda }}\cos \left(\varpi {\rm{\Xi }}\right)\right]}^{2}\right\}{\rm{d}}{\rm{\Xi }}\\ \,\,=\displaystyle \frac{1}{\varpi }\displaystyle {\int }_{0}^{\tfrac{\pi }{2}}\left\{-\displaystyle \frac{1}{2}\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right){\left[-{\rm{\Lambda }}\varpi \sin \left({\rm{\Pi }}\right)\right]}^{2}\right.\\ \,\,\,-\,\displaystyle \frac{1}{3}\kappa {\lambda }_{1}{\left[{\rm{\Lambda }}\cos \left({\rm{\Pi }}\right)\right]}^{3}+\displaystyle \frac{1}{2}\left({v}^{2}-1\right)\\ \,\,\,\times \,\left.{\left[{\rm{\Lambda }}\cos \left({\rm{\Pi }}\right)\right]}^{2}\right\}{\rm{d}}{\rm{\Pi }}.\end{array}\end{eqnarray}$

According to He’s variational method [5457], we have:$\begin{eqnarray}\displaystyle \frac{{\rm{d}}J}{{\rm{d}}{\rm{\Lambda }}}=0,\end{eqnarray}$which leads to:$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{{\rm{d}}J\left(\varphi \right)}{{\rm{d}}{\rm{\Lambda }}}=\displaystyle \frac{{\rm{d}}}{{\rm{d}}{\rm{\Lambda }}}\displaystyle {\int }_{0}^{\tfrac{T}{4}}\left\{-\displaystyle \frac{1}{2}\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right){\left(\varphi ^{\prime} \right)}^{2}-\displaystyle \frac{1}{3}\kappa {\lambda }_{1}{\varphi }^{3}\right.\\ \,\,\,\,+\,\left.\displaystyle \frac{1}{2}\left({v}^{2}-1\right){\varphi }^{2}\right\}{\rm{d}}{\rm{\Xi }}\\ \,\,\,=\,\displaystyle \frac{{\rm{d}}}{{\rm{d}}{\rm{\Lambda }}}\displaystyle {\int }_{0}^{\tfrac{T}{4}}\left\{-\displaystyle \frac{1}{2}\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right){\left[-{\rm{\Lambda }}\varpi \sin \left(\varpi {\rm{\Xi }}\right)\right]}^{2}\right.\\ \,\,\,\,-\,\displaystyle \frac{1}{3}\kappa {\lambda }_{1}{\left[{\rm{\Lambda }}\cos \left(\varpi {\rm{\Xi }}\right)\right]}^{3}+\displaystyle \frac{1}{2}\left({v}^{2}-1\right)\\ \,\,\,\,\times \,\left.{\left[{\rm{\Lambda }}\cos \left(\varpi {\rm{\Xi }}\right)\right]}^{2}\right\}{\rm{d}}{\rm{\Xi }}\\ \,\,\,=\,\displaystyle \frac{1}{\varpi }\displaystyle \frac{{\rm{d}}}{{\rm{d}}{\rm{\Lambda }}}\displaystyle {\int }_{0}^{\tfrac{\pi }{2}}\left\{-\displaystyle \frac{1}{2}\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right){\left[-{\rm{\Lambda }}\varpi \sin \left({\rm{\Pi }}\right)\right]}^{2}\right.\\ \,\,\,\,-\,\displaystyle \frac{1}{3}\kappa {\lambda }_{1}{\left[{\rm{\Lambda }}\cos \left({\rm{\Pi }}\right)\right]}^{3}+\displaystyle \frac{1}{2}\left({v}^{2}-1\right)\\ \,\,\,\,\times \,\left.{\left[{\rm{\Lambda }}\cos \left({\rm{\Pi }}\right)\right]}^{2}\right\}{\rm{d}}{\rm{\Pi }}\\ \,\,\,=\,\displaystyle \frac{1}{\varpi }\displaystyle {\int }_{0}^{\tfrac{\pi }{2}}\left\{-\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right){\rm{\Lambda }}{\varpi }^{2}{\sin }^{2}\left({\rm{\Pi }}\right)\right.\\ \,\,\,\,-\,\left.\kappa {\lambda }_{1}{{\rm{\Lambda }}}^{2}{\cos }^{3}\left({\rm{\Pi }}\right)+\left({v}^{2}-1\right){\rm{\Lambda }}{\cos }^{2}\left({\rm{\Pi }}\right)\right\}{\rm{d}}{\rm{\Pi }}\\ \,\,\,=\,0.\end{array}\end{eqnarray}$

In the view of equation (5.4), we have:$\begin{eqnarray}{\varpi }^{2}=\displaystyle \frac{\displaystyle {\int }_{0}^{\tfrac{\pi }{2}}\left\{-\kappa {\lambda }_{1}{{\rm{\Lambda }}}^{2}{\cos }^{3}\left({\rm{\Pi }}\right)+\left({v}^{2}-1\right){\rm{\Lambda }}{\cos }^{2}\left({\rm{\Pi }}\right)\right\}{\rm{d}}{\rm{\Pi }}}{\displaystyle {\int }_{0}^{\tfrac{\pi }{2}}\left\{\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right){\rm{\Lambda }}{\sin }^{2}\left({\rm{\Pi }}\right)\right\}{\rm{d}}{\rm{\Pi }}}.\end{eqnarray}$

Calculating above equation, we obtain:$\begin{eqnarray}\varpi =\sqrt{-\displaystyle \frac{8{\rm{\Lambda }}\kappa {\lambda }_{1}}{3\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right)\pi }+\displaystyle \frac{\left({v}^{2}-1\right)}{\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right)}}\gt 0.\end{eqnarray}$

Taking above equation into equation (5.1), we have:$\begin{eqnarray}\varphi \left({\rm{\Xi }}\right)={\rm{\Lambda }}\,\cos \left(\sqrt{-\displaystyle \frac{8{\rm{\Lambda }}\kappa {\lambda }_{1}}{3\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right)\pi }+\displaystyle \frac{\left({v}^{2}-1\right)}{\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right)}}{\rm{\Xi }}\right).\end{eqnarray}$

Therefore, we can get the periodic wave solution of equation (3.3) via equation (3.4) as:$\begin{eqnarray}\begin{array}{l}\varphi \left(X,T\right)={\rm{\Lambda }}\,\cos \left(\sqrt{-\displaystyle \frac{8{\rm{\Lambda }}\kappa {\lambda }_{1}}{3\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right)\pi }+\displaystyle \frac{\left({v}^{2}-1\right)}{\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right)}}\right.\\ \,\,\,\,\,\times \,\left.\left(X-vT+{{\rm{\Xi }}}_{0}\right)\right).\end{array}\end{eqnarray}$

With the help of the the two-scale transforms of equations (3.1) and (3.2), the periodic wave solution of equation (1.3) can be approximated as:$\begin{eqnarray}\begin{array}{l}\phi \left(x,t\right)={\rm{\Lambda }}\,\cos \left(\sqrt{-\displaystyle \frac{8{\rm{\Lambda }}\kappa {\lambda }_{1}}{3\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right)\pi }+\displaystyle \frac{\left({v}^{2}-1\right)}{\varepsilon \left({\lambda }_{3}-{\lambda }_{4}{v}^{2}\right)}}\right.\\ \,\,\,\times \,\left.\left({x}^{\varsigma }-v{t}^{\eta }+{{\rm{\Xi }}}_{0}\right)\right),\end{array}\end{eqnarray}$which is the exact periodic wave solution of the fractional strain wave equation in microstructured solids in equation (1.3).

When $\eta =\varsigma =1,$ equation (5.9) becomes the periodic wave solution of the classic strain wave equation as shown in equation (1.2).

It must be noted that we can obtain another periodic wave solution by assuming $\varphi \left({\rm{\Xi }}\right)={\rm{\Lambda }}\,\sin \left(\varpi {\rm{\Xi }}\right)$ via the same method.

6. One example

In this section, we use an example to illustrate the effectiveness and reliability of the proposed method. Here we set ${\lambda }_{1}=1,$ ${\lambda }_{3}=2,$ ${\lambda }_{4}=1,$ $\kappa =2,$ $\varepsilon =1,$ $v=2,$ then equation (1.3) can be written as:$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{{\partial }_{\hslash }^{2}}{\partial {t}^{2\eta }}\left(\varphi \right)-\displaystyle \frac{{\partial }_{\hslash }^{2}}{\partial {x}^{2\varsigma }}\left(\varphi \right)-2\displaystyle \frac{{\partial }_{\hslash }^{2}}{\partial {x}^{2\varsigma }}\left({\varphi }^{2}\right)+2\displaystyle \frac{{\partial }_{\hslash }^{4}}{\partial {x}^{4\varsigma }}\left(\varphi \right)\\ \,-\,\displaystyle \frac{{\partial }_{\hslash }^{2}}{\partial {t}^{2\eta }}\displaystyle \frac{{\partial }_{\hslash }^{2}}{\partial {x}^{2\varsigma }}\left(\varphi \right)=0.\end{array}\end{eqnarray}$

6.1. The solitary wave solution

According to equation (4.14), we can get the solitary wave solution of equation (6.1) as:$\begin{eqnarray}\varphi \left(x,t\right)=\displaystyle \frac{9}{2}\text{sec}{{\rm{h}}}^{2}\left(\displaystyle \frac{1}{2}\sqrt{\displaystyle \frac{3}{2}}\left({x}^{\varsigma }-2{t}^{\eta }+{{\rm{\Xi }}}_{0}\right)\right).\end{eqnarray}$

Then we plot the behavior of equation (6.2) with different fractional orders of $\eta $ and $\varsigma $ in figure 1.

Figure 1.

New window|Download| PPT slide
Figure 1.The behavior of equation (6.2) with different fractional orders $\eta $ and $\varsigma $ at ${{\rm{\Xi }}}_{0}=4$ in the form of 3D and 2D contours.


Form the 3D and 2D plots of equation (6.2) with different fractional orders $\eta $ and $\varsigma ,$ it can be found that the smaller the fractional orders are, the slower the solitary wave changes. In addition, when the $\eta \gg \varsigma ,$ the peak of solitary wave tends to be parallel to x-direction. On the contrary, it tends to the vertical x-direction. When $\eta =\varsigma =1,$ the plots in figures 1(i)–(j) are perfect bright solitary waves, which are the solitary waves of the classic strain wave equation.

6.2. The periodic wave solution

For ${\rm{\Lambda }}=4,$ the periodic wave solution of of equation (6.1) can be obtained by equation (5.9) as:$\begin{eqnarray}\varphi \left(x,t\right)=4\,\cos \left(\sqrt{\displaystyle \frac{64-9\pi }{6\pi }}\left({x}^{\varsigma }-2{t}^{\eta }+{{\rm{\Xi }}}_{0}\right)\right).\end{eqnarray}$

Then we plot the behaviors of equation (6.3) with different fractional orders of $\eta $ and $\varsigma $ in figure 2.

Figure 2.

New window|Download| PPT slide
Figure 2.The behaviors of equation (6.3) with different fractional orders $\eta $ and $\varsigma $ at ${{\rm{\Xi }}}_{0}=4$ in the form of 3D and 2D contours.


Figure 2 presents the periodic waves obtained by equation (6.3), we can observe that when $\eta \lt 1$ and $\varsigma \lt 1,$ the contours are kinky periodic waves. And the smaller the fractional orders are, the larger the period is. Besides, when the $\eta \gt $ $\varsigma ,$ the propagation direction of periodic wave tends to be perpendicular to x-direction. On the contrary, it tends to be parallel to x-direction. When $\eta =\varsigma =1,$ the plots in figures 2(k), (l) are perfect periodic waves, which are the periodic waves of the classic strain wave equation.

7. Conclusion

In this paper, He’s variational method together with the two-scale transform are used to find the solitary and periodic wave solutions of the time-space fractional strain wave equation in microstructured solids. The main advantage of variational approach is that it can reduce the order of differential equation and make the equation more simple. One example is given to verify the applicability and effectiveness of the method through the 3D and 2D contours. It shows that the variational method is simple and straightforward, and can avoid the tedious calculation process, which is expected to open some new perspectives towards the study of fractional NPDEs arsing in physics.

Acknowledgments

This work is supported by Program of Henan Polytechnic University (No. B2018-40), Innovative Scientists and Technicians Team of Henan Provincial High Education (21IRTSTHN016) and the Fundamental Research Funds for the Universities of Henan Province.


Reference By original order
By published year
By cited within times
By Impact factor

Khater M M A Attia R A M Park C Lu D 2020On the numerical investigation of the interaction in plasma between (high & low) frequency of (Langmuir & ion–acoustic) waves
Results Phys. 103317

[Cited within: 1]

Wang K J 2021A simple approach for the fractal riccati differential equation
J. Appl. Comput. Mech. 7 177 181



Kbulut A Kaplan M Tascan F 2016Conservation laws and exact solutions of Phi-Four (Phi-4) equation via the (G/G,1/G)-expansion method
Z. Naturforsch. 71 439 444

DOI:10.1515/zna-2016-0010 [Cited within: 1]

Loghambal S Rajendran L 2011Mathematical modeling in amperometric oxidase enzyme-membrane electrodes
J. Membr. Sci. 373 20 28

DOI:10.1016/j.memsci.2011.02.033 [Cited within: 1]

Janani M Devadharshini S Hariharan G 2019Analytical expressions of amperometric enzyme kinetics pertaining to the substrate concentration using wavelets
J. Math. Chem. 57 1191 1200

DOI:10.1007/s10910-019-01017-0 [Cited within: 1]

Khater M M A Attia R A M Abdel-Aty A-H Alharbi W Lu D 2020Abundant analytical and numerical solutions of the fractional microbiological densities model in bacteria cell as a result of diffusion mechanisms
Chaos, Solitons Fractals 136 109824

DOI:10.1016/j.chaos.2020.109824 [Cited within: 1]

Baleanu D Mohammadi H Rezapour S 2020Analysis of the model of HIV-1 infection of CD4+T-cell with a new approach of fractional derivative
Adv. Differ. Equ. 1 17

DOI:10.1186/s13662-020-02544-w [Cited within: 1]

Khater M M Aet al. 2020Novel soliton waves of two fluid nonlinear evolutions models in the view of computational scheme
Int. J. Mod. Phys. B 34 2050096

DOI:10.1142/S0217979220500964 [Cited within: 1]

Wang K-L 2020A novel Perspective for the fractal Schrodinger equation
Fractals

DOI:10.1142/S0218348X21500936

Baleanu Det al. 2020A fractional derivative with two singular kernels and application to a heat conduction problem
Adv. Differ. Equ. 252

DOI:10.1186/s13662-020-02684-z

Baleanu D Sadat R Ali M R 2020The method of lines for solution of the carbon nanotubes engine oil nanofluid over an unsteady rotating disk
Eur. Phys. J. Plus 135 788

DOI:10.1140/epjp/s13360-020-00763-4 [Cited within: 1]

Liu Q S Chen L G 2020Time-Space fractional model for complex cylindrical ion-acoustic waves in ultrarelativistic plasmas
Complexity 9075823

[Cited within: 1]

Liu Q S Zhang R G Yang L G Song J 2019A new model equation for nonlinear Rossby waves and some of its solutions
Phys. Lett. A 383 514 525

DOI:10.1016/j.physleta.2018.10.052 [Cited within: 1]

Kaplan M Bekir A 2016A novel analytical method for time-fractional differential equations
Optik 127 8209 8214

DOI:10.1016/j.ijleo.2016.05.152 [Cited within: 1]

Wazwaz A-M 2008The Hirota’s bilinear method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Kadomtsev-Petviashvili equation
Appl. Math. Comput. 200 160 166

DOI:10.1016/j.amc.2007.11.001 [Cited within: 1]

Lixin M A 2014The multi-soliton solutions to The KdV equation by Hirota Method
Prog. Appl. Math. 8 30 35

[Cited within: 1]

Yokus A Sulaiman T A Gulluoglu M T Bulut H 2018Stability analysis, numerical and exact solutions of the (1+1)-dimensional NDMBBM equation
ITM Web Conf. CMES 22 01064

DOI:10.1051/itmconf/20182201064 [Cited within: 1]

Seadawy A R 2016Three-dimensional nonlinear modified Zakharov-Kuznetsov equation of ion-acoustic waves in a magnetized plasma
Comput. Math. Appl. 71 201 212

DOI:10.1016/j.camwa.2015.11.006 [Cited within: 1]

Seadawy A R 2018Three-dimensional weakly nonlinear shallow water waves regime and its traveling wave solutions
Int. J. Comput. Methods 15 1850017-1 -185001712

DOI:10.1142/S0219876218500172

Silambarasan R Baskonus H M Bulut H 2019Jacobi elliptic function solutions of the double dispersive equation in the Murnaghan’s rod
Eur. Phys. J. Plus 134 125

DOI:10.1140/epjp/i2019-12541-2 [Cited within: 1]

Samsonov A M 2001Strain Solitons in Solids and How to Construct ThemBoca RatonChapman and Hall/CRC
[Cited within: 1]

Kumar S Kumar A Wazwaz A M 2020New exact solitary wave solutions of the strain wave equation in microstructured solids via the generalized exponential rational function method
Eur. Phys. J. Plus 135 1 17

DOI:10.1140/epjp/s13360-020-00883-x [Cited within: 1]

Wang K L Wang K J 2020A new analysis for Klein–Gordon model with local fractional derivative
Alexandria Eng. J. 59 3309 3313

DOI:10.1016/j.aej.2020.04.040 [Cited within: 1]

Wang K J Sun H C Cui Q C 2020The fractional Sallen-Key filter described by local fractional derivative
IEEE Access 8 166377 166383

DOI:10.1109/ACCESS.2020.3022798 [Cited within: 1]

Wang K J 2020On a High-pass filter described by local fractional derivative
Fractals 28 2050031

DOI:10.1142/S0218348X20500310

Wang K Jet al. 2020A a-order R-L high-pass filter modeled by local fractional derivative
Alexandria Eng. J. 59 3244 3248

DOI:10.1016/j.aej.2020.08.049 [Cited within: 1]

Khater M M Aet al. 2020Abundant analytical and numerical solutions of the fractional microbiological densities model in bacteria cell as a result of diffusion mechanisms
Chaos, Solitons Fractals 136 109824

DOI:10.1016/j.chaos.2020.109824 [Cited within: 1]

Wang K J 2020A new fractional nonlinear singular heat conduction model for the human head considering the effect of febrifuge
Eur. Phys. J. Plus 135 871

DOI:10.1140/epjp/s13360-020-00891-x [Cited within: 1]

Yang X Jet al. 2017On a fractal LC-electric circuit modeled by local fractional calculus
Commun. Nonlinear Sci. Numer. Simul. 47 200 206

DOI:10.1016/j.cnsns.2016.11.017 [Cited within: 1]

Wang K Jet al. 2020The transient analysis for zero-input response of fractal RC circuit based on local fractional derivative
Alexandria Eng. J. 59 4669 4675

DOI:10.1016/j.aej.2020.08.024 [Cited within: 1]

Liu J-G Yang X-J Feng Y-Y Iqbal M 2020On group analysis to the time fractional nonlinear wave equation
Int. J. Math. 31 20500299

DOI:10.1142/S0129167X20500299 [Cited within: 1]

Liu J-G Yang X-J Feng Y-Y 2019On integrability of the time fractional nonlinear heat conduction equation
J. Geom. Phys. 144 190 198

DOI:10.1016/j.geomphys.2019.06.004

Sun W Liu Q 2020Hadamard type local fractional integral inequalities for generalized harmonically convex functions and applications
Math. Methods Appl. Sci. 43 5776 5787

DOI:10.1002/mma.6319 [Cited within: 1]

He J H Tutorial A 2014Review on fractal spacetime and fractional calculus
Int. J. Theor. Phys. 53 3698 3718

DOI:10.1007/s10773-014-2123-8 [Cited within: 1]

He J H 2018Fractal calculus and its geometrical explanation
Results Phys. 10 272 276

DOI:10.1016/j.rinp.2018.06.011 [Cited within: 1]

He J H Ji F Y 2019Two-scale mathematics and fractional calculus for thermodynamics
Therm. Sci. 23 2131 2134

DOI:10.2298/TSCI1904131H [Cited within: 1]

Ain Q T He J H 2019On two-scale dimension and its applications
Therm. Sci. 23 1707 1712

DOI:10.2298/TSCI190408138A [Cited within: 1]

He J-H 1997Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics
Int. J. Turbo Jet Engines 14 23 28

DOI:10.1515/TJJ.1997.14.1.23 [Cited within: 1]

He J-H 1998A family of variational principles for compressible rotational blade-to-blade flow using semi-inverse method
Int. J. Turbo Jet Engines 15 95 100

DOI:10.1515/TJJ.1998.15.2.95

Wang K L 2020Variational principle for nonlinear oscillator arising in a fractal nano/microelectromechanical system
Math. Methods Appl. Sci.

DOI:10.1002/mma.6726

Wang K J Wang K L 2020Variational principles for fractal Whitham-Broer-Kaup Equations in shallow water
Fractals

DOI:10.1142/S0218348X21500286

He J H 2020Variational principle for the generalized KdV-burgers equation with fractal derivatives for shallow water waves
J. Appl. Comput. Mech. 6 735 740



Wang K J 2020A variational principle for the (3+1)-dimensional extended quantum Zakharov-Kuznetsov equation in plasma physics
Europhys. Lett. 132 44002

DOI:10.1209/0295-5075/132/44002

Wang K J Wang G D 2021Periodic solution of the (2+1)-dimensional nonlinear electrical transmission line equation via variational method
Results Phys. 20 103666

DOI:10.1016/j.rinp.2020.103666

Le W K 2020A novel approach for fractal Burgers-BBM equation and its variational principle
Fractals

DOI:10.1142/S0218348X2150059

Kang-Jia W 2020Variational principle and approximate solution for the generalized Burgers-Huxley equation with fractal derivative
Fractals

DOI:10.1142/S0218348X21500444

He J H 2019Lagrange crisis and generalized variational principle for 3D unsteady flow
Int. J. Numer. Methods Heat Fluid Flow 30 1189 1196

DOI:10.1108/HFF-07-2019-0577

Wang K J Wang G D 2020Variational principle and approximate solution for the fractal generalized Benjamin-Bona-Mahony-Burgers equation in fluid mechanics
Fractals

DOI:10.1142/S0218348X21500754

Wang K Let al. 2020A fractal variational principle for the telegraph equation with fractal derivatives
Fractals 28 2050058

DOI:10.1142/S0218348X20500310

Wang K J 2020Variational principle and approximate solution for the fractal vibration equation in a microgravity space
Iran. J. Sci. Technol., Trans. Mech. Eng.

DOI:10.1007/s40997-020-00414-0 [Cited within: 1]

He J H 2012Asymptotic methods for solitary solutions and compactons
Abstr. Appl. Anal. 916793

DOI:10.1155/2012/916793 [Cited within: 2]

Elboree M K 2020Soliton solutions for some nonlinear partial differential equations in mathematical physics using He’s Variational method
Int. J. Nonlinear Sci. Numer. Simul. 21 147 158

DOI:10.1515/ijnsns-2018-0188

Wang K J Wang G D 2021Solitary and periodic wave solutions of the generalized fourth order boussinesq equation via He’s variational methods
Math. Methods Appl. Sci.

DOI:10.1002/mma.7135 [Cited within: 2]

Wang K J Wang G D 2021He’s variational method for the time-space fractional nonlinear Drinfeld-Sokolov-Wilson system
Math. Methods Appl. Sci.

DOI:10.1002/mma.7200 [Cited within: 2]

He J H 2007Variational approach for nonlinear oscillators
Chaos, Solitons Fractals 34 1430 1439

DOI:10.1016/j.chaos.2006.10.026

Wang K L 2020He’s frequency formulation for fractal nonlinear oscillator arising in a microgravity space
Numer. Methods Partial Differ. Equ.

DOI:10.1002/num.22584 [Cited within: 1]

He J H 2020Variational principle and periodic solution of the Kundu-Mukherjee-Naskar equation
Results Phys. 17 103031

DOI:10.1016/j.rinp.2020.103031 [Cited within: 1]

相关话题/exact traveling solutions