New structures for closed-form wave solutions for the dynamical equations model related to the ion s
本站小编 Free考研考试/2022-01-02
Md Nur Alam1, M S Osman,2,3,∗1Department of Mathematics, Pabna University of Science and Technology, Pabna, 6600, Bangladesh 2Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt 3Department of Mathematics, Faculty of Applied Science, Umm Alqura University, Makkah 21955, Saudi Arabia
First author contact:Author to whom any correspondence should be addressed. Received:2020-09-11Revised:2020-12-7Accepted:2020-12-7Online:2021-02-04
Abstract This treatise analyzes the coupled nonlinear system of the model for the ion sound and Langmuir waves. The modified $(G^{\prime} /G)$-expansion procedure is utilized to raise new closed-form wave solutions. Those solutions are investigated through hyperbolic, trigonometric and rational function. The graphical design makes the dynamics of the equations noticeable. It provides the mathematical foundation in diverse sectors of underwater acoustics, electromagnetic wave propagation, design of specific optoelectronic devices and physics quantum mechanics. Herein, we concluded that the studied approach is advanced, meaningful and significant in implementing many solutions of several nonlinear partial differential equations occurring in applied sciences. Keywords:the modified (G′/G)-expansion method;ion sound wave;Langmuir wave;closed-form wave solutions
PDF (2878KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite Cite this article Md Nur Alam, M S Osman. New structures for closed-form wave solutions for the dynamical equations model related to the ion sound and Langmuir waves. Communications in Theoretical Physics, 2021, 73(3): 035001- doi:10.1088/1572-9494/abd849
1. Introduction
The nonlinear model of the wave equations has evolved to form the physical characteristics of science and engineering [1, 2]. The nonlinear partial differential equations (NPDEs) have importance in many categories of physical sciences, such as ocean engineering, solid state, geophysics, optics, chemistry, plasma physics, biology, mechanics, material sciences, mathematical physics and mathematics [3–10]. The closed-form wave solutions of the NPDEs are a crucial task necessary for understanding the processes and physical phenomena in the diverse applied sciences sectors. Numerous new approaches have been exploited to study this kind of solution for the NPDEs. Some crucial processes include the extended direct algebraic method [11], the sech-tanh technique [12], the sine-Gordon expansion scheme [13, 14], the finite series Jacobi elliptic cosine function ansatz [15], the extended tanh expansion method [16], the generalized exponential rational function method [17, 18], the improved tan (φ(ξ)/2)-expansion scheme [19, 20], the novel $(G^{\prime} /G)$-expansion approach [21, 22], the extended trial equation method (ETEM) [23], the improved tan (φ(ξ)/2)-expansion method (ITEM) [24], optimal homotopy and the differential transform method [25], the homogeneous balance method [26], the modified Kudryashov method [27], Riccati–Bernoulli sub-ODE method [28], the exp (− φ(ξ))-expansion method [29, 30], and the unified method and its generalized form [31–37].
This research deals with the model for Langmuir waves (LWs) and ion sound waves (ISWs) [24, 38, 39] as below$\begin{eqnarray}{\rm{i}}{E}_{t}+\displaystyle \frac{1}{2}{E}_{{xx}}-{nE}=0,\end{eqnarray}$$\begin{eqnarray}{n}_{{tt}}-{n}_{{xx}}-2{\left(| E{| }^{2}\right)}_{{xx}}=0,\end{eqnarray}$where the electric field of the Langmuir oscillation and the density perturbation are represented by $E\,{{\rm{e}}}^{{\rm{i}}{\omega }_{p}t}$ and n in the normal form, respectively. Here, we supervise the method of dynamical models concerning the ISW with the effect of the ponderomotive force owing to the high-frequency area, as well as for the LW, which is one variety of nonlinear wave models. The implementation of novel types of soliton solutions for the LW and ISWs has an extremely prominent status through the contributors. A few studies have converged on the Langmuir solitons. Musher et al [40] give support to the application of the weak turbulence hypothesis to LW turbulence, and consideration was given to plasma under relative unmagnetized and magnetized electron and ion temperatures. Zakharov [41] expressed the method of dynamical models for the LW. Benilov [42] illustrated the stability of solitons through the Zakharov model, that recognizes the interaction between ISWs and LWs. In [38, 40], a system of equations for the ISW under the action of the ponderomotive force due to the high-frequency field and the LW was discussed.
The main motivation for this work is to study the model for the LWs and ISWs via the modified $\left(\tfrac{G^{\prime} }{G}\right)$-expansion method [22, 43]. The essential advantage of this technique over the other methods in the literature is that it provides novel explicit analytical wave solutions, including many real free parameters. The closed-form wave solutions of nonlinear NPDEs have their significant meaning to reveal the interior device of the physical phenomena. Furthermore, the calculations in this method are very simple and vital to providing new solutions compared to the steps in other approaches.
The synopsis of this paper is shown below. We mention the algorithm of the new method in section 2. The implementation of our approach for solving the solitary wave phenomena of the studied model is manifested and some discussions are provided in section 3. Finally, some outcomes of the research are presented in section 4.
2. A brief description of the modified $\left(\tfrac{G^{\prime} }{G}\right)$-expansion scheme
The following strides summarize the modified $\left(\tfrac{G^{\prime} }{G}\right)$-expansion method [22, 43].
Suppose an NPDE has the form:$\begin{eqnarray}H(h,{h}_{x},{h}_{{xx}},{h}_{t},{h}_{{tt}},{h}_{{xt}},\cdots )=0,\end{eqnarray}$where h = h(x, t) and H is a polynomial in its arguments. Assume that:$\begin{eqnarray}h=h(x,t)=h(\xi ),\xi =k(x-{Vt}+{\xi }_{0}),\end{eqnarray}$where k, ξ0 and V are constants. From equation (2) and equation (3), we get$\begin{eqnarray}R(h,{{kh}}^{{\prime} },{k}^{2}{h}^{{\prime\prime} },-{{kVh}}^{{\prime} },{k}^{2}{V}^{2}{h}^{{\prime\prime} },-{k}^{2}{V}^{2}{h}^{{\prime\prime} },\cdots )=0.\end{eqnarray}$Postulation 1: calculate m using the rule of the homogeneous analysis in (4). Postulation 2: the modified $\left(\tfrac{G^{\prime} }{G}\right)$-expansion technique suggested that$\begin{eqnarray}h(\xi )=\displaystyle \sum _{i=-m}^{m}{A}_{i}{{\rm{\Theta }}}^{i},\end{eqnarray}$where ${\rm{\Theta }}=\left(\tfrac{{G}^{{\prime} }}{G}+\tfrac{\lambda }{2}\right)$, ∣A−m∣ + ∣Am∣ ≠ 0 and G = G(ξ) is given by$\begin{eqnarray}{G}^{{\prime\prime} }+\lambda {G}^{{\prime} }+\mu G=0,\end{eqnarray}$where Ai, $\delta$ and $\mu$ are free parameters. From (6), we have$\begin{eqnarray}{\rm{\Theta }}^{\prime} =b-{{\rm{\Theta }}}^{2},\end{eqnarray}$where $b=\tfrac{{\lambda }^{2}-4\mu }{4}$. So, Θ now satisfies the Riccati-like equation (7) that admits the following solutions [44]If b > 0, then$\begin{eqnarray}{\rm{\Theta }}=\sqrt{b}\tanh (\sqrt{b}\xi ),\end{eqnarray}$$\begin{eqnarray}{\rm{\Theta }}=\sqrt{b}\coth (\sqrt{b}\xi ),\end{eqnarray}$ If b = 0, then$\begin{eqnarray}{\rm{\Theta }}=\displaystyle \frac{1}{\xi },\end{eqnarray}$ If b < 0, then$\begin{eqnarray}{\rm{\Theta }}=-\sqrt{-b}\tan (\sqrt{-b}\xi ),\end{eqnarray}$$\begin{eqnarray}{\rm{\Theta }}=\sqrt{-b}\cot (\sqrt{-b}\xi ).\end{eqnarray}$
Postulation 3: inserting (5) and (7) into (4), and collecting all terms with the same order of Θ together, the left-hand side of equation (4) is converted into the polynomial in Θ. Equating each coefficient of this polynomial to zero yields a set of algebraic equations which can be solved to find the values of the unknown parameters. Thus, the general solutions of equation (2) are obtained.
3. Soliton solutions for the model system related to ISWs and LWs
3.1. Physical and graphical explanation of constructed solutions
In this section, we have explained the results of the coupled nonlinear system of the model for ISWs and LWs by drawing some 3D, 2D and the contour figures of the succeeded solutions with the support of the symbolic calculation software Maple. The graphical illustrations of 3D, 2D and contour plots for some of the obtained solutions are given in figures 1–12. Figure 1 depicts the 3D plot, 2D plot and the corresponding contour plot of solution E11(x, t) that behaves like the spike shape solution. Figures 2, 11 and 12 depict the 3D plot, 2D plot and the corresponding contour plot of solutions n11(x, t), E45(x, t) and n45(x, t), respectively, that represent the singular soliton solutions. Singular solitons are other varieties of solitary waves that give up under a singularity, typically countless discontinuity. Moreover, they can be connected under solitary waves when the midpoint location of the extraordinary wave is missing. Simultaneously, with these lines it is not necessary to address the problem of singular solitons. This answer has spiked and, in this manner, can likely clarify the improvement of rogue waves. Figures 3–6, 8 and 10 depict the 3D plot, 2D plot and the corresponding contour plots of solutions E13(x, t), n13(x, t) E14(x, t), n14(x, t), n23(x, t) and n24(x, t), respectively, that represent the periodic wave solution. Herein, the special kind of periodic wave solutions of the solutions E23(x, t) and E24(x, t) are shown in figures 7 and 9.
Figure 1.
New window|Download| PPT slide Figure 1.Graphical descriptions of the solution E11(x, t) under the values p = 2, q = 0.5, r = 2, $\mu$ = 1, $\delta$ = 3 and t = 0.01 for 2D graphics.
Figure 2.
New window|Download| PPT slide Figure 2.Graphical descriptions of the solution n11(x, t) under the values p = 2, q = 0.5, r = 2, $\mu$ = 1, $\delta$ = 3 and t = 0.01 for 2D graphics.
Figure 3.
New window|Download| PPT slide Figure 3.Graphical descriptions of the solution E13(x, t) when p = 2, q = 0.5, r = 2, $\mu$ = 2, $\delta$ = 2 and for 2D graphics t = 0.01.
Figure 4.
New window|Download| PPT slide Figure 4.Graphical descriptions of the solution n13(x, t) when p = 2, q = 0.5, r = 2, $\mu$ = 2, $\delta$ = 2 and for 2D graphics t = 0.01.
Figure 5.
New window|Download| PPT slide Figure 5.Graphical descriptions of the solution E14(x, t) when p = 2, q = 0.5, r = 2, $\mu$ = 2, $\delta$ = 2 and for 2D graphics t = 0.01.
Figure 6.
New window|Download| PPT slide Figure 6.Graphical descriptions of the solution n14(x, t) when p = 2, q = 0.5, r = 2, $\mu$ = 2, $\delta$ = 2 and for 2D graphics t = 0.01.
Figure 7.
New window|Download| PPT slide Figure 7.Graphical descriptions of the solution E23(x, t) when p = 2, q = 0.5, r = 2, $\mu$ = 2, $\delta$ = 2 and for 2D graphics t = 0.01.
Figure 8.
New window|Download| PPT slide Figure 8.Graphical descriptions of the solution n23(x, t) when p = 2, q = 0.5, r = 2, $\mu$ = 2, $\delta$ = 2 and for 2D graphics t = 0.01.
Figure 9.
New window|Download| PPT slide Figure 9.Graphical descriptions of the solution E24(x, t) when p = 2, q = 0.5, r = 2, $\mu$ = 2, $\delta$ = 2 and for 2D graphics t = 0.01.
Figure 10.
New window|Download| PPT slide Figure 10.Graphical descriptions of the solution n24(x, t) when p = 2, q = 0.5, r = 2, $\mu$ = 2, $\delta$ = 2 and for 2D graphics t = 0.01.
Figure 11.
New window|Download| PPT slide Figure 11.Graphical descriptions of the solution E45(x, t) when p = 2, q = 0.5, r = 2, $\mu$ = 2, $\delta$ = 2 and for 2D graphics t = 0.01.
Figure 12.
New window|Download| PPT slide Figure 12.Graphical descriptions of the solution n45(x, t) when p = 2, q = 0.5, r = 2, $\mu$ = 2, $\delta$ = 2 and for 2D graphics t = 0.01.
4. Conclusion
In this work, we successfully executed the modified $(G^{\prime} /G)$-expansion approach to obtain the closed-form wave structures of the studied equation. Furthermore, this approach concerned new closed-form wave structures like rational, trigonometrical and hyperbolic function solutions. The techniques prescribed the well-designed systems for supervising various nonlinear wave equations with integer-order and also with fraction order arising in several applications of applied sciences. As can be seen from the above solution process, the modified $(G^{\prime} /G)$-expansion method is very effective for solving different types of NPDEs. Our results show that the structures of the obtained wave solutions are multifarious in nonlinear dynamic systems. In the near future, we will modify the algorithm presented here to deal with different NPDEs when their coefficients are variables, for exhaling nonautonomous wave solutions.
GaoWBaskonusH MShiL2020New investigation of bats-hosts-reservoir-people coronavirus model and application to 2019-nCoV system 2020 391 DOI:10.1186/s13662-020-02831-6 [Cited within: 1]
ManafianJMohammedS AAlizadehA ABaskonusH MGao,W2020Investigating lump and its interaction for the third-order evolution equation arising propagation of long waves over shallow water 84 289301 DOI:10.1016/j.euromechflu.2020.04.013 [Cited within: 1]
GaoWSenelMYelGBaskonusH MSenelB2020New complex wave patterns to the electrical transmission line model arising in network system 5 18811892 DOI:10.3934/math.2020125
GoyalMBaskonusH MPrakashA2020Regarding new positive, bounded and convergent numerical solution of nonlinear time fractional HIV/AIDS transmission model 139110096 DOI:10.1016/j.chaos.2020.110096
LiuJ GZhuW HOsmanM SMaW X2020An explicit plethora of different classes of interactive lump solutions for an extension form of 3D-Jimbo-Miwa model 135 412 DOI:10.1140/epjp/s13360-020-00405-9
AliK KOsmanM SAbdel-AtyM2020New optical solitary wave solutions of Fokas-Lenells equation in optical fiber via Sine-Gordon expansion method 59 11911196 DOI:10.1016/j.aej.2020.01.037
GaoWVeereshaPBaskonusH MPrakashaD GKumarP2019A new study of unreported cases of 2019-nCOV epidemic outbreaks 109929 DOI:10.1016/j.chaos.2020.109929
Garca GuiraoJ LBaskonusH MKumarARawatM SYelG2020Complex patterns to the (3 + 1)-dimensional B-type Kadomtsev-Petviashvili-Boussinesq equation 12 17 DOI:10.3390/sym12010017
LuDOsmanM SKhaterM M AAttiaR A MBaleanuD2020Analytical and numerical simulations for the kinetics of phase separation in iron (Fe-Cr-X (X = Mo, Cu)) based on ternary alloys 537122634 DOI:10.1016/j.physa.2019.122634 [Cited within: 1]
KurtATozarATasbozanO2020Applying the new extended direct algebraic method to solve the equation of obliquely interacting waves in shallow waters 19 772780 DOI:10.1007/s11802-020-4135-8 [Cited within: 1]
GuoMDongHLiuJYangH2019The time-fractional mZK equation for gravity solitary waves and solutions using sech-tanh and radial basic function method 24 119 DOI:10.15388/NA.2019.1.1 [Cited within: 1]
Abdul KayumMAli AkbarMOsmanM S2020Stable soliton solutions to the shallow water waves and ion-acoustic waves in a plasma
KumarV SRezazadehHEslamiMIzadiFOsmanM S2019Jacobi elliptic function expansion method for solving KdV equation with conformable derivative and dual-power law nonlinearity 5 127 DOI:10.1007/s40819-019-0710-3 [Cited within: 1]
OsmanM SAliK KGómez-AguilarJ F2020A variety of new optical soliton solutions related to the nonlinear Schrödinger equation with time-dependent coefficients 222165389 DOI:10.1016/j.ijleo.2020.165389 [Cited within: 1]
GhanbariBOsmanM SBaleanuD2019Generalized exponential rational function method for extended Zakharov-Kuzetsov equation with conformable derivative 341950155 DOI:10.1142/S0217732319501554 [Cited within: 1]
OsmanM SGhanbariBMachadoJ A T2019New complex waves in nonlinear optics based on the complex Ginzburg-Landau equation with Kerr law nonlinearity 134 20 DOI:10.1140/epjp/i2019-12442-4 [Cited within: 1]
Mohyud-DinS TIrshadAAhmedNKhanU2017Exact solutions of (3 + 1)-dimensional generalized KP equation arising in physics 7 39013909 DOI:10.1016/j.rinp.2017.10.007 [Cited within: 1]
RazaNOsmanM SAbdel-AtyA HAbdel-KhalekSBesbesH R2020Optical solitons of space-time fractional Fokas-Lenells equation with two versatile integration architectures 2020 517 DOI:10.1186/s13662-020-02973-7 [Cited within: 1]
AlamM NAkbarM AMohyud-DinS T2014A novel $(G^{\prime} /G)$-expansion method and its application to the Boussinesq equation 23020203020203020210 DOI:10.1088/1674-1056/23/2/020203 [Cited within: 1]
AkbarM AAlamM NHafezM G2016Application of the Novel $({G}^{{\prime} }/G)$-expansion method to traveling wave solutions for the positive Gardner-KP equation 47 8596 DOI:10.1007/s13226-016-0171-x [Cited within: 3]
DemirayS TBulutH2016New exact solutions of the system of equations for the ion sound and Langmuir waves by ETEM 21 11 DOI:10.3390/mca21020011 [Cited within: 1]
ParsaA BRashidiM MAnwarO BSadriS M2013Semi-computational simulation of magnetohemodynamic flow in a semi-porous channel using optimal homotopy and differential transform methods 43 11421153 DOI:10.1016/j.compbiomed.2013.05.019 [Cited within: 1]
ZhaoXWangLSunW2006The repeated homogeneous balance method and its applications to nonlinear partial differential equations 28 448453 DOI:10.1016/j.chaos.2005.06.001 [Cited within: 1]
HosseiniKAnsariR2017New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the modified Kudryashov method 27 628636 DOI:10.1080/17455030.2017.1296983 [Cited within: 1]
MirzazadehMAlqahtaniR TBiswasA2017Optical soliton perturbation with quadratic-cubic nonlinearity by Riccati-Bernoulli sub-ODE method and Kudryashov's scheme 145 7478 DOI:10.1016/j.ijleo.2017.07.011 [Cited within: 1]
AlamM NAlamM M2017An analytical method for solving exact solutions of a nonlinear evolution equation describing the dynamics of ionic currents along microtubules 11 939948 DOI:10.1016/j.jtusci.2016.11.004 [Cited within: 1]
AlamM NBelgacemF B M2016Microtubules nonlinear models dynamics investigations through the exp-φ(ξ)-expansion method implementation 4 6 DOI:10.3390/math4010006 [Cited within: 1]
Abdel-GawadH IOsmanM S2013On the variational approach for analyzing the stability of solutions of evolution equations 53 661680 DOI:10.5666/KMJ.2013.53.4.680 [Cited within: 1]
OsmanM SRezazadehHEslamiM2019Traveling wave solutions for (3+1) dimensional conformable fractional Zakharov-Kuznetsov equation with power law nonlinearity 8 559567 DOI:10.1515/nleng-2018-0163
OsmanM SRezazadehHEslamiMNeiramehAMirzazadehM2018Analytical study of solitons to Benjamin-Bona-Mahony-Peregrine equation with power law nonlinearity by using three methods 80 267278
Abdel-GawadH IOsmanM2014Exact solutions of the Korteweg-de Vries equation with space and time dependent coefficients by the extended unified method 45 112 DOI:10.1007/s13226-014-0047-x
OsmanM S2017Analytical study of rational and double-soliton rational solutions governed by the KdV-Sawada-Kotera-Ramani equation with variable coefficients 89 22832289 DOI:10.1007/s11071-017-3586-y
OsmanM SAbdel-GawadH I2015Multi-wave solutions of the (2 + 1)-dimensional Nizhnik-Novikov-Veselov equations with variable coefficients 130 215 DOI:10.1140/epjp/i2015-15215-1
Abdel-GawadH IElazabN SOsmanM2013Exact solutions of space dependent Korteweg-de Vries equation by the extended unified method 82044004 DOI:10.7566/JPSJ.82.044004 [Cited within: 1]
KhaterM M AAttiaR A MParkCLuD2020On the numerical investigation of the interaction in plasma between (high & low) frequency of (Langmuir & ion-acoustic) waves 18103317 DOI:10.1016/j.rinp.2020.103317 [Cited within: 2]
AlamM NTuncC2020Constructions of the optical solitons and other solitons to the conformable fractional Zakharov-Kuznetsov equation with power law nonlinearity 14 94100 DOI:10.1080/16583655.2019.1708542 [Cited within: 2]