删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

The relation between the radii and the densities of magnetic skyrmions

本站小编 Free考研考试/2022-01-02

闂傚倸鍊搁崐鐑芥嚄閸洖绠犻柟鍓х帛閸嬨倝鏌曟繛鐐珔缂佲偓婢舵劖鐓欓柣鎴炆戦埛鎰版倵濮橆剦鐓奸柡宀嬬秮瀵噣宕掑顒€顬嗛梺璇插绾板秴鐣濋幖浣歌摕婵炴垶菤閺嬪海鈧箍鍎遍幊搴㈡叏鎼淬劍鈷戦弶鐐村椤斿鏌¢崨顖氣枅妤犵偛鍟伴幑鍕偘閳╁喚娼旈梺鍝勵槸閻楀啴寮插☉姘殰闁靛ě鍛紳婵炶揪绲肩划娆撳传閾忓湱纾奸悹鍥皺婢ф洟鏌i敐鍛Щ妞ゎ偅绻勯幑鍕传閸曨喒鍋撻崸妤佲拺闁告繂瀚崒銊╂煕閵娿儺鐓肩€规洩缍侀獮鍥偋閸垹骞楅梻浣虹帛閿氱€殿喖鐖奸獮鏍箛椤掑鍞甸悷婊冪灱閸掓帒鈻庨幘铏К闂侀潧绻堥崐鏍吹閸愵喗鐓冮柛婵嗗閳ь剚鎮傞幆鍐敃閿旇В鎷洪梺鍛婄☉閿曘儲寰勯崟顖涚厱闁圭偓娼欓崫娲煙椤旀枻鑰挎鐐叉喘閹囧醇濮橆厼顏归梻鍌欑閹诧繝骞愰崱娑樼鐟滃秹藟濮樿埖鈷戞慨鐟版搐閻掓椽鏌涢妸銈呭祮妞ゃ垺宀搁、姗€鎮㈡笟顖涢敜闂備礁鎲$粙鎴︽晝閵壯呯闁搞儯鍔婃禍婊堟煙閹佃櫕娅呴柣蹇婃櫆椤ㄣ儵鎮欏顔煎壎濠殿喖锕ュ钘夌暦濡ゅ懏鍋傞幖绮光偓鎵挎垿姊绘担瑙勫仩闁搞劏鍋愭禍鎼侇敂閸惊锕傛煙閹殿喖顣奸柡鍛倐閺屻劑鎮ら崒娑橆伓40%闂傚倸鍊搁崐椋庣矆娴i潻鑰块弶鍫氭櫅閸ㄦ繃銇勯弽顐粶缂佲偓婢舵劖鐓涚€广儱楠搁獮鏍煕閵娿儱鈧綊骞堥妸銉庣喖宕稿Δ鈧幗鐢告煟韫囨挾绠伴悗娑掓櫊楠炲牓濡搁妷搴e枛瀹曞綊顢欓幆褍缂氶梻浣筋嚙缁绘劕霉濮橆厾顩叉い蹇撶墕閽冪喖鏌曟繛鍨姉婵℃彃鐗撻弻褑绠涢敐鍛盎濡炪倕楠忛幏锟�
闂傚倸鍊搁崐宄懊归崶顒婄稏濠㈣泛顑囬々鎻捗归悩宸剰缂佲偓婢跺备鍋撻崗澶婁壕闂侀€炲苯澧伴柛鎺撳笧閹风姴顔忛鍏煎€梻浣规偠閸庮垶宕濆畝鍕剭妞ゆ劏鎳囬弨鑺ャ亜閺冨浂娼$憸鐗堝笒閺勩儵鏌″搴′簵闁绘帒锕ラ妵鍕疀閹捐泛顤€闂佺粯鎸荤粙鎴︹€︾捄銊﹀磯闁绘碍娼欐导鎰版⒑閸濆嫭顥犻柛鐘冲姉閹广垹鈽夊▎蹇曠獮濠碘槅鍨伴幖顐ょ尵瀹ュ棛绡€缁剧増锚婢ф煡鏌熺粙鍨毐闁伙絿鍏橀獮鎺楀箣閺冣偓閺傗偓闂備礁缍婇崑濠囧礈濮橀鏁婇柡鍥╁亹閺€浠嬫煟閹邦剚鈻曢柛銈囧枎閳规垿顢涘鐓庢缂備浇浜崑銈夊春閳ь剚銇勯幒鎴濐仾闁绘挸绻橀弻娑㈠焺閸愮偓鐣堕梺鍝勬4缁插潡鍩€椤掑喚娼愭繛娴嬫櫇缁辩偞绗熼埀顒勫Υ娴g硶妲堥柕蹇娾偓鏂ュ亾閻戣姤鐓冮弶鐐靛椤﹀嘲顭跨憴鍕闁宠鍨块、娆撴儗椤愵偂绨藉瑙勬礋椤㈡﹢鎮╅崗鍝ョ憹闂備礁鎼粙渚€鎮橀幇鐗堝仭闁归潧鍟块悧姘舵⒑閸涘﹥澶勯柛瀣椤㈡牠宕熼鍌滎啎闁诲海鏁告灙鐎涙繈姊虹紒姗嗘當缂佺粯甯掑嵄闁圭増婢樼猾宥夋煕椤愶絿绠樻い鎾存そ濮婅櫣绱掑Ο蹇d邯閹ê顫濈捄铏圭暰闂佹寧绻傞ˇ浼村煕閹烘垯鈧帒顫濋浣规倷婵炲瓨绮嶇换鍫ュ蓟閿涘嫪娌悹鍥ㄥ絻椤鈹戦悙鍙夘棑闁搞劋绮欓獮鍐ㄢ枎閹存柨浜鹃柣銏㈡暩閵嗗﹪鏌$€n偆澧垫慨濠呮缁辨帒螣閾忛€涙闂佽棄鍟存禍鍫曞蓟閻斿吋鍋い鏍ㄧ懃閹牏绱撴担浠嬪摵閻㈩垪鈧剚鍤曟い鏇楀亾闁糕斁鍋撳銈嗗笒鐎氼參宕戦敓鐘崇叆闁哄啫鍊告禍楣冩煛閸℃ḿ鐭岄柟鍙夋倐閹囧醇濠靛牜鍎岄柣搴ゎ潐閹搁娆㈠璺鸿摕婵炴垟鎳囬埀顒婄畵楠炲鈹戦崶鈺佽拫闂傚倷绀侀幉锟犳嚌妤e啫绠犻幖娣妽缁犳帡姊绘担绋挎倯缂佷焦鎸冲鎻掆槈濠ф儳褰洪梻鍌氬€风欢姘跺焵椤掑倸浠滈柤娲诲灡閺呭爼顢涢悙绮规嫼闂佸吋浜介崕閬嶅煕婵傛繂鈹戦悩鍨毄闁稿鍋涘玻鍨枎閹惧疇袝闁诲函缍嗛崰妤呭吹鐏炶娇鏃堟晲閸涱厽娈紓浣哄Х閸犳牠寮婚悢鐓庣畾闁绘鐗滃Λ鍕⒑鐠囪尙绠烘繛鍛礈閹广垹鈹戠€n亜鐎銈嗗姧缁蹭粙寮冲Δ鍐=濞达絾褰冩禍鐐節閵忥絽鐓愰柛鏃€鐗犻幃锟犳偄閸忚偐鍘撻悷婊勭矒瀹曟粌鈻庨幇顏嗙畾婵炲濮撮鍡涙偂閺囥垺鐓冮柛婵嗗閳ь剝顕х叅闁圭虎鍠楅悡娑㈡倶閻愯泛袚闁革綀顫夐妵鍕敃閿濆洨鐣甸梺浼欑悼閸忔ê鐣烽崼鏇炵厸闁告劏鏅滈惁鎺楁⒒閸屾瑦绁扮€规洖鐏氶幈銊╁级閹炽劍妞芥俊鍫曞醇濞戞鐫忛梻浣虹帛閸旀洟骞栭锔藉殝閻熸瑥瀚ㄦ禍婊堟煙閻戞ê鐏ラ柍褜鍓欑紞濠傜暦閹存繍娼ㄩ柍褜鍓熷濠氬即閻旇櫣顔曢悷婊冪Ф閳ь剚鍑归崳锝咁嚕閹惰姤鍋愮紓浣骨氶幏娲⒑閸涘﹦鈽夐柨鏇樺€楃划顓㈠箳閹捐尙绠氬銈嗗姧缁查箖藟閸喍绻嗘い鎰╁灪閸ゅ洭鏌涢埡瀣瘈鐎规洏鍔戦、娆撳箚瑜嶉崣濠囨⒒閸屾瑨鍏岀紒顕呭灦瀹曟繈鏁冮崒姘鳖槶濠电偛妫欓崝鏇犳閻愮鍋撻獮鍨姎妞わ缚鍗抽幃鈥斥枎閹炬潙鈧灚绻涢幋鐐垫喗缂傚倹鑹鹃…鑳檨闁告挾鍠栧濠氭偄閸忕厧鍓梺鍛婄缚閸庡疇鈪靛┑掳鍊楁慨鐑藉磻濞戙垺鐓€闁挎繂妫旂换鍡涙煟閹达絾顥夐幆鐔兼⒑闂堟侗妾у┑鈥虫处缁傚秴鐣¢幍铏杸闂佺粯鍔栧ḿ娆撴倶閿旇姤鍙忓┑鐘插閸も偓濡炪値鍘奸悘婵嬶綖濠婂牆鐒垫い鎺戝瀹撲線鏌涢幇鈺佸闁哄啫鐗嗗婵囥亜閺冨洤袚闁绘繍鍋婇弻锝嗘償閳ュ啿杈呴梺绋款儐閹瑰洭寮诲☉銏犵疀妞ゆ挾鍋涙慨銏犫攽閻愯尙澧㈤柛瀣尵閹广垹鈽夊锝呬壕闁汇垻娅ヨぐ鎺濇晛闁规儳澧庣壕鐣屸偓骞垮劙缁€浣圭妤e啯鈷掑〒姘e亾婵炰匠鍏炬稑螖閸涱厾鏌堥梺鍦檸閸犳牜绮婚悩缁樼厪闊洦娲栧暩闂佸搫妫楅澶愬蓟閳╁啫绶為幖娣灮閵嗗﹪姊虹拠鈥虫珯闁瑰嚖鎷�40%闂傚倸鍊搁崐椋庣矆娴i潻鑰块弶鍫氭櫅閸ㄦ繃銇勯弽顐粶缂佲偓婢舵劖鐓涚€广儱楠搁獮鏍煕閵娿儱鈧綊骞堥妸銉庣喖骞愭惔锝冣偓鎰板级閳哄倻绠炴慨濠呮缁瑩骞愭惔銏″缂傚倷娴囬褏绮旈悷鎵殾闁汇垹鎲¢弲婵嬫煃瑜滈崜鐔凤耿娓氣偓濮婅櫣绱掑Ο鍏煎櫑闂佺娅曢崝妤冨垝閺冨牜鏁嗛柛鏇ㄥ墰閸橆亪姊虹化鏇炲⒉妞ゃ劌鎳樺鎶芥偄閸忚偐鍘甸悗鐟板婢瑰棛绮旈悜妯镐簻闁靛繆鍩楅鍫濈厴闁硅揪绠戦悙濠勬喐濠婂嫬顕遍柛鈩冪⊕閳锋帒霉閿濆懏鍟為柟顖氱墦閺岋絽螖娴h櫣鐓夐悗瑙勬礃缁矂鍩ユ径鎰潊闁炽儱鍘栭幋閿嬩繆閻愵亜鈧牠鎮уΔ鍐煓闁圭偓鐪归埀顒€鎳橀幃婊堟嚍閵夈儰鍖栧┑鐐舵彧缁蹭粙骞楀⿰鍫熸櫖鐎广儱娲ㄧ壕鐓庮熆鐠虹尨鍔熷ù鐘灲濡焦寰勭€n剛鐦堥悷婊冪箲閹便劑骞橀鑲╂焾濡炪倖鐗滈崑娑氱不濮樿埖鐓曠€光偓閳ь剟宕戦悙鐑樺亗闁靛濡囩粻楣冩煙鐎电ǹ鈧垿宕烽娑樹壕婵ê宕。鑲╃磼缂佹ḿ娲撮柟顔瑰墲閹棃鍩ラ崱妤€唯缂傚倸鍊风粈渚€宕愰崫銉х煋鐟滅増甯囬埀顑跨窔瀵挳濮€閻欌偓濞煎﹪姊虹紒妯剁細闁轰焦鐡曢埅锟�9闂傚倸鍊搁崐鐑芥嚄閸洏鈧焦绻濋崶褎妲梺鍝勭▉閸撴瑧绱炲鈧缁樼瑹閳ь剟鍩€椤掑倸浠滈柤娲诲灡閺呭爼顢氶埀顒勫蓟濞戞瑧绡€闁告劏鏅涢埀顒佸姍閺岀喖顢涘顒佹婵犳鍠掗崑鎾绘⒑闂堟稓澧曢柟铏姍钘濇い鎰堕檮閳锋垹绱掗娑欑濠⒀冨级缁绘盯鎳犻鈧弸娑㈡煙椤曞棛绡€闁糕晪绻濆畷銊╊敊鐟欏嫬顏归梻鍌欑閹诧繝骞愰崱娑樼鐟滃秹藟濮樿埖鈷戞慨鐟版搐閻掓椽鏌涢妸鈺€鎲炬鐐村姍閹煎綊顢曢敍鍕暰闂佽瀛╃粙鎺曟懌婵犳鍨遍幐鎶藉箖瀹勬壋鏋庨煫鍥ㄦ惄娴犲ジ姊婚崒姘簽闁搞劏娉涢~蹇涙惞鐟欏嫬鍘归梺鍛婁緱閸ㄤ即鎮у鑸碘拺缂佸娼¢妤冣偓瑙勬处閸撶喎锕㈡担绯曟斀妞ゆ柨顫曟禒婊堟煕鐎n偅宕岄柡宀€鍠栭、娆撳Ω閵夛附鎮欓梺缁樺姇閿曨亪寮诲澶婁紶闁告洦鍋呭▓鏌ユ⒑鐠団€崇伈缂傚秳绀侀~蹇撁洪鍕唶闁硅壈鎻徊鍝勎i崼銉︹拺闁稿繐鍚嬮妵鐔兼煕閵娧勬毈濠碉紕鏁婚獮鍥级鐠侯煉绱查梻浣虹帛閸旀ḿ浜稿▎鎾嶅洭顢曢敂瑙f嫼闂佸憡绻傜€氬嘲危鐟欏嫨浜滈柟瀵稿仧閹冲洨鈧娲樼换鍫濈暦閵娧€鍋撳☉娆嬬細闁告ɑ鎮傞幃妤冩喆閸曨剙闉嶉梺鍛婄箓闁帮絽鐣烽幇鏉课у璺猴功閺屽牓姊洪崜鎻掍簴闁稿孩鐓¢幃锟犲即閻樺啿鏋戦柟鑹版彧缁插潡鎯屽▎鎾跺彄闁搞儯鍔庨埥澶愭煟閹烘垹浠涢柕鍥у楠炲鏁愰崨顓炐ラ梻浣呵圭换鎰板嫉椤掑倹宕叉繛鎴欏灩瀹告繃銇勯幇鈺佺仼妞ゎ剙顦靛铏规嫚閳ュ磭浠┑鈽嗗亜閸熸潙顕i锕€绀冮柍鍝勫€搁鎾剁磽娴e壊鍎撴繛澶嬫礃缁傛帡顢橀姀鈾€鎷绘繛杈剧到閹诧繝宕悙鐑樼厽闁靛⿵濡囬惌瀣煙瀹勭増鍤囨鐐存崌楠炴帒顓奸崪浣诡棥濠电姷鏁搁崑鐘诲箵椤忓棛绀婂〒姘e亾鐎殿喗鐓¢幊鐘活敆閸愩剱锟犳⒑鐟欏嫬鍔跺┑顔哄€濋幃锟犲即閻斿墎绠氶梺闈涚墕鐎氼噣藝閿曞倹鐓欓柛蹇撳悑閸婃劙鏌$仦鐣屝ユい褌绶氶弻娑滅疀閺冨倶鈧帞绱掗鑲╁闁瑰嘲鎳樺畷鐑筋敇瑜庨柨銈夋⒒娴e憡鎯堟繛灞傚姂瀹曚即骞樼拠鑼幋閻庡箍鍎遍ˇ顖滅不閹惰姤鐓欓柟顖滃椤ュ鏌i幒鎴犱粵闁靛洤瀚伴獮瀣攽閸粏妾搁梻浣呵归敃銉ノg€n剛纾介柛灞捐壘閳ь剟顥撶划鍫熺瑹閳ь剙顕i悽鍓叉晢闁逞屽墴閳ユ棃宕橀钘夌檮婵犮垹鍘滈弲婊堟儎椤栨氨鏆︾紒瀣嚦閺冨牆鐒垫い鎺戝暟缁犺姤绻濋悽闈涗哗闁规椿浜炵槐鐐哄焵椤掍胶绠鹃柛婊冨暟缁夘喚鈧娲╃紞渚€宕洪埀顒併亜閹哄秷鍏岀紒鐘荤畺閺岀喓鈧數枪娴狅箓鏌i幘鍗炲姢缂佽鲸甯℃俊鎼佹晜婵劒铏庨梻浣虹《閺備線宕戦幘鎰佹富闁靛牆妫楅悘锕傛倵缁楁稑鎳愰惌鍫澝归悡搴f憼闁绘挾鍠愰妵鍕疀閹炬潙娅ら柣蹇撻獜缁犳捇寮婚悢纰辨晩闁兼亽鍎禒銏ゆ⒑鏉炴壆鍔嶉柛鏃€鐟ラ悾鐑藉醇閺囩偟鍘搁梺绋挎湰缁嬫垿宕濆鈧濠氬磼濞嗘埈妲梺纭咁嚋缁绘繈骞婂┑瀣鐟滃宕戦幘鎰佹僵闁绘挸楠搁埛瀣節绾板纾块柡浣筋嚙閻g兘宕奸弴銊︽櫌闂佺ǹ鏈銊╁Χ閿曞倹鈷掑ù锝呮啞閸熺偤鏌涢弮鈧悧鐐哄Φ閹版澘绀冩い鏃傛櫕閸樻劙姊绘笟鍥у缂佸鏁婚幃陇绠涘☉娆戝幈闂佸疇妫勫Λ妤呯嵁濡ゅ懏鍊垫慨妯煎亾鐎氾拷
Yu-Jiao Bo,, Wen-Wen Li,, Yu-Chen Guo,, Ji-Chong Yang,Department of Physics, Liaoning Normal University, Dalian 116029, China

First author contact: Author to whom any correspondence should be addressed.
Received:2021-04-11Revised:2021-04-30Accepted:2021-05-1Online:2021-06-01


Abstract
Compared with the traditional magnetic bubble, a skyrmion has a smaller size, and better stability and therefore is considered as a very promising candidate for future memory devices. When skyrmions are manipulated, erased and created, the density of skyrmions can be varied, however the relationship between the radii and the densities of skyrmions needs more exploration. In this paper, we study this problem both theoretically and by using the lattice simulation. The average radius of skyrmions as a function of material parameters, the strength of the external magnetic field and the density of skyrmions is obtained and verified. With this explicit function, the skyrmion radius can be easily predicted, which is helpful for the future study of skyrmion memory devices.
Keywords: radius of a skyrmion;shape of a skyrmion;lattice simulation


PDF (2357KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Yu-Jiao Bo, Wen-Wen Li, Yu-Chen Guo, Ji-Chong Yang. The relation between the radii and the densities of magnetic skyrmions. Communications in Theoretical Physics, 2021, 73(7): 075701- doi:10.1088/1572-9494/abfda0

1. Introduction

Skyrmion is a topological soliton originally proposed to describe the baryons [1]. In condensed matter, a particle-like object known as magnetic skyrmion was introduced theoretically in 1989 [2]. It was observed for the first time in 2D magnetic systems [36] involving Dzyaloshinskii-Moriya interactions (DMI) [7, 8]. Compared with the traditional magnetic bubble, the skyrmion is smaller, more stable and needs lower power to manipulate, therefore, it has been proposed that the skyrmion is a promising candidate for high density, high stability, high speed, high storage and low energy consumption memory devices [911]. As a result, the magnetic skyrmions have drawn a lot of attention and been studied intensively recently [1115].

A prerequisite for the use of skyrmions in devices is the knowledge of the relationship between the size of a skyrmion and parameters such as exchange strength, DMI strength and the strength of external magnetic field. Such a relationship can be investigated by solving the Euler–Lagrange equation of a skyrmion, for example numerically [16] or by using an ansatz [9], or by using the harmonic oscillation expansion [17], or by an asymptotic matching [18]. It has been noticed that the radius of a skyrmion in the skyrmion phase is much smaller than that of an isolated skyrmion [17]. Both the radii of an isolated skyrmion and the skyrmions in the skyrmion lattice were studied quantitatively in [19]. In particular, numerical results were obtained for the equilibrium radii of skyrmion lattices.

However, as a potential candidate for storage, the skyrmion is meant to be manipulated, erased and created. In this case, the number of skyrmions can vary from only just one to filling the entire skyrmion lattice. The transformation of a skyrmion lattice to the saturated state is continuous, in this process, the skyrmion lattice gradually decomposes into isolated skyrmions in the saturated state [15]. In this paper, we study the average radius of skyrmions with the density of skyrmions in the range between a single isolated skyrmion and the skyrmion lattice. While the results have been obtained for a single isolated skyrmion, and for skyrmion lattices, up to our knowledge, the radius of a skyrmion when the density of the skyrmions is between the skyrmion lattice and the single isolated skyrmion is poorly understood at a quantitative level.

The rest of the paper is organized as the following. The analytical and numerical results based on circular cell approximation are established in section 2. In section 3, we introduce the lattice simulation of Landau–Lifshitz-Gilbert (LLG) equation. We compare the theoretical results with the results of lattice simulation in section 4. A summary is made in section 5.

2. Circular cell approximation

The local magnetic moment of a skyrmion can be parameterized as$\begin{eqnarray}{\boldsymbol{n}}(r,\phi ,z)=\sin [m\theta (r)+\gamma ]{{\boldsymbol{e}}}_{\phi }+g\cos [\theta (r)]{{\boldsymbol{e}}}_{z},\end{eqnarray}$where r, φ, z are coordinates in a cylindrical coordinate, γ is the helicity angle, m = 1 for a skyrmion and m = −1 for an anti-skyrmion, g = ± 1. The skyrmion number is Q = − mg. In the following, we only consider the skyrmion with Q = 1 (m = 1, g = − 1).

By using the circular cell approximation, the skyrmions are viewed as sitting in circular cells with radius R, which means the boundary condition θ(0) = π and θ(R) = 0 [19]. In principle, θ(r) can be expanded using any Hilbert space. Since the wave-function of the ground state of the harmonic oscillator and the numerical solution of the Euler–Lagrange equation of a skyrmion are close in shape [17], we use the Hilbert space of harmonic oscillator to expand θ(r). We do not require $\theta ^{\prime} (r)=0$ as in [17] because $\theta ^{\prime} (r)\ne 0$ is allowed by the Euler–Lagrange equation, therefore the eigen-functions of odd energy levels are also included. To impose the boundary conditions θ(0) = π and θ(R) = 0, θ(r) to the next-to-next-to leading order can be written as$\begin{eqnarray}\begin{array}{l}\theta (r)=\displaystyle \sum _{n=0}^{2}{C}_{n}{\phi }_{n}(r)=\pi {{\rm{e}}}^{-\tfrac{\omega {r}^{2}}{2}}\\ \quad -\displaystyle \frac{1+{{cR}}^{2}}{R}r\pi {{\rm{e}}}^{-\tfrac{\omega {r}^{2}}{2}}+c\pi {r}^{2}{{\rm{e}}}^{-\tfrac{\omega {r}^{2}}{2}},\end{array}\end{eqnarray}$where φn are eigen-functions of harmonic oscillator, ω and c are parameters to be determined. By assuming the coefficients of the higher order terms are small, the power counting yields c ∼ 1/R2 and 1/R ≪ 1.

We concentrate on the case when the anisotropy is absent, the energy to be minimized is $F=2\pi {\int }_{0}^{R}{\rm{d}}{rr}{ \mathcal F }(r)$ with the energy density$\begin{eqnarray}\begin{array}{l}{ \mathcal F }(r)=2J\left\{\left[{\left(\displaystyle \frac{1}{2}\displaystyle \frac{\partial \theta }{\partial r}+\displaystyle \frac{d}{2}\right)}^{2}-{\left(\displaystyle \frac{d}{2}\right)}^{2}\right.\right.\\ \quad \left.\left.+\displaystyle \frac{{\sin }^{2}(\theta )}{4{r}^{2}}+\displaystyle \frac{d\sin (2\theta )}{4r}\right]-\displaystyle \frac{b}{2}(\cos (\theta )-1)\right\},\end{array}\end{eqnarray}$where dD/J and bB/J, J is the strength of local ferromagnetic exchange, D is the strength of DMI, B is the strength of the external magnetic field which is assumed to be parallel to the z-axis. For simplicity, we consider dimensionless parameters, the matching is discussed in section 4.4.

Denoting s ≡ 1/R, F can be expanded as $F=\hat{F}+{ \mathcal O }({s}^{5})$ with$\begin{eqnarray}\begin{array}{rcl}\hat{F} & = & -\frac{1}{72{s}^{4}{\omega }^{3}}\left\{-36{\pi }^{3}{{bc}}^{2}{s}^{4}{f}_{\mathrm{1,2},\mathrm{1,0}}+12{\pi }^{3}{bs}\sqrt{\omega }\left(c+{s}^{2}\right)\right.\\ & & \times \ \left(6{{cs}}^{2}{f}_{1,\tfrac{3}{2},\mathrm{1,0}}-\pi {f}_{\tfrac{3}{2},\tfrac{3}{2},\mathrm{0,1}}{\left(c+{s}^{2}\right)}^{2}\right)\\ & & +3{\pi }^{5}{{bf}}_{\mathrm{2,2},\mathrm{1,0}}{\left(c+{s}^{2}\right)}^{4}+36{\pi }^{4}{{bcs}}^{2}{f}_{\tfrac{3}{2},\mathrm{2,0,1}}{\left(c+{s}^{2}\right)}^{2}\\ & & +72{\pi }^{2}{{bs}}^{3}{\omega }^{3/2}{f}_{\tfrac{1}{2},\tfrac{1}{2},\mathrm{0,1}}\left(c+{s}^{2}\right)\\ & & +144{\pi }^{3}{c}^{2}d{s}^{4}\sqrt{\omega }{f}_{1,\tfrac{3}{2},\mathrm{1,1}}-144{\pi }^{2}{{cds}}^{4}{\omega }^{3/2}{f}_{\tfrac{1}{2},\tfrac{1}{2},\mathrm{2,0}}\\ & & +144{\pi }^{3}d{s}^{2}{\omega }^{3/2}{f}_{1,\tfrac{1}{2},\mathrm{1,1}}{\left(c+{s}^{2}\right)}^{2}\\ & & -48{\pi }^{5}d\sqrt{\omega }{f}_{2,\tfrac{3}{2},\mathrm{1,1}}{\left(c+{s}^{2}\right)}^{4}\\ & & +288{\pi }^{4}{{cds}}^{2}\sqrt{\omega }{f}_{\tfrac{3}{2},\tfrac{3}{2},\mathrm{2,0}}{\left(c+{s}^{2}\right)}^{2}\\ & & -24{\pi }^{3}s{\omega }^{3/2}\left(c+{s}^{2}\right)\left(3{{cs}}^{2}\left({f}_{1,\tfrac{1}{2},\mathrm{0,2}}-{f}_{1,\tfrac{1}{2},\mathrm{2,0}}\right)\right.\\ & & \left.+2\pi {f}_{\tfrac{3}{2},\tfrac{1}{2},\mathrm{1,1}}{\left(c+{s}^{2}\right)}^{2}\right)\\ & & +72{\pi }^{2}{s}^{3}{\omega }^{5/2}{f}_{\tfrac{1}{2},-\tfrac{1}{2},\mathrm{1,1}}\left(c+{s}^{2}\right)-72\pi d{s}^{4}{\omega }^{5/2}{f}_{0,-\tfrac{1}{2},\mathrm{1,1}}\\ & & -36\pi {s}^{4}{\omega }^{3}{f}_{0,-\mathrm{1,0,2}}\\ & & +36{s}^{2}\omega \left[4\pi b\left({c}^{2}(-\mathrm{Ci}(\pi )+{\gamma }_{E}-2+\mathrm{log}(\pi ))-4{{cs}}^{2}\right.\right.\\ & & \left.+{s}^{4}(-\mathrm{Ci}(\pi )+{\gamma }_{E}-2+\mathrm{log}(\pi )\right)\\ & & \left.+4{\pi }^{5/2}\sqrt{2}{{cds}}^{2}\sqrt{\omega }-{\pi }^{3}\omega {\left(c+{s}^{2}\right)}^{2}\right]\\ & & -144\pi {{bs}}^{4}{\omega }^{2}(-\mathrm{Ci}(\pi )+{\gamma }_{E}+\mathrm{log}(\pi ))\\ & & +18\pi \omega \left({c}^{4}+{s}^{8}\right)(-\mathrm{Ci}(2\pi )+{\gamma }_{E}+\mathrm{log}(2\pi ))\\ & & +3\pi s\omega \left[16d\mathrm{Si}(2\pi )\left({c}^{3}+{s}^{6}\right)+16\pi d{\left(c+{s}^{2}\right)}^{3}\right.\\ & & \left.+15{\pi }^{5/2}{{cs}}^{2}\sqrt{\omega }\left(c+{s}^{2}\right)\right]-12{\pi }^{3}\omega \\ & & \left({c}^{4}+4{c}^{3}{s}^{2}+12{c}^{2}{s}^{4}+4{{cs}}^{6}+{s}^{8}\right)\\ & & -16{\pi }^{9/2}\sqrt{6}{{cds}}^{2}\sqrt{\omega }{\left(c+{s}^{2}\right)}^{2}+18{\pi }^{2}{s}^{3}{\omega }^{2}\\ & & \times \ \left(c+{s}^{2}\right)\left({\pi }^{3/2}\sqrt{\omega }-8d\right)\\ & & \left.+72{\pi }^{5/2}\sqrt{2}d{s}^{4}{\omega }^{5/2}-36{\pi }^{3}{s}^{4}{\omega }^{3}\right\},\end{array}\end{eqnarray}$where γE is the Euler constant, Ci and Si are cosine and sine integral functions, and ${f}_{m,n,{n}_{c},{n}_{s}}$ are constant numbers defined as$\begin{eqnarray}{f}_{m,n,{n}_{c},{n}_{s}}\equiv {\int }_{0}^{\infty }{\rm{d}}x{{\rm{e}}}^{-{mx}}{x}^{n}{\cos }^{{n}_{c}}\left(\pi {{\rm{e}}}^{-\tfrac{{x}^{2}}{2}}\right){\sin }^{{n}_{s}}\left(\pi {{\rm{e}}}^{-\tfrac{{x}^{2}}{2}}\right).\end{eqnarray}$This seemingly lengthy expression of $\hat{F}$ is nothing more than a polynomial of $\sqrt{\omega }$ and c. To achieve a higher precision, in principle, both the expansions of θ(r) and F can be worked out for higher orders.

For d = 0.4, b = 0.1, R = 20, in the region that ω ∼ 0.15 and c ∼ − 0.01, we compare F with $\hat{F}$ in figure 1. $\hat{F}$ can approximate F well in the region concerned. Especially, the positions where F and $\hat{F}$ are minimized fit each other very well. To minimize F, we use variational method, so that there are two equations ∂F/∂ω = 0 and ∂F/∂c = 0, by which ω and c can be solved.

Figure 1.

New window|Download| PPT slide
Figure 1.Compare F with $\hat{F}$ at d = 0.4, b = 0.1, R = 20. The left panel is F and $\hat{F}$ at ω = 0.15 as functions of c, the right panel is F and $\hat{F}$ at c = − 0.012 as functions of ω.


By setting a threshold h such that the sites with nz < h are determined as inside a skyrmion, the radius of a skyrmion can be obtained by solving the equation $\cos (\theta (r))=h$. Considering the leading order approximation which corresponds to c = s = 0 (denoted as θLO), by solving $\cos ({\theta }_{\mathrm{LO}}(r))=h$, the radius of a skyrmion (denoted as rs) is approximately$\begin{eqnarray}{r}_{s}=\sqrt{\displaystyle \frac{2}{\omega }\mathrm{log}\left(\displaystyle \frac{\pi }{{\cos }^{-1}(h)}\right)},\end{eqnarray}$where ω can be solved by the equations $\partial \hat{F}/\partial \omega \,=\partial \hat{F}/\partial c=0$ mentioned above. We choose the solution that ω and c are real numbers, and ∣c∣ ≪ 1.

With the numerical solutions of ω, we can investigate the change of rs as function of s. For this purpose, we define $\hat{r}={r}_{s}/{r}_{\mathrm{iso}}$ where rs is calculated by ω solved at s, and riso is the radius of a single isolated skyrmion which is calculated by ω solved at s → 0.

Since the numerical solutions are inconvenient to use, we fit the solutions as bilinear function of s around d ∼ 0.4, with the numerical solution of $\hat{r}$ denoted as ${\hat{r}}_{n}$ and the fitted solution denoted as ${\hat{r}}_{f}$, the result is ${\hat{r}}_{n}\approx {\hat{r}}_{f}$ with$\begin{eqnarray}\begin{array}{l}{\hat{r}}_{f}\approx 1+\left(105.837{b}^{2}-197.435{bd}+55.6138b\right.\\ \left.+62.0744{d}^{2}-22.544d-0.873711\right)s\\ +\left(-653.657{b}^{2}+1108.47{bd}-301.911b\right.\\ \left.-483.322{d}^{2}+310.55d-60.965\right){s}^{2}\end{array}\end{eqnarray}$${\hat{r}}_{f}$ is compared with ${\hat{r}}_{n}$ in figure 2. It can be found that, for most cases $\hat{r}$ is smaller than 1 and is decreasing with the growth of s, which indicates that the skyrmions become smaller with the growth of density even when b and d are unchanged.

Figure 2.

New window|Download| PPT slide
Figure 2.${\hat{r}}_{f}$ Compared with ${\hat{r}}_{n}$.


We define the density of skyrmions as ρ = N/A where N is the number of skyrmions within an area A. R is approximately half of the average distance between the skyrmions, therefore R can be related to ρ. Assuming the skyrmions are distributed homogenously, then NA/πR2, and $s\approx \sqrt{\pi N/A}$.

It has been found that, by using the leading order ansatz θLO, to minimize F yields ω = w0b2/d2 where w0 = 0.768548 is a constant [17]. By using equation (6), the average radius rs can be written as$\begin{eqnarray}{r}_{s}(b,d,N)=\sqrt{\displaystyle \frac{2}{{w}_{0}}\mathrm{log}\left(\displaystyle \frac{\pi }{{\cos }^{-1}(h)}\right)}\times \displaystyle \frac{d}{b}\times \hat{r}\left(s=\sqrt{\displaystyle \frac{\pi N}{A}}\right).\end{eqnarray}$

For a skyrmion, nz varies from −1 to 1 from the center to the edge, and the radius is determined by the number of sites with nz < 1. But nz only approaches 1, so we need to set a threshold slightly smaller than 1. If the approximate expression for θ(r) is sufficiently precise, the radius of the skyrmion is consistent as long as we choose a same h for theoretical predictions, lattice simulations and experimental measurements, and the verification of the theory is independent of the specific value of h taken. In this paper we choose 0.9 which is close to 1, other choices would lead to small differences, but would not change the conclusion. Then $\sqrt{2\mathrm{log}\left(\pi /{\cos }^{-1}(h)\right)/{w}_{0}}\approx 2.247\,44$, using ${\hat{r}}_{f}$ to approximate $\hat{r}$,$\begin{eqnarray}\begin{array}{l}{r}_{s}(b,d,\rho )\approx \displaystyle \frac{2.247d}{b}\left\{1+\left[d(975.6-1518.4d)\right.\right.\\ \left.-2053.5{b}^{2}+b(3482.4d-948.481)-191.5\right]\rho \\ +\left[b(98.57-349.9d)+187.6{b}^{2}\right.\\ \left.\left.+d(110.0d-39.96)-1.549\right]\sqrt{\rho }\right\}.\end{array}\end{eqnarray}$

In [19], the equilibrium R is numerically solved by minimize the energy density. Note that R in this case is independent of the density of the skyrmions. In our case, R is a quantity between the case of skyrmion lattice and the case of a single isolated skyrmion, and is determined by the density of the skyrmions, one can calculate rs after R is given.

3. Lattice simulation

The lattice simulation is based on the LLG equation, denoting nr as the local magnetic momentum at site r, the LLG can be written as [2023]$\begin{eqnarray}\displaystyle \frac{{\rm{d}}}{{\rm{d}}t}{{\boldsymbol{n}}}_{{\boldsymbol{r}}}=-{{\boldsymbol{B}}}_{\mathrm{eff}}({\boldsymbol{r}})\times {{\boldsymbol{n}}}_{{\boldsymbol{r}}}-\alpha {{\boldsymbol{n}}}_{{\boldsymbol{r}}}\times \displaystyle \frac{{\rm{d}}}{{\rm{d}}t}{{\boldsymbol{n}}}_{{\boldsymbol{r}}},\end{eqnarray}$where nr is the local magnetic moment, α is the Gilbert damping constant and the effective magnetic field Beff is$\begin{eqnarray}{{\boldsymbol{B}}}_{\mathrm{eff}}({\boldsymbol{r}})=-\displaystyle \frac{\delta H}{\delta {{\boldsymbol{n}}}_{{\boldsymbol{r}}}},\end{eqnarray}$with the discretized version of Hamiltonian defined as [24, 25]$\begin{eqnarray}H=\sum _{{\boldsymbol{r}},i=x,y}\left[-J({\boldsymbol{r}}){{\boldsymbol{n}}}_{{\boldsymbol{r}}+{\delta }_{i}}-D({\boldsymbol{r}}){{\boldsymbol{n}}}_{{\boldsymbol{r}}+{\delta }_{i}}\times {{\boldsymbol{e}}}_{i}-{\boldsymbol{B}}\right]\cdot {{\boldsymbol{n}}}_{{\boldsymbol{r}}},\end{eqnarray}$where δi refers to each neighbor. On a square lattice, one has δi = ei, therefore$\begin{eqnarray}\begin{array}{l}{{\boldsymbol{B}}}_{\mathrm{eff}}({\boldsymbol{r}})=\displaystyle \sum _{i=x,y}\left[J({\boldsymbol{r}}){{\boldsymbol{n}}}_{{\boldsymbol{r}}+{\delta }_{i}}+J({\boldsymbol{r}}-{\delta }_{i}){{\boldsymbol{n}}}_{{\boldsymbol{r}}-{\delta }_{i}}\right]\\ +\displaystyle \sum _{i=x,y}\left[D({\boldsymbol{r}}){{\boldsymbol{n}}}_{{\boldsymbol{r}}+{\delta }_{i}}\times {{\boldsymbol{e}}}_{i}-D({\boldsymbol{r}}-{\delta }_{i}){{\boldsymbol{n}}}_{{\boldsymbol{r}}-{\delta }_{i}}\times {{\boldsymbol{e}}}_{i}\right]+{\boldsymbol{B}}({\boldsymbol{r}}).\end{array}\end{eqnarray}$The simulation was carried out on the GPU [20] which has a great advantage over CPUs because of the ability of parallel computing of the GPU. Equation (1) is numerically integrated by using the fourth-order Runge-Kutta method.

4. Numerical results

We run the simulation on a 512 × 512 square lattice. In the simulation, we use dimensionless homogeneous J, D and B. J = 1 is used as the definition of the energy unit [2527], the results are presented with d and b. In the previous works, the Gilbert constant was chose to be α = 0.01 to 1 [21, 23, 2635]. In this work, we use α = 0.04 which is in the region of commonly used α. The time step is denoted as Δt. We use Δt = 0.01 time unit, and the configurations typically become stable after about 106−107 steps starting with a randomized initial state. The average radius of the skyrmions is measured as rs = As/NA where As is the total area of the skyrmions which is determined by the number of sites in the isoheight nz = h with h = 0.9, A = 5122 and N is the number of skyrmions. The standard errors of the radii of skyrmions are also measured.

To investigate the relationship between r, d and b, we simulate with d in the range of 0.2−0.6, and with growing b for each fixed d. We focus on those configurations that are in the skyrmion phase when stable. The phase diagram is shown in figure 3.

Figure 3.

New window|Download| PPT slide
Figure 3.The phase diagram obtained by lattice simulation of LLG with randomized initial states.


4.1. The relationship between the average radius and density

In this subsection, we use the configurations at d = 0.2, b = 0.025, d = 0.35, b = 0.1, d = 0.4, b = 0.1, d = 0.4, b = 0.2, d = 0.45, b = 0.15 and d = 0.6, b = 0.15 to investigate the relationship between the average radius and density. Firstly we calculate the number of skyrmions in each configuration. By repeatedly and randomly erasing about 10% of the total number of skyrmions at a time and performing the simulation sequentially, we obtain the configurations at different N. Taking the case of d = 0.4, b = 0.1 as an example, the resulting configurations are shown in figure 4.

Figure 4.

New window|Download| PPT slide
Figure 4.The configurations corresponding to different N.


Because the size of the lattice is 512 × 512, $s\approx \sqrt{N\pi /{512}^{2}}\approx 0.003\,46\sqrt{N}$. The ratios of the average radii of skyrmions at different N to the radius of an isolated skyrmion are measured and denoted as ${\hat{r}}_{m}$. We compare ${\hat{r}}_{m}$, ${\hat{r}}_{f}$ and ${\hat{r}}_{n}$ in figure 5. It can be seen that the theocratical results ${\hat{r}}_{n}$ and ${\hat{r}}_{f}$ can approximately predict ${\hat{r}}_{m}$ correctly, the deviations between ${\hat{r}}_{m}$ and ${\hat{r}}_{s,f}$ are generally within about 10%. Besides, for larger skyrmions, the theocratical results are generally better. Especially, for d = 0.4, b = 0.1, ${\hat{r}}_{s}$ can fit ${\hat{r}}_{m}$ very well. For the cases where the sizes of skyrmions are relatively smaller, there are several possible reasons for the deviation. On one hand, when the skyrmions are smaller, they are not homogenously aligned, the distances between the skyrmions become larger, consequently the actual s is smaller for ${\hat{r}}_{m}$, so the points of ${\hat{r}}_{m}$ are biased towards a larger s. Secondly, the lattice simulation is more coarse for smaller skyrmions, which can also lead to differences with the theoretical results. Similarly, if the skyrmions are small and occupy only hundreds of sites, the θ(r) can no longer be treated as a continuous function.

Figure 5.

New window|Download| PPT slide
Figure 5.Compare ${\hat{r}}_{m}$ with ${\hat{r}}_{n}$ and ${\hat{r}}_{f}$.


There are also cases that the ${\hat{r}}_{m}$ are not fitted very well by the theocratical predictions. In the case of d = 0.6, b = 0.15, after erasing some skyrmions, the configuration began to enter the helical phase as shown in figure 6(a). In this case, when an isolated skyrmion is created, it is not stable and will grow into stripes. If we choose the average radius near the phase transition as a baseline, that is, we choose the ${\hat{r}}_{m}$ near the phase transition as 1, the results are shown in figure 6(b). It can be seen that the ${\hat{r}}_{m}$ approaches ${\hat{r}}_{n}$.

Figure 6.

New window|Download| PPT slide
Figure 6.Compare ${\hat{r}}_{m}$ with ${\hat{r}}_{n}$ for d = 0.6, b = 0.15.


Another case is when d = 0.4, b = 0.2 as shown in figure 7. This is an example that when the skyrmions are small, they are no longer homogenously aligned. It can been found from figure 3 that the configuration is also near the phase transition from the skyrmion phase to the ferromagnetic phase. It is interesting that, the average radius is not always decreasing with s especially when s is small. For N = 51, rs = 4.7003 ± 0.0054, for N = 103, rs = 4.7005 ± 0.0043, which are larger than the case of a signle isolated skyrmion rs = 4.6865. One can see that ${\hat{r}}_{n}$ has a similar behavior.

Figure 7.

New window|Download| PPT slide
Figure 7.Compare ${\hat{r}}_{m}$ with ${\hat{r}}_{n}$ for d = 0.4, b = 0.2.


4.2. A formula for the average radius in the skyrmion phase

Since we start from the randomized initial state, the obtained configurations are the skyrmion lattices. In this case, the relationship between rs, d and b are fitted by a rational function, the result is$\begin{eqnarray}\begin{array}{l}{r}_{s}(d,b)\ =\displaystyle \frac{-130.88{b}^{2}+203.89{bd}-25.2503b-66.6575{d}^{2}+65.0494d+0.577576}{18.3341b+3.88567d-0.353591}.\end{array}\end{eqnarray}$rs and fitted rs(d, b) (equation (10)) are shown in figure 8. One can see that the rational function is consistent with the numerical results.

Figure 8.

New window|Download| PPT slide
Figure 8.rs at different d and b (marked as ‘+') and the fitted rs(d, b), i.e. Equation (10).


We compare equation (9) with equation (14) in figure 9. Since the ρ for each configuration is different, the results of rs(b, d, ρ) are depicted as points in figure 9. Note that we remove the points correspond to the cases that the single isolated skyrmions are not stable such as d = 0.6, b = 0.15. It can be seen that rs(b, d, ρ) can match the results very well. rs(d, b, ρ) can be used to predict the average radius of the skyrmions when d, b and the density are given.

Figure 9.

New window|Download| PPT slide
Figure 9.rs calculated with equation (9) (marked as ‘+') compared with equation (14) (the curved surface).


4.3. The shape of the skyrmion in the skyrmion phase

The function θ(r) is often used to describe the shape of a skyrmion [17]. It has been assumed that the higher order corrections to θ(r) are small, which in fact requires that the shape of a skyrmion is not changed significantly in the skyrmion phase. Choosing the configurations at d = 0.2, b = 0.025, d = 0.35, b = 0.1, d = 0.4, b = 0.1 and d = 0.45, b = 0.15 as examples, we measure the average θ(r) with θ in the range ${\cos }^{-1}(0.9)\leqslant \theta \leqslant {\cos }^{-1}(-0.9)$. The results are compared with θLO(r) with r rescaled according to $r\to r/{\hat{r}}_{f}(s)$, for example, in the case of d = 0.4, b = 0.1, one has s ≈ 0.116 165 and θ(r, ρ) = θLO(r/0.783516). The results are shown in figure 10.

Figure 10.

New window|Download| PPT slide
Figure 10.The shapes of isolated skyrmions in the saturated state.


As shown in figure 10, the shapes of isolated skyrmions in a saturated state are similar to the shape of a single isolated skyrmion with r rescaled. This result indicates that our assumption is valid. Note that θ(r, ρ) is also the function θLO(r) with b rescaled as $b/\hat{r}$. It implies that the skyrmions can be seen as being experiencing an effective magnetic strength $B^{\prime} =B/\hat{r}$ when affected by other skyrmions.

4.4. Matching

In the calculations and lattice simulations, we use dimensionless parameters. The numerical results can be matched to the real material by using the rescaling introduced in [21, 36]. The rescaling factor is denoted as q and $q\,=(D/J)\lambda /(2\pi \sqrt{2}a)$ where λ is helical wavelength and a is the lattice spacing. The helical wavelengthes of real materials can be found in [12]. For example, if we take λ ≈ 60 nm, a = 0.4 nm and D/J = 0.4, then q ≈ 6.75. Then r = 6.2854 corresponds to r = 6.2854 × q × a ≈ 16.97 nm. Meanwhile the time unit is rescaled as $t^{\prime} ={q}^{2}J{\hslash }/J^{\prime} $, where J is the dimensionless exchange strength and $J^{\prime} $ is the exchange strength of a real material. If we choose $J^{\prime} \approx 3\ \mathrm{meV}$, the time unit is $t^{\prime} \approx 0.01\ \mathrm{ns}$. The time step in the simulation is ${\rm{\Delta }}t=0.01t^{\prime} \approx 1\ \mathrm{ps}$.

5. Summary

One of the reasons that the skyrmion is proposed as a candidate for the future memory devices is because the size of a skyrmion is small. The radius of a skyrmion when the density of skyrmions is between the skyrmion lattice and the single isolated skyrmion is an important issue which is lack of exploration. In this paper, we study the average radius of skyrmions when the density is between a skyrmion lattice and a single isolated skyrmion. By using the harmonic oscillator expansion, the dependency of the average radius of skyrmions on the parameters of materials, strength of external magnetic field and the density of skyrmions is obtained theoretically. Then, a lattice simulation of LLG equation is performed to verify our results.

The theoretical result is presented in equation (9). Our result indicates that generally the average radius of skyrmions will decrease with the growth of density even when b and d are unchanged. The average radii at different d and b are measured by using lattice simulation. We confirm that our theoretical results can fit the simulated results well. With this relation, the skyrmion radius for different materials at different densities can be easily predicted. We also find that, the shapes of the skyrmions are insensitive to the density, which implies that the interactions between skyrmions can be seen as an effective magnetic strength.

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China under Grant No. 12 047 570 and the Natural Science Foundation of the Liaoning Scientific Committee Grant No. 2019-BS-154.


Reference By original order
By published year
By cited within times
By Impact factor

Skyrme T 1962 Nucl. Phys. 31 556
DOI:10.1016/0029-5582(62)90775-7 [Cited within: 1]

Bogdanov A N Yablonskii D A 1989 Sov. Phys. JETP 68 101
[Cited within: 1]

Rößler U K Bogdanov A N Pfleiderer C 2006 Nature 442 797
DOI:10.1038/nature05056 [Cited within: 1]

Mühlbauer S Binz B Jonietz F Pfleiderer C Rosch A Neubauer A Georgii R Böni P 2009 Science 323 915
DOI:10.1126/science.1166767

Yu X Onose Y Kanazawa N Park J Han J Matsui Y Nagaosa N Tokura Y 2010 Nature 465 901
DOI:10.1038/nature09124

Heinze S von Bergmann K Menzel M Brede J Kubetzka A Wiesendanger R Bihlmayer G Blügel S 2011 Nat. Phys. 7 713
DOI:10.1038/nphys2045 [Cited within: 1]

Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241
DOI:10.1016/0022-3697(58)90076-3 [Cited within: 1]

Moriya T 1960 Phys. Rev. 120 91
DOI:10.1103/PhysRev.120.91 [Cited within: 1]

Wang X Yuan H Wang X 2018 Commun. Phys. 1 31
DOI:10.1038/s42005-018-0029-0 [Cited within: 2]

Iwasaki J Mochizuki M Nagaosa N 2013 Nat. Commun. 4 1463
DOI:10.1038/ncomms2442

Fert A Reyren N Cros V 2017 Nat. Rev. Mater. 2 17031
DOI:10.1038/natrevmats.2017.31 [Cited within: 2]

Nagaosa N Tokura Y 2013 Nat. Nanotechnol. 8 899
DOI:10.1038/nnano.2013.243 [Cited within: 1]

Lonsky M Hoffmann A 2020 APL Mater. 8 100903
DOI:10.1063/5.0027042

Leonov A O Monchesky T L Romming N Kubetzka A Bogdanov A N Wiesendanger R 2016 New J. Phys. 18 065003
DOI:10.1088/1367-2630/18/6/065003

Bogdanov A N Panagopoulos C 2020 Nat. Rev. Phys. 2 492
DOI:10.1038/s42254-020-0203-7 [Cited within: 2]

Bogdanov A Hubert A 1994 Phys. Status Solidi B Basic Res. 186 527
DOI:10.1002/pssb.2221860223 [Cited within: 1]

Yang J-C Mao Q-Q Shi Y 2019 J. Phys. Condens. Matter. 31 165802
DOI:10.1088/1361-648x/ab01ef [Cited within: 6]

Komineas S Melcher C Venakides S 2020 Nonlinearity 33 3395
DOI:10.1088/1361-6544/ab81eb [Cited within: 1]

Bogdanov A Hubert A 1994 J. Magn. Magn. Mater. 138 255
DOI:10.1016/0304-8853(94)90046-9 [Cited within: 3]

Yang J-C Mao Q-Q Shi Y 2019 Mod. Phys. Lett. B 33 1950040
DOI:10.1142/S0217984919500404 [Cited within: 2]

Liu Y-H Li Y-Q 2013 J. Phys. Condens. Matter. 25 076005
DOI:10.1088/0953-8984/25/7/076005 [Cited within: 2]

Tatara G Kohno H Shibata J 2008 Phys. Rep. 468 213
DOI:10.1016/j.physrep.2008.07.003

Zang J Mostovoy M Han J H Nagaosa N 2013 J. Phys. Condens. Matter. 25 076005
DOI:10.1088/0953-8984/25/7/076005 [Cited within: 2]

Iwasaki J Mochizuki M Nagaosa N 2013 Nat. Nanotech. 8 742
DOI:10.1038/nnano.2013.176 [Cited within: 1]

Mochizuki M 2011 Phys. Rev. Lett. 108 017601
DOI:10.1103/PhysRevLett.108.017601 [Cited within: 2]

Schütte C Iwasaki J Rosch A Nagaosa N 2014 Phys. Rev. B 90 174434
DOI:10.1103/PhysRevB.90.174434 [Cited within: 1]

Koshibae W Nagaosa N 2017 Sci. Rep. 7 42645
DOI:10.1038/srep42645 [Cited within: 1]

Wang C Zhai H 2017 Phys. Rev. B 96 144432
DOI:10.1103/PhysRevB.96.144432

Nepal R Güngördü U Kovalev A A 2018 Appl. Phys. Lett. 112 112404
DOI:10.1063/1.5013620

Sampaio J Cros V Rohart S Thiaville A Fert A 2013 Nat. Nanotechnol. 8 839
DOI:10.1038/nnano.2013.210

Litzius K et al. 2017 Nat. Phys. 13 170
DOI:10.1038/nphys4000

Jiang W et al. 2017 Nat. Phys. 13 162
DOI:10.1038/nphys3883

Tomasello R Puliafito V Martinez E Manchon A Ricci M Carpentieri M Finocchio G 2017 J. Phys. D: Appl. Phys. 50 325302
DOI:10.1088/1361-6463/aa7a98

Yang S H Ryu K S Parkin S 2015 Nat. Nanotechnol. 10 221
DOI:10.1038/nnano.2014.324

Barker J Tretiakov O A 2016 Phys. Rev. Lett. 116 147203
DOI:10.1103/PhysRevLett.116.147203 [Cited within: 1]

Tchoe Y Han J H 2012 Phys. Rev. B 85 174416
DOI:10.1103/PhysRevB.85.174416 [Cited within: 1]

相关话题/relation between radii

闂傚倷娴囬褏鈧稈鏅犻、娆撳冀椤撶偟鐛ラ梺鍦劋椤ㄥ懐澹曟繝姘厵闁告挆鍛闂佹娊鏀遍崹鍫曞Φ閸曨垰绠涢柛鎾茬劍閸嬔冾渻閵堝繒鍒扮€殿喖澧庨幑銏犫攽鐎n亞鍔﹀銈嗗笒鐎氼剛绮婚妷锔轰簻闁哄啠鍋撻柛搴″暱閻g兘濡烽妷銏℃杸濡炪倖姊婚悺鏂库枔濡眹浜滈柨鏂垮⒔閵嗘姊婚崒姘偓鐑芥倿閿旈敮鍋撶粭娑樻噽閻瑩鏌熼悜姗嗘畷闁稿孩顨嗛妵鍕棘閸喒鎸冮梺鍛婎殕瀹€鎼佸箖濡も偓閳藉鈻庣€n剛绐楅梻浣哥-缁垰螞閸愵喖钃熸繛鎴欏灩鍞梺闈涚箚閸撴繈鎮甸敃鈧埞鎴︽倷閹绘帗鍊悗鍏夊亾闁归棿绀侀拑鐔兼煏閸繍妲哥紒鐙欏洦鐓曟い顓熷灥閺嬬喐绻涢崼婵堝煟婵﹨娅g槐鎺懳熼悡搴樻嫛闂備胶枪缁ㄦ椽宕愬Δ鍐ㄥ灊婵炲棙鍔曠欢鐐烘煙闁箑澧版い鏃€甯″娲嚃閳圭偓瀚涢梺鍛婃尰閻╊垶鐛繝鍌楁斀閻庯綆鍋嗛崢浠嬫⒑缂佹◤顏勵嚕閼搁潧绶為柛鏇ㄥ幐閸嬫挾鎲撮崟顒傤槰闂佹寧娲忛崹浠嬪极閹扮増鍊风痪鐗埫禍楣冩煥濠靛棝顎楀ù婊冨⒔缁辨帡骞夌€n剛袦闂佸搫鐬奸崰鎰缚韫囨柣鍋呴柛鎰ㄦ櫓閳ь剙绉撮—鍐Χ閸℃ê鏆楅梺纭呮珪閹瑰洦淇婇幘顔肩闁规惌鍘介崓鐢告⒑閹勭闁稿妫濇俊瀛樼節閸屾鏂€闂佺粯锕╅崑鍕妤e啯鈷戦柛娑橈功閳藉鏌f幊閸旀垵顕i弻銉晢闁告洦鍓欓埀顒€鐖奸弻锝夊箛椤撶偟绁烽梺鎶芥敱濮婅绌辨繝鍕勃闁稿本鑹鹃~鍥⒑閸濆嫮鐒跨紒缁樼箓閻i攱绺介崜鍙夋櫇闂侀潧绻掓慨瀵哥不閹殿喚纾介柛灞剧懅閸斿秵銇勯妸銉﹀殗閽樻繈姊婚崼鐔恒€掗柡鍡檮閹便劌顫滈崱妤€浼庣紓浣瑰敾缁蹭粙婀侀梺鎸庣箓鐎氼垶顢楅悢璁垮綊鎮℃惔銏犳灎濠殿喖锕ュ钘夌暦閵婏妇绡€闁稿本绮庨幊鍡樼節绾版ɑ顫婇柛瀣噽閹广垽宕奸妷褍绁﹂梺鍦濠㈡﹢鏌嬮崶顒佺厸闁搞儮鏅涢弸鎴炵箾閸涱喚澧紒缁樼⊕濞煎繘宕滆琚f繝鐢靛仜閹锋垹绱炴担鍝ユ殾闁炽儲鏋奸崼顏堟煕椤愩倕鏋庨柍褜鍓涢弫濠氬蓟閿濆顫呴柣妯哄悁缁敻姊洪幖鐐测偓鎰板磻閹剧粯鈷掑ù锝堫潐閸嬬娀鏌涢弬璺ㄐら柟骞垮灲瀹曠喖顢橀悙鑼喊闂佽崵濮村ú銈咁嚕椤掑嫬绫嶉柛灞绢殔娴滈箖鏌ㄥ┑鍡涱€楀褌鍗抽弻銊モ槈閾忣偄顏�
547闂傚倸鍊搁崐椋庣矆娴i潻鑰块梺顒€绉查埀顒€鍊圭粋鎺斺偓锝庝簽閿涙盯姊洪悷鏉库挃缂侇噮鍨堕崺娑㈠箳濡や胶鍘遍梺鍝勬处椤ㄥ棗鈻嶉崨瀛樼厽闊浄绲奸柇顖炴煛瀹€瀣埌閾绘牠鏌嶈閸撶喖寮绘繝鍥ㄦ櫜濠㈣泛锕﹂悿鍥⒑鐟欏嫬绀冩い鏇嗗懐鐭嗛柛鎰ㄦ杺娴滄粓鐓崶銊﹀鞍妞ゃ儲绮撻弻锝夊箻鐎靛憡鍒涘┑顔硷攻濡炶棄鐣峰Δ鍛闁兼祴鏅涢崵鎺楁⒒娴e憡鎲搁柛锝冨劦瀹曟垿宕熼娑樹患闂佺粯鍨兼慨銈夊疾閹间焦鐓ラ柣鏇炲€圭€氾拷1130缂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾閽樻繃銇勯弽銊х煂闁活厽鎹囬弻锝夊閵忊晜姣岄梺绋款儐閹瑰洤鐣疯ぐ鎺濇晝闁挎繂娲﹂濠氭⒒娓氣偓閳ь剛鍋涢懟顖涙櫠閸欏浜滄い鎰╁焺濡叉椽鏌涢悩璇у伐妞ゆ挸鍚嬪鍕節閸愵厾鍙戦梻鍌欑窔閳ь剛鍋涢懟顖涙櫠閹绢喗鐓涢悘鐐登规晶鑼偓鍨緲鐎氼噣鍩€椤掑﹦绉靛ù婊勭矒閿濈偞鎯旈埦鈧弨浠嬫煟閹邦垰鐨哄褎鐩弻娑㈠Ω閵壯傝檸闂佷紮绲块崗姗€寮幘缁樺亹闁肩⒈鍓﹀Σ浼存煟閻斿摜鐭婄紒缁樺笧閸掓帒鈻庨幘宕囧€為梺鍐叉惈閸熶即鏁嶅⿰鍕瘈闁靛骏绲剧涵楣冩煥閺囶亪妾柡鍛劦濮婄粯鎷呴崨濠傛殘闁煎灕鍥ㄧ厱濠电姴鍟版晶杈╃磽閸屾稒宕岄柟绋匡攻缁旂喖鍩¢崒娑辨閻庤娲︽禍婵嬪箯閸涱垱鍠嗛柛鏇ㄥ幗琚欓梻鍌氬€风粈浣革耿闁秴鍌ㄧ憸鏃堝箖濞差亜惟闁宠桨鑳堕鍥⒑閸撴彃浜濇繛鍙夌墵閹偤宕归鐘辩盎闂佺懓顕崑娑㈩敋濠婂懐纾煎ù锝呮惈椤eジ鏌曢崶褍顏い銏℃礋婵偓闁宠桨绀佹竟澶愭⒒娴g懓顕滅紒瀣浮瀹曟繂鈻庨幘璺虹ウ闁诲函缍嗛崳顕€寮鍡欑瘈濠电姴鍊规刊鍏间繆閺屻儲鏁辩紒缁樼箞閹粙妫冨☉妤佸媰闂備焦鎮堕崝宀€绱炴繝鍌ゅ殨妞ゆ劑鍊楅惌娆愪繆椤愩倖鏆╅柛搴涘€楅幑銏犫攽鐎n亞鍊為梺闈浨归崕鏌ヮ敇濞差亝鈷戦柛婵嗗濡叉悂鏌eΔ浣虹煉鐎规洘鍨块獮鎺懳旈埀顒勫触瑜版帗鐓涢柛鎰╁妿婢ф盯鏌i幘宕囩闁哄本鐩崺鍕礃閳哄喚妲烽梻浣呵圭换鎰版儔閼测晜顫曢柟鐑橆殢閺佸﹪鏌涜箛鎿冩Ц濞存粓绠栭幃娲箳瀹ュ棛銈板銈庡亜椤︾敻鐛崱娑樻閹煎瓨鎸婚~宥夋⒑閸︻厼鍔嬮柛銊ㄦ珪缁旂喖寮撮悢铏诡啎闁哄鐗嗘晶浠嬪箖婵傚憡鐓涢柛婊€绀佹禍婊堝础闁秵鐓曟い鎰Т閸旀粓鏌i幘瀛樼闁哄瞼鍠栭幃婊兾熺拠鏌ョ€洪梻浣呵归鍥ㄧ箾閳ь剟鏌$仦鐣屝ユい褌绶氶弻娑滅疀閺冨倶鈧帗绻涢崱鎰仼妞ゎ偅绻勯幑鍕洪鍜冪船婵犲痉鏉库偓褏寰婃禒瀣柈妞ゆ牜鍋涚粻鐘虫叏濡顣抽柛瀣崌閻涱噣宕归鐓庮潛闂備礁鎽滈崰鎾寸箾閳ь剛鈧娲橀崹鍧楃嵁濡皷鍋撳☉娅亪顢撻幘缁樷拺缂備焦锚閻忥箓鏌ㄥ鑸电厓鐟滄粓宕滃☉銏犵;闁绘梻鍘ч悞鍨亜閹烘垵鏋ゆ繛鍏煎姍閺岀喖顢欓懖鈺佺厽閻庤娲樺ú鐔笺€佸☉銏″€烽柤纰卞墮婵附淇婇悙顏勨偓鏍垂婵傜ǹ纾垮┑鐘宠壘缁€鍌炴倶閻愭澘瀚庡ù婊勭矒閺岀喖骞嗚閹界娀鏌涙繝鍐ㄥ闁哄瞼鍠栭、娆撴嚃閳轰胶鍘介柣搴ゎ潐濞茬喐绂嶉崼鏇犲祦闁搞儺鍓欐儫闂侀潧顦崐鏇⑺夊顑芥斀闁绘劘鍩栬ぐ褏绱掗懠顒€浜剧紒鍌氱Ч閹崇偤濡疯濞村嫰姊洪幐搴㈢5闁稿鎹囧Λ浣瑰緞閹邦厾鍘遍棅顐㈡处濞叉牜鏁崼鏇熺厵闁稿繐鍚嬮崐鎰版煛鐏炵晫啸妞ぱ傜窔閺屾稖绠涢弮鍌楁闂傚洤顦甸弻娑㈠Ψ椤旂厧顫╃紒鐐劤閵堟悂寮婚弴鐔虹瘈闊洦娲滈弳鐘差渻閵堝棙绀夊瀛樻倐楠炲牓濡搁妷搴e枔缁瑩宕归纰辨綍闂傚倷鑳舵灙妞ゆ垵妫濋獮鎰節濮橆剛顔嗛梺鍛婁緱閸ㄩ亶宕伴崱娑欑厱闁哄洢鍔屾晶浼存煛閸℃ê鍝烘慨濠勭帛閹峰懘宕崟顐$帛闁诲孩顔栭崰妤呭磿婵傜ǹ桅闁圭増婢樼粈鍐┿亜韫囨挻顥犲璺哄娣囧﹪濡惰箛鏇炲煂闂佸摜鍣ラ崹璺虹暦閹达附鍋愮紓浣贯缚閸橀亶姊洪弬銉︽珔闁哥噥鍋呴幈銊╁焵椤掑嫭鈷戠紒瀣儥閸庢劙鏌熺粙娆剧吋妤犵偛绻樺畷銊р偓娑櫭禒鎯ь渻閵堝棛澧柤鐟板⒔缁骞嬮敂瑙f嫽婵炶揪绲介幉锟犲箚閸儲鐓曞┑鐘插閸︻厼寮查梻渚€娼х换鍫ュ磹閺囥垺鍊块柛顭戝亖娴滄粓鏌熺€电ǹ浠滄い鏇熺矌缁辨帗鎷呯憴鍕嚒濡炪値鍙€濞夋洟骞夐幘顔肩妞ゆ巻鍋撶痪鐐▕閹鈻撻崹顔界亾闂佽桨绀侀…鐑藉Υ娴g硶妲堟俊顖涚矌閸犲酣鎮鹃埄鍐跨矗濞达絽澹婂Λ婊勭節閻㈤潧浠╅柟娲讳簽缁辩偤鍩€椤掍降浜滄い鎰╁焺濡偓闂佽鍣换婵嬪春閳ь剚銇勯幒鎴濐仾闁抽攱甯¢弻娑氫沪閹规劕顥濋梺閫炲苯鍘哥紒顔界懇閵嗕礁鈻庨幇顔剧槇闂佸憡娲﹂崜锕€岣块悢鍏尖拺闁告挻褰冩禍婵囩箾閸欏澧辩紒顔垮吹缁辨帒螣闂€鎰泿闂備礁婀遍崑鎾翅缚濞嗘拲澶婎潩閼哥數鍘遍柣搴秵閸嬪懐浜告导瀛樼厵鐎瑰嫮澧楅崵鍥┾偓瑙勬礈閸忔﹢銆佸Ο琛℃敠闁诡垎鍌氼棜濠电姷鏁告慨鏉懨洪敃鍌氱9闁割煈鍋嗙粻楣冩煙鐎涙ḿ绠橀柡瀣暟缁辨帡鍩€椤掑倵鍋撻敐搴℃灍闁绘挸鍟伴幉绋库堪閸繄顦у┑鐐村灦濮樸劑鎯岄崱妞曞綊鏁愰崼鐔粹偓鍐煟閹烘埊韬柡宀€鍠庨埢鎾诲垂椤旂晫浜愰梻浣呵归鍡涘箰閹间礁鐓″璺哄閸嬫捇宕烽鐐愩儲銇勯敂鍨祮婵﹥妞介弻鍛存倷閼艰泛顏梺鍛娒幉锛勬崲濞戙垹绾ч柟瀵稿仜閺嬬姴顪冮妶鍐ㄧ仾闁挎洏鍨归悾鐑筋敃閿曗偓鍞悷婊冪灱缁厽寰勬繛鐐杸闁圭儤濞婂畷鎰板箻缂佹ê鈧潡鏌ㄩ弮鈧畷妯绘叏閾忣偅鍙忔俊顖氱仢閻撴劙鏌i幘宕囩闁哄本鐩崺鍕礃閳哄喚妲舵俊鐐€х拋锝嗕繆閸ヮ剙鐒垫い鎺嗗亾婵犫偓鏉堛劎浠氭俊鐐€ら崢濂稿床閺屻儲鍋╅柣鎴eГ閺呮煡鏌涢妷顖炴闁告洖鍟村铏圭矙閹稿孩鎷卞銈冨妼閹冲繒绮嬪澶婄畾妞ゎ兘鈧磭绉洪柡浣瑰姍瀹曘劑顢欓崗鍏肩暭闂傚倷绀侀幉鈥趁洪悢铏逛笉闁哄稁鍘奸拑鐔兼煥濠靛棭妲归柛濠勫厴閺屾稑鈻庤箛锝嗏枔濠碘槅鍋呴崹鍨潖濞差亝鐒婚柣鎰蔼鐎氫即鏌涘Ο缁樺€愰柡宀嬬秮楠炴帡鎮欓悽鍨闁诲孩顔栭崳顕€宕滈悢椋庢殾闁圭儤鍩堝ḿ鈺呮煥濠靛棙顥犻柛娆忓暞缁绘繂鈻撻崹顔界亾闂佺娅曢幐鍝ュ弲闂佺粯枪椤曆呭婵犳碍鐓欓柟顖嗗懏鎲兼繝娈垮灡閹告娊寮诲☉妯锋婵鐗婇弫楣冩⒑闂堚晝绋婚柟顔煎€垮濠氭晲閸℃ê鍔呴梺闈涚箳婵挳寮稿▎鎾寸厽闁绘ê鍟挎慨澶愭煕閻樺磭澧电€规洘妞介崺鈧い鎺嶉檷娴滄粓鏌熺€电ǹ浠滄い鏇熺矋閵囧嫰鏁冮崒銈嗩棖缂備浇椴搁幐鎼侇敇婵傜ǹ妞藉ù锝嚽规竟搴ㄦ⒒娴d警鏀版繛鍛礋閹囨偐鐠囪尙鐤囬梺缁樕戝鍧楀极閸℃稒鐓曢柟閭﹀枛娴滈箖鏌﹂幋婵愭Ш缂佽鲸鎹囧畷鎺戔枎閹存繂顬夐梻浣告啞閸旀洟鈥﹂悜鐣屽祦闊洦绋掗弲鎼佹煥閻曞倹瀚�28缂傚倸鍊搁崐鎼佸磹妞嬪孩顐介柨鐔哄Т绾捐顭块懜闈涘Е闁轰礁顑囬幉鎼佸籍閸稈鍋撴担鑲濇棃宕ㄩ闂寸盎闂備焦鍎崇换鎰耿闁秵鍋傞悗锝庡枟閳锋垿鎮峰▎蹇擃仾闁稿孩顨婇弻娑㈠Ω閵壯嶇礊婵犮垼顫夊ú鐔煎极閹剧粯鏅搁柨鐕傛嫹