删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Generalized heat diffusion equations with variable coefficients and their fractalization from the Bl

本站小编 Free考研考试/2022-01-02

Rami Ahmad El-Nabulsi,1,2,3, Alireza Khalili Golmankhaneh,,41Biomedical Device Innovation Center, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, 518118, China
2Research Center for Quantum Technology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
3Athens Institute for Education and Research, Mathematics and Physics Divisions, 8 Valaoritou Street, Kolonaki, 10671, Athens, Greece
4Department of Physics, Urmia Branch, Islamic Azad University, Urmia, Iran

Received:2020-10-14Revised:2021-02-23Accepted:2021-03-2Online:2021-03-25


Abstract
In this study, we prove that modified diffusion equations, including the generalized Burgers’ equation with variable coefficients, can be derived from the Black-Scholes equation with a time-dependent parameter based on the propagator method known in quantum and statistical physics. The extension for the case of a local fractal derivative is also addressed and analyzed.
Keywords: Black-Scholes equation;heat kernels;modified diffusion equations;generalized Burger’s equation;fractal calculus


PDF (683KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Rami Ahmad El-Nabulsi, Alireza Khalili Golmankhaneh. Generalized heat diffusion equations with variable coefficients and their fractalization from the Black-Scholes equation. Communications in Theoretical Physics, 2021, 73(5): 055002- doi:10.1088/1572-9494/abeb05

1. Introduction

The well-known Black-Scholes model (BSM) based on the diffusion process called geometric Brownian motion provides a closed form for the values of certain options such as the European put options [1]. This model has a broad range of applications ranging from finance to statistical physics, mainly in the theory of anomalous diffusion processes (see [2] and references therein). The theoretical results predicted by the model are not ideal and do not completely agree with real-world applications. Given that the BSM is not satisfactory for calibrating market option data, time-dependent volatility has been conjectured by several studies. In addition, the BSM with time-varying parameters plays a crucial role in quantitative finance, since time-dependent volatility influences investment expectations. Many attempts have been made to construct a viable BS model with a time-dependent volatility function, using the BS equation with variable volatility [2, 3]. Although the BSM has largely been used with constant volatility in physical systems exhibiting diffusion and anomalous diffusion behaviors, the implications of variable volatility are, to the best of our knowledge, absent from the theory of diffusion. This study aims to show that, under simple coordinate transformation, the generalized Burgers’ equation which occurs in various areas of applied sciences such as fluid dynamics and gas dynamics may be derived from the Black-Scholes equation (BSE) with time-dependent coefficients. Moreover, due to the importance of fractals in diffusion processes, finance, and economics, where multifractality, heavy-tailed probability distributions, and volatility clustering play important roles [426], we will extend our approach to the case of fractal calculus which is an important investigation approach. Fractal calculus is a recent mathematical field of study. Due to its universality, this approach is not effectively used in the field of finance and partial differential equations. In general, fractals are non-differentiable irregular shapes used in several financial studies such as market prices [2729]. Recently, Fα-calculus, which is a particular branch of fractal calculus, was formulated in a seminal paper by A.D. Gangal and co-authors [38, 3037]. The advantages of fractal calculus are that it is algorithmic, simple, local, and conjugate with ordinary calculus [30, 31].

This study is organized as follows: in section 2, we introduce the basic setups of our approach; in section 3, the main results were discussed and analyzed; in section 4, a reformulation of the current approach using fractal calculus is introduced, analyzed, and discussed; finally conclusions are given in section 5.

2. Basic setup

In the framework of the BS model, given a continuous function f(t, S(t)) where $(S,t)\in {{\rm{R}}}^{+}\times \left[0,T\right)$, the following modified Taylor expansion holds:$\begin{eqnarray}\displaystyle \frac{{\rm{d}}{f}({t})}{{\rm{d}}{t}}=\displaystyle \frac{\partial f}{\partial t}+\displaystyle \frac{\partial f}{\partial S}\displaystyle \frac{{\rm{d}}{S}}{{\rm{d}}{t}}+\displaystyle \frac{\varepsilon }{2}\displaystyle \frac{{\partial }^{2}f}{\partial {S}^{2}}{\left(\displaystyle \frac{{\rm{d}}{S}}{{\rm{d}}{t}}\right)}^{2}+{\rm{O}}\left(\varepsilon \right).\end{eqnarray}$Here, ϵ is a elementary time which the series expansion of f(t, S(t)) is performed around, as follows:$\begin{eqnarray}\displaystyle \frac{{\rm{d}}{f}}{{\rm{d}}{t}}=\mathop{\mathrm{lim}}\limits_{\varepsilon \to 0}\displaystyle \frac{f\left(t+\varepsilon ,S\left(t+\varepsilon \right)\right)-f\left(t,S\left(t\right)\right)}{\varepsilon }.\end{eqnarray}$S(t) is the option of an underlying security which is assumed to be a stochastic variable and which is governed by the stochastic Langevin or Ito-Weiner equation:$\begin{eqnarray}\displaystyle \frac{{\rm{d}}{S}}{{\rm{d}}{t}}=\phi S(t)+\sigma (t)S(t)R(t).\end{eqnarray}$Here, φ(t) is the expected return on the security S(t), σ(t) its volatility (assumed to be time-dependent), and Rt is the usual Gaussian white noise with a zero mean and which satisfies $\langle {R}_{t},{R}_{t^{\prime} }\rangle =\delta (t-t^{\prime} )$ (a delta function correlator) [3]. If we discretize the time as t = nϵ, the probability distribution function of white noise is then given by: $P({R}_{t})\,=\sqrt{\tfrac{\varepsilon }{2\pi }}{{\rm{e}}}^{-\epsilon {R}_{t}^{2}/2}$ with ${R}_{t}^{2}\approx {\varepsilon }^{-1}$ and accordingly:$\begin{eqnarray}{\left(\displaystyle \frac{{\rm{d}}{S}}{{\rm{d}}{t}}\right)}^{2}\approx {\sigma }^{2}(t){S}^{2}{R}_{t}^{2}=\displaystyle \frac{{\sigma }^{2}(t){S}^{2}}{\varepsilon },\end{eqnarray}$therefore, for ϵ → 0, we can write equation (1) as:$\begin{eqnarray}\begin{array}{rcl}\displaystyle \frac{{\rm{d}}{f}({t})}{{\rm{d}}{t}} & = & \displaystyle \frac{\partial f}{\partial t}+\displaystyle \frac{\partial f}{\partial S}\left(\phi S(t)+\sigma (t)S(t)R(t)\right) +\ \displaystyle \frac{{\sigma }^{2}(t){S}^{2}}{2}\displaystyle \frac{{\partial }^{2}f}{\partial {S}^{2}}.\end{array}\end{eqnarray}$This equation can be also obtained using Ito’s calculus. In the BS model, the delta-hedge (self-financing and riskless) portfolio is defined by: $\pi =f-\tfrac{\partial f}{\partial S}S$ and subsequently, the rate of return is given by:$\begin{eqnarray}\displaystyle \frac{{\rm{d}}\pi }{{\rm{d}}{t}}\equiv \dot{\pi }=\displaystyle \frac{{\rm{d}}{f}}{{\rm{d}}{t}}-\displaystyle \frac{\partial f}{\partial S}\displaystyle \frac{{\rm{d}}{S}}{{\rm{d}}{t}}\equiv \dot{f}-\displaystyle \frac{\partial f}{\partial S}\dot{S}.\end{eqnarray}$On the other hand, since the gain in the value of the portfolio π is deterministic, $\dot{\pi }$ cannot be more or less than the gain in the value of the portfolio invested at the risk-free interest rate r (assumed to be time-dependent). Therefore $\dot{\pi }=r\pi $ and after dropping the φ term (bearing in mind that the pricing of the security derivative is based on a risk-neutral process which is independent of the investor’s opinion), we can write:$\begin{eqnarray}\displaystyle \frac{{\rm{d}}\pi }{{\rm{d}}{t}}=\displaystyle \frac{\partial f}{\partial t}+\displaystyle \frac{{\sigma }^{2}(t){S}^{2}}{2}\displaystyle \frac{{\partial }^{2}f}{\partial {S}^{2}}=r(t)\left(f-S\displaystyle \frac{\partial f}{\partial S}\right).\end{eqnarray}$This problem is, in general, associated with the initial conditions:$\begin{eqnarray*}f(S,T)=\max (S-K,0),0\lt t\lt T,\end{eqnarray*}$and the boundary conditions:$\begin{eqnarray*}f(0,t)=0,\end{eqnarray*}$Here, f(S, t) → S as S → ∞ , where f(S, T) is defined over 0 < S < ∞ , 0 < t < T. The call option gives the payoff $\max ({S}_{T}-K,0)$ at a future time T. The accessible literature has largely treated the boundary conditions for the pricing equations (see [39] and references therein)

3. Main Results

By performing a change of variable R(t) = tαr(t), α∈ R which is the time-dependent effective risk-free interest rate, equation (7) is effortlessly reduced to:$\begin{eqnarray}\displaystyle \frac{\partial f}{\partial t}+R(t){t}^{\alpha }S\displaystyle \frac{\partial f}{\partial S}+\displaystyle \frac{{\sigma }^{2}(t){S}^{2}}{2}\displaystyle \frac{{\partial }^{2}f}{\partial {S}^{2}}-R(t){t}^{\alpha }f=0.\end{eqnarray}$It is notable that the time-dependent parameters in financial dynamics have largely been addressed in the literature through different aspects and methodologies [4049]. Letting x = lnS and introducing the new variable τ = Tt (the time to expiry, such that τ = 0 at T = t), it is easy to check that equation (8) turns into:$\begin{eqnarray}\begin{array}{l}-\displaystyle \frac{\partial f}{\partial T}+\displaystyle \frac{{\sigma }^{2}(T-\tau )}{2}\displaystyle \frac{{\partial }^{2}f}{\partial {x}^{2}}\\ +\left({\left(T-\tau \right)}^{\alpha }r(T-\tau )-\displaystyle \frac{{\sigma }^{2}(T-\tau )}{2}\right)\\ \displaystyle \frac{\partial f}{\partial x}-{\left(T-\tau \right)}^{\alpha }r(T-\tau )f=0.\end{array}\end{eqnarray}$Setting$\begin{eqnarray}\begin{array}{rcl}A(T)=C(T) & = & \displaystyle \frac{{\sigma }^{2}(T)}{2},\\ B(T) & = & {\left(T-\tau \right)}^{\alpha }r(T-\tau ),\,\,{f}_{T}=\displaystyle \frac{\partial f}{\partial T},\\ {f}_{x} & = & \displaystyle \frac{\partial f}{\partial T},\,\,{f}_{{xx}}=\displaystyle \frac{{\partial }^{2}f}{{\partial }^{2}T},\end{array}\end{eqnarray}$we can write equation (9) as:$\begin{eqnarray}-{f}_{T}+A(T){f}_{{xx}}+(B(T)-C(T)){f}_{x}-B(T)f=0.\end{eqnarray}$Eq. (11) describes a financial model with a time-dependent effective risk and a time-dependent volatility. The solution is given by (for the details of calculations and derivations of the solution, please refer to [48, 49]):$\begin{eqnarray}f(x,T)={{\rm{e}}}^{{c}_{1}(T)\tfrac{\partial }{\partial x}}{{\rm{e}}}^{{c}_{2}(T)\tfrac{{\partial }^{2}}{\partial {x}^{2}}}{{\rm{e}}}^{{c}_{3}(T)}{f}({x},0),\end{eqnarray}$where:$\begin{eqnarray}\begin{array}{l}{c}_{1}(T)={\displaystyle \int }_{0}^{T}\left(B(T^{\prime} )-C(T^{\prime} )\right){\rm{d}}{T}^{\prime} \\ ={\displaystyle \int }_{0}^{T}\left({\left(T^{\prime} -\tau \right)}^{\alpha }r(T^{\prime} -\tau )-\displaystyle \frac{{\sigma }^{2}(T^{\prime} -\tau )}{2}\right){\rm{d}}{T}^{\prime} ,\end{array}\end{eqnarray}$$\begin{eqnarray}{c}_{2}(T)={\int }_{0}^{T}\displaystyle \frac{{\sigma }^{2}(T^{\prime} -\tau )}{2}{\rm{d}}{T}^{\prime} ,\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{c}_{3}(T) & = & -{\displaystyle \int }_{0}^{T}B(T^{\prime} ){\rm{d}}{T}^{\prime} \\ & = & -{\displaystyle \int }_{0}^{T}{\left(T^{\prime} -\tau \right)}^{\alpha }r(T^{\prime} -\tau ){\rm{d}}{T}^{\prime} .\end{array}\end{eqnarray}$Since scaling behavior and power laws are common features and ubiquitous in finance and macroeconomics [5055], we assume throughout this work that both volatility and risk vary as power laws. We propose the following scaling relations:$\begin{eqnarray}{\sigma }^{2}(T-\tau )={\sigma }_{0}^{2}{\left(T-\tau \right)}^{\beta }+{\sigma }_{1}^{2},({\sigma }_{0},{\sigma }_{1},\beta )\in {\rm{R}},\end{eqnarray}$$\begin{eqnarray}r(T-\tau )={r}_{0}{\left(T-\tau \right)}^{\chi }+{r}_{1},({r}_{0},{r}_{1},\chi )\in {\rm{R}}.\end{eqnarray}$If β and χ have positive values, then it is obvious that both the (risk-free) interest rate and the volatility grow with time. However, in some cases, the interest rate may decrease over time. On the other hand, the justification for these expressions is related to the ubiquity of power laws in finance. Therefore, we obtain:$\begin{eqnarray}\begin{array}{rcl}{c}_{1}(T) & = & {r}_{0}\displaystyle \frac{{\left(T-\tau \right)}^{1+\alpha +\chi }-{\left(-\tau \right)}^{1+\alpha +\chi }}{1+\alpha +\chi }\\ & & +\ {r}_{1}\displaystyle \frac{{\left(T-\tau \right)}^{1+\alpha }-{\left(-\tau \right)}^{1+\alpha }}{1+\alpha }\\ & & -\ \displaystyle \frac{{\sigma }_{0}^{2}}{2}\displaystyle \frac{{\left(T-\tau \right)}^{\beta +1}-{\left(-\tau \right)}^{\beta +1}}{\beta +1}-\displaystyle \frac{{\sigma }_{1}^{2}}{2}T,\end{array}\end{eqnarray}$$\begin{eqnarray}{c}_{2}(T)=\displaystyle \frac{{\sigma }_{0}^{2}}{2}\displaystyle \frac{{\left(T-\tau \right)}^{\beta +1}-{\left(-\tau \right)}^{\beta +1}}{\beta +1}+\displaystyle \frac{{\sigma }_{1}^{2}}{2}T,\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{c}_{3}(T) & = & -{r}_{0}\displaystyle \frac{{\left(T-\tau \right)}^{1+\alpha +\chi }-{\left(-\tau \right)}^{1+\alpha +\chi }}{1+\alpha +\chi }\\ & & -\ {r}_{1}\displaystyle \frac{{\left(T-\tau \right)}^{1+\alpha }-{\left(-\tau \right)}^{1+\alpha }}{1+\alpha }.\end{array}\end{eqnarray}$Using the following mathematical relations [48, 49]:$\begin{eqnarray}{{\rm{e}}}^{\eta \tfrac{\partial }{\partial x}}{f}({x})={f}\left({x}+\eta \right),\end{eqnarray}$$\begin{eqnarray}{{\rm{e}}}^{\eta \tfrac{{\partial }^{2}}{\partial {x}^{2}}}{f}({x})=\displaystyle \frac{1}{\sqrt{4\pi \eta }}{\int }_{-\infty }^{+\infty }{{\rm{e}}}^{-\tfrac{{\left(x-y\right)}^{2}}{4\eta }}{f}({y}){\rm{d}}{y},\end{eqnarray}$and, in particular, for ${r}_{0}={\sigma }_{0}^{2}/2$ and β = α + χ (since for this particular case, the analysis is simplified considerably without the loss of any generality), following algebra, we obtain:$\begin{eqnarray}\begin{array}{l}f(x,T)={\displaystyle \int }_{-\infty }^{+\infty }{\boldsymbol{G}}(x,t;x^{\prime} ,0)f(x^{\prime} ,0){\rm{d}}{x}^{\prime} \\ ={\displaystyle \int }_{-\infty }^{+\infty }\displaystyle \frac{1}{\sqrt{2\pi \left({\sigma }_{0}^{2}\tfrac{{\left(T-\tau \right)}^{1+\alpha +\chi }-{\left(-\tau \right)}^{1+\alpha +\chi }}{1+\alpha +\chi }+{\sigma }_{1}^{2}T\right)}},\\ \times \ \exp \left(-\tfrac{{\sigma }_{0}^{2}}{2}\displaystyle \frac{{\left(T-\tau \right)}^{1+\alpha +\chi }-{\left(-\tau \right)}^{1+\alpha +\chi }}{1+\alpha +\chi }-{r}_{1}\displaystyle \frac{{\left(T-\tau \right)}^{1+\alpha }-{\left(-\tau \right)}^{1+\alpha }}{1+\alpha }\right.\\ \left.-\displaystyle \frac{{\left(x-x^{\prime} +{r}_{1}\tfrac{{\left(T-\tau \right)}^{1+\alpha }-{\left(-\tau \right)}^{1+\alpha }}{1+\alpha }-\tfrac{{\sigma }_{1}^{2}}{2}T\right)}^{2}}{2\left({\sigma }_{0}^{2}\tfrac{{\left(T-\tau \right)}^{1+\alpha +\chi }-{\left(-\tau \right)}^{1+\alpha +\chi }}{1+\alpha +\chi }+{\sigma }_{1}^{2}T\right)}\right)f(x^{\prime} ,0){\rm{d}}{x}^{\prime} ,\end{array}\end{eqnarray}$where ${\boldsymbol{G}}(x,t;x^{\prime} ,0)$ is the propagator of the pricing equation. For 0 < α ≤ 1 and τ = Tt < < 1 (in normalized units), we can approximate equation (23) by:$\begin{eqnarray}\begin{array}{l}f(x,T)\approx \displaystyle \frac{{{\rm{e}}}^{-\tfrac{{\sigma }_{0}^{2}}{2}\tfrac{{T}^{1+\alpha +\chi }}{1+\alpha +\chi }-{r}_{1}\tfrac{{T}^{1+\alpha }}{1+\alpha }}}{\sqrt{2\pi \left({\sigma }_{0}^{2}\tfrac{{T}^{1+\alpha +\chi }}{1+\alpha +\chi }+{\sigma }_{1}^{2}T\right)}}{\displaystyle \int }_{-\infty }^{+\infty }\\ \exp \left(-\displaystyle \frac{{\left(x-x^{\prime} +{r}_{1}\tfrac{{T}^{1+\alpha }}{1+\alpha }-\tfrac{{\sigma }_{1}^{2}}{2}T\right)}^{2}}{2\left({\sigma }_{0}^{2}\tfrac{{T}^{1+\alpha +\chi }}{1+\alpha +\chi }+{\sigma }_{1}^{2}T\right)}\right)f(x^{\prime} ,0){\rm{d}}{x}^{\prime} .\end{array}\end{eqnarray}$If χ < 2α − 3, which corresponds for the special case of a perturbed risk-free interest rate returning to its equilibrium rate in power-law decay, we can reduce equation (24) to:$\begin{eqnarray}\begin{array}{l}f(x,T)\approx \displaystyle \frac{1}{\sqrt{2\pi {\sigma }_{1}^{2}T}}{\displaystyle \int }_{-\infty }^{+\infty }\\ \exp \left(-{r}_{1}\displaystyle \frac{{T}^{1+\alpha }}{1+\alpha }-\displaystyle \frac{{\left(x-x^{\prime} +{r}_{1}\tfrac{{T}^{1+\alpha }}{1+\alpha }\right)}^{2}}{2{\sigma }_{1}^{2}T}\right)f(x^{\prime} ,0){\rm{d}}{x}^{\prime} \\ \equiv {\displaystyle \int }_{-\infty }^{+\infty }{{\boldsymbol{G}}}_{\mathrm{effective}}(x,T;x^{\prime} ,0)f(x^{\prime} ,0){\rm{d}}{x}^{\prime} ,\end{array}\end{eqnarray}$where$\begin{eqnarray}\begin{array}{rcl}{{\boldsymbol{G}}}_{\mathrm{effective}}(x,T;x^{\prime} ,0) & \equiv & \tilde{{\boldsymbol{G}}}=\displaystyle \frac{1}{\sqrt{2\pi {\sigma }_{1}^{2}T}}\times \ \exp \,\left(-{r}_{1}\displaystyle \frac{{T}^{1+\alpha }}{1+\alpha }-\displaystyle \frac{{\left(x-x^{\prime} +{r}_{1}\tfrac{{T}^{1+\alpha }}{1+\alpha }\right)}^{2}}{2{\sigma }_{1}^{2}T}\right),\end{array}\end{eqnarray}$is the effective heat kernel. For ${\sigma }_{1}^{2}=2$, equation (26) solves the following modified heat diffusion equation [56]:$\begin{eqnarray}\displaystyle \frac{\partial \tilde{{\boldsymbol{G}}}}{\partial T}=\displaystyle \frac{{\partial }^{2}\tilde{{\boldsymbol{G}}}}{\partial {x}^{2}}+{r}_{1}{T}^{2(1-\alpha )}\tilde{{\boldsymbol{G}}}\left(\displaystyle \frac{\partial \tilde{{\boldsymbol{G}}}}{\partial x}-1\right),\end{eqnarray}$which is reduced to its standard form for r1 = 0. Equation (27) is comparable to the generalized Burgers’ equation with variable coefficients [57] of the form:$\begin{eqnarray}\displaystyle \frac{\partial \tilde{{\boldsymbol{G}}}}{\partial T}=\displaystyle \frac{{\partial }^{2}\tilde{{\boldsymbol{G}}}}{\partial {x}^{2}}+f(T)\tilde{{\boldsymbol{G}}}\displaystyle \frac{\partial \tilde{{\boldsymbol{G}}}}{\partial x}+g(T)\tilde{{\boldsymbol{G}}},\end{eqnarray}$where f(T) and g(T) are arbitrary smooth functions. It can be proved that equation (28) may be reduced via a change of the variable T to the well-known variable coefficient generalized Burgers’ equations with linear damping of the form [58, 59]:$\begin{eqnarray}\displaystyle \frac{\partial \tilde{{\boldsymbol{G}}}}{\partial T}=\displaystyle \frac{{\partial }^{2}\tilde{{\boldsymbol{G}}}}{\partial {x}^{2}}+\tilde{{\boldsymbol{G}}}\displaystyle \frac{\partial \tilde{{\boldsymbol{G}}}}{\partial x}+g(T)\tilde{{\boldsymbol{G}}},\end{eqnarray}$where g(T) is another arbitrary smooth function. However, for: ${r}_{1}={\sigma }_{1}^{2}=0$, ${\sigma }_{0}^{2}=2$ and χ = −α, equation (25) is reduced, for large T, to:$\begin{eqnarray}\begin{array}{rcl}f(x,T) & \approx & \displaystyle \frac{{{\rm{e}}}^{-T}}{\sqrt{4\pi T}}{\displaystyle \int }_{-\infty }^{+\infty }\exp \times \ \left(-\displaystyle \frac{{\left(x-x^{\prime} \right)}^{2}}{4T}\right)f(x^{\prime} ,0){\rm{d}}{x}^{\prime} ,\end{array}\end{eqnarray}$which solve the following modified heat diffusion equation:$\begin{eqnarray}\displaystyle \frac{\partial \tilde{{\boldsymbol{G}}}}{\partial T}=\displaystyle \frac{{\partial }^{2}\tilde{{\boldsymbol{G}}}}{\partial {x}^{2}}-\tilde{{\boldsymbol{G}}}.\end{eqnarray}$More generally, the effective heat kernel associated with equation (26) solves a nonlinear heat equation.

4. Fractal Black-Scholes equation with time-dependent parameters

The aim of this section to generalize the outcomes of the previous section by involving fractal derivatives and time [60, 62, 63, 61]. We start by reviewing the basic concepts of fractal calculus. Fractal calculus is a recently formulated framework that includes the derivatives and integrals of functions within a fractal domain [3034]. If F is a thin Cantor set, then the Fα derivative of $h\left(t\right):F\to {\rm{R}}$ at t is defined by [3034]$\begin{eqnarray}{{\rm{D}}}_{F}^{\nu }{h}\left({\rm{t}}\right)=\left\{\begin{array}{ll}{F}_{-}\mathop{\mathrm{lim}}\limits_{y\to t}\,\displaystyle \frac{h\left(y\right)-h\left(t\right)}{{S}_{F}^{\nu }\left(y\right)-{S}_{F}^{\nu }\left(t\right)}, & \mathrm{if}\,t\in F;\\ 0, & \mathrm{otherwise}.\end{array}\right.\end{eqnarray}$where ${S}_{F}^{\nu }(t)$ is called the integral staircase function, which is defined as a Cantor set, a Koch curve, or a Cantor-Tartan or Weierstrass function [3037].

In figures 1(a), (b), (c), and (d) we have plotted the thin Cantor set, the staircase function, and equation (58), respectively.

Figure 1.

New window|Download| PPT slide
Figure 1.The Cantor set, the staircase function, and the solution of the fractal Black-Scholes equation.


Let h(t, Q(t)); F × R+R. Using a fractal Taylor expansion, we have:$\begin{eqnarray}\begin{array}{rcl}{{\rm{D}}}_{F}^{\nu }{h}({\rm{t}}) & = & \displaystyle \frac{\partial h}{\partial {S}_{F}^{\nu }(t)}+\displaystyle \frac{\partial h}{\partial Q}{{\rm{D}}}_{F}^{\nu }{\rm{Q}}\\ & & +\ \displaystyle \frac{\epsilon }{2}\displaystyle \frac{{\partial }^{2}h}{{\partial }^{2}Q}{\left({{\rm{D}}}_{F}^{\nu }{\rm{Q}}\right)}^{2}+O(\epsilon ),\,\,t\in F.\end{array}\end{eqnarray}$The analog of equation (3) is given by$\begin{eqnarray}{{\rm{D}}}_{F}^{\nu }{\rm{Q}}({\rm{t}})=\psi ({\rm{t}}){\rm{Q}}({\rm{t}})+\zeta ({\rm{t}}){\rm{Q}}({\rm{t}}){\rm{P}}({\rm{t}}).\end{eqnarray}$where Pt is fractal Gaussian white noise with a correlation function, as follows:$\begin{eqnarray}\lt {P}_{t},{P}_{t^{\prime} }\gt =\,{\delta }_{F}(t-t^{\prime} ),\end{eqnarray}$where$\begin{eqnarray}{\delta }_{F}(t-t^{\prime} )=\left\{\begin{array}{ll}+\infty & \,\,{\rm{if}}\,\,\,t=t^{\prime} ;\\ 0, & \,{\rm{otherwise}}.\end{array}\right.\,\,\,\,{\int }_{-\infty }^{+\infty }{\delta }_{F}(t-t^{\prime} ){{\rm{d}}}_{F}^{\nu }{t}=0.\end{eqnarray}$Fractalizing equation (4) gives the following equation$\begin{eqnarray}{\left({{\rm{D}}}_{F}^{\nu }{\rm{Q}}\right)}^{2}=\displaystyle \frac{\zeta {\left(t\right)}^{2}{Q}^{2}}{\epsilon }.\end{eqnarray}$Also, the fractal version of equation (5) becomes:$\begin{eqnarray}\begin{array}{rcl}{{\rm{D}}}_{F}^{\nu }{h}({\rm{t}}) & = & \displaystyle \frac{\partial h}{\partial {S}_{F}^{\nu }(t)}+\displaystyle \frac{\partial h}{\partial Q}\\ & & \times \ \left(\psi Q(t)+\zeta (t)Q(t)P(t)\right)+\displaystyle \frac{{\zeta }^{2}(t){Q}^{2}}{2}\displaystyle \frac{{\partial }^{2}h}{\partial {Q}^{2}}.\end{array}\end{eqnarray}$Fractalizing equation (7) leads to$\begin{eqnarray}\begin{array}{rcl}{{\rm{D}}}_{F}^{\nu }\varphi & = & \displaystyle \frac{\partial h}{\partial {S}_{F}^{\nu }(t)}+\displaystyle \frac{{\zeta }^{2}(t){Q}^{2}}{2}\displaystyle \frac{{\partial }^{2}h}{\partial {Q}^{2}}\\ & = & q(t)\left(h-Q\displaystyle \frac{\partial h}{\partial Q}\right).\end{array}\end{eqnarray}$Let $P(t)=Q(t){S}_{F}^{\nu }{\left(t\right)}^{-\alpha }$, and in view of the conjugacy of the fractal calculus with ordinary calculus, we have$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{\partial h}{\partial {S}_{F}^{\nu }(t)}+P(t){S}_{F}^{\nu }{\left(t\right)}^{\alpha }Q\displaystyle \frac{\partial h}{\partial Q}+\displaystyle \frac{{\zeta }^{2}(t){Q}^{2}}{2}\displaystyle \frac{{\partial }^{2}h}{\partial {Q}^{2}}\\ -P(t){S}_{F}^{\nu }{\left(t\right)}^{\alpha }h=0.\end{array}\end{eqnarray}$By the same assumption as that given in the previous section, we can write the fractal version of equation (9) as follows:$\begin{eqnarray}\begin{array}{l}-{{\rm{D}}}_{F}^{\nu }{\rm{h}}+\displaystyle \frac{{\zeta }^{2}({{\rm{S}}}_{F}^{\nu }({\rm{T}})-{{\rm{S}}}_{F}^{\nu }(\tau ))}{2}\displaystyle \frac{{\partial }^{2}{\rm{h}}}{\partial {{\rm{x}}}^{2}}\\ +\left({\left({S}_{F}^{\nu }(T)-{S}_{F}^{\nu }(\tau )\right)}^{\alpha }q({S}_{F}^{\nu }(T)-{S}_{F}^{\nu }(\tau ))-\displaystyle \frac{{\zeta }^{2}({S}_{F}^{\nu }(T)-{S}_{F}^{\nu }(\tau ))}{2}\right)\displaystyle \frac{\partial h}{\partial x}\\ -{\left({S}_{F}^{\nu }(T)-{S}_{F}^{\nu }(\tau )\right)}^{\alpha }q({S}_{F}^{\nu }(T)-{S}_{F}^{\nu }(\tau ))h=0.\end{array}\end{eqnarray}$The solution of equation (41) is$\begin{eqnarray}h(x,T)={{\rm{e}}}^{{c}_{1}(T)\tfrac{\partial }{\partial x}}{{\rm{e}}}^{{c}_{2}(T)\tfrac{{\partial }^{2}}{\partial {x}^{2}}}{{\rm{e}}}^{{c}_{3}(T)}{h}({\rm{x}},0),\end{eqnarray}$where$\begin{eqnarray}\begin{array}{rcl}{d}_{1}(T) & = & {\displaystyle \int }_{0}^{T}\left(M(T^{\prime} )-N(T^{\prime} )\right){{\rm{d}}}_{F}^{\nu }{T}^{\prime} \\ & = & {\displaystyle \int }_{0}^{T}\left({\left(T^{\prime} -\tau \right)}^{\alpha }q(T^{\prime} -\tau )-\displaystyle \frac{{\zeta }^{2}(T^{\prime} -\tau )}{2}\right){{\rm{d}}}_{F}^{\nu }{T}^{\prime} ,\end{array}\end{eqnarray}$$\begin{eqnarray}{d}_{2}(T)={\int }_{0}^{T}\displaystyle \frac{{\zeta }^{2}(T^{\prime} -\tau )}{2}{{\rm{d}}}_{F}^{\nu }{T}^{\prime} ,\end{eqnarray}$and$\begin{eqnarray}\begin{array}{rcl}{d}_{3}(T) & = & -{\displaystyle \int }_{0}^{T}M(T^{\prime} ){{\rm{d}}}_{F}^{\nu }{T}^{\prime} \\ & = & -{\displaystyle \int }_{0}^{T}{\left(T^{\prime} -\tau \right)}^{\alpha }q(T^{\prime} -\tau ){{\rm{d}}}_{F}^{\nu }{T}^{\prime} .\end{array}\end{eqnarray}$By fractalizing equations (16) and (17), we arrive at$\begin{eqnarray}\begin{array}{rcl}{\zeta }^{2}(T-\tau ) & = & {\zeta }_{0}^{2}{\left({S}_{F}^{\nu }(T)-{S}_{F}^{\nu }(\tau )\right)}^{\beta }\\ & & +\ {\zeta }_{1}^{2},({\zeta }_{0},{\zeta }_{1},\beta )\in R,\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}q(T-\tau ) & = & {q}_{0}{\left({S}_{F}^{\nu }(T)-{S}_{F}^{\nu }(\tau )\right)}^{\chi }\\ & & +\ {q}_{1},({q}_{0},{q}_{1},\chi )\in R.\end{array}\end{eqnarray}$Using equations (46) and (47), we obtain$\begin{eqnarray}\begin{array}{l}{d}_{1}(T)={q}_{0}\displaystyle \frac{{\left({S}_{F}^{\nu }(T)-{S}_{F}^{\nu }(\tau )\right)}^{1+\alpha +\chi }-{\left(-{S}_{F}^{\nu }(\tau )\right)}^{1+\alpha +\chi }}{1+\alpha +\chi }\\ +{q}_{1}\displaystyle \frac{{\left({S}_{F}^{\nu }(T)-{S}_{F}^{\nu }(\tau )\right)}^{1+\alpha }-{\left(-{S}_{F}^{\nu }(\tau )\right)}^{1+\alpha }}{1+\alpha }\\ -\displaystyle \frac{{\zeta }_{0}^{2}}{2}\displaystyle \frac{{\left({S}_{F}^{\nu }(T)-{S}_{F}^{\nu }(\tau )\right)}^{\beta +1}-{\left(-{S}_{F}^{\nu }(\tau )\right)}^{\beta +1}}{\beta +1}-\displaystyle \frac{{\zeta }_{1}^{2}}{2}{S}_{F}^{\nu }(T),\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{l}{d}_{2}(T)=\displaystyle \frac{{\zeta }_{0}^{2}}{2}\displaystyle \frac{{\left({S}_{F}^{\nu }(T)-{S}_{F}^{\nu }(\tau )\right)}^{\beta +1}-{\left(-{S}_{F}^{\nu }(\tau )\right)}^{\beta +1}}{\beta +1}\\ +\displaystyle \frac{{\zeta }_{1}^{2}}{2}{S}_{F}^{\nu }(T),\end{array}\end{eqnarray}$and$\begin{eqnarray}\begin{array}{l}{d}_{3}(T)=-{q}_{0}\displaystyle \frac{{\left({S}_{F}^{\nu }(T)-{S}_{F}^{\nu }(\tau )\right)}^{1+\alpha +\chi }-{\left(-{S}_{F}^{\nu }(\tau )\right)}^{1+\alpha +\chi }}{1+\alpha +\chi }\\ -{q}_{1}\displaystyle \frac{{\left({S}_{F}^{\nu }(T)-{S}_{F}^{\nu }(\tau )\right)}^{1+\alpha }-{\left(-{S}_{F}^{\nu }(\tau )\right)}^{1+\alpha }}{1+\alpha }.\end{array}\end{eqnarray}$We conclude that$\begin{eqnarray}\begin{array}{l}h(x,T)\approx \displaystyle \frac{1}{\sqrt{2\pi {\zeta }_{1}^{2}{S}_{F}^{\nu }(T)}}\\ {\displaystyle \int }_{-\infty }^{+\infty }\exp \,\left(-{q}_{1}\displaystyle \frac{{S}_{F}^{\nu }{\left(T\right)}^{1+\alpha }}{1+\alpha }-\displaystyle \frac{{\left(x-x^{\prime} +{q}_{1}\tfrac{{S}_{F}^{\nu }{\left(T\right)}^{1+\alpha }}{1+\alpha }\right)}^{2}}{2{\zeta }_{1}^{2}{S}_{F}^{\nu }(T)}\right)h(x^{\prime} ,0){{\rm{d}}}_{F}^{\nu }{x}^{\prime} ,\\ \equiv {\displaystyle \int }_{-\infty }^{+\infty }{{\boldsymbol{H}}}_{\mathrm{effective}}(x,T;x^{\prime} ,0)h(x^{\prime} ,0){{\rm{d}}}_{F}^{\nu }{x}^{\prime} ,\end{array}\end{eqnarray}$where$\begin{eqnarray}\begin{array}{l}{{\boldsymbol{H}}}_{\mathrm{effective}}(x,T;x^{\prime} ,0)\equiv \tilde{{\boldsymbol{H}}}=\displaystyle \frac{1}{\sqrt{2\pi {\zeta }_{1}^{2}{S}_{F}^{\nu }(T)}}\exp \\ \left(-{q}_{1}\displaystyle \frac{{S}_{F}^{\nu }{\left(T\right)}^{1+\alpha }}{1+\alpha }-\displaystyle \frac{{\left(x-x^{\prime} +{q}_{1}\tfrac{{S}_{F}^{\nu }{\left(T\right)}^{1+\alpha }}{1+\alpha }\right)}^{2}}{2{\zeta }_{1}^{2}{S}_{F}^{\nu }(T)}\right).\end{array}\end{eqnarray}$Similar arguments using fractal calculus give an analog of equation (27), as follows:$\begin{eqnarray}{{\rm{D}}}_{F}^{\nu }\tilde{{\boldsymbol{H}}}=\displaystyle \frac{{\partial }^{2}\tilde{{\boldsymbol{H}}}}{\partial {{\rm{x}}}^{2}}+{{\rm{q}}}_{1}{{\rm{S}}}_{F}^{\nu }{\left({\rm{T}}\right)}^{2(1-\alpha )}\tilde{{\boldsymbol{H}}}\left(\displaystyle \frac{\partial \tilde{{\boldsymbol{H}}}}{\partial {\rm{x}}}-1\right).\end{eqnarray}$Following the same assumption as that given for equation (28), we obtain$\begin{eqnarray}{{\rm{D}}}_{F}^{\nu }\tilde{{\boldsymbol{H}}}=\displaystyle \frac{{\partial }^{2}\tilde{{\boldsymbol{H}}}}{\partial {{\rm{x}}}^{2}}+{\rm{h}}({\rm{T}})\tilde{{\boldsymbol{H}}}\displaystyle \frac{\partial \tilde{{\boldsymbol{H}}}}{\partial {\rm{x}}}+{\rm{k}}({\rm{T}})\tilde{{\boldsymbol{H}}}.\end{eqnarray}$If h(T) = 1 then we have$\begin{eqnarray}{{\rm{D}}}_{F}^{\nu }\tilde{{\boldsymbol{H}}}=\displaystyle \frac{{\partial }^{2}\tilde{{\boldsymbol{H}}}}{\partial {{\rm{x}}}^{2}}+\tilde{{\boldsymbol{H}}}\displaystyle \frac{\partial \tilde{{\boldsymbol{H}}}}{\partial {\rm{x}}}+{\rm{k}}({\rm{T}})\tilde{{\boldsymbol{H}}}.\end{eqnarray}$Using the same assumptions for equation (30), we get$\begin{eqnarray}h(x,T)\approx \displaystyle \frac{{{\rm{e}}}^{-{S}_{F}^{\nu }(T)}}{\sqrt{4\pi {S}_{F}^{\nu }(T)}}{\int }_{-\infty }^{+\infty }{{\rm{e}}}^{-\tfrac{{\left(x-x^{\prime} \right)}^{2}}{4{S}_{F}^{\nu }(T)}}{h}({\rm{x}}^{\prime} ,0){{\rm{d}}}_{F}^{\nu }{x}^{\prime} ,\end{eqnarray}$$\begin{eqnarray}\propto \displaystyle \frac{{{\rm{e}}}^{-{T}^{\nu }}}{\sqrt{4\pi {T}^{\nu }}}{\int }_{-\infty }^{+\infty }{{\rm{e}}}^{-\tfrac{{\left(x-x^{\prime} \right)}^{2}}{4{T}^{\nu }}}{h}({\rm{x}}^{\prime} ,0){{\rm{d}}}_{F}^{\nu }{x}^{\prime} ,\end{eqnarray}$where, if we choose $h(x^{\prime} ,0)=x^{\prime} $, it follows that$\begin{eqnarray}h(x,T)=x{{\rm{e}}}^{-{S}_{F}^{\nu }(T)}\propto {\mathrm{xe}}^{-{T}^{\nu }}.\end{eqnarray}$

In figure 2, we have plotted equation (58) for different values of ν, where the case ν = 1 gives the graph for equation (30) with the condition $h(x^{\prime} ,0)=x^{\prime} $. Equation (56) is the solution of the following fractal-modified heat diffusion:$\begin{eqnarray}{{\rm{D}}}_{F}^{\nu }\tilde{{\boldsymbol{H}}}=\displaystyle \frac{{\partial }^{2}\tilde{{\boldsymbol{H}}}}{\partial {{\rm{x}}}^{2}}-\tilde{{\boldsymbol{H}}}.\end{eqnarray}$We wish to stress that the dissimilarities between the graphs in figures 2(b), (d), and (f) for different values of ν are due to the tails of function f, which demonstrate the presence of the anomalous diffusion processes normally found in financial market dynamics.

Figure 2.

New window|Download| PPT slide
Figure 2.Graphs corresponding to equation (58).


Remark 1. Note that all the previous equations and results can be reduced to those obtained in sections 2, and 3 by choosing ν = 1.

Although the fractal Burgers’ equation has largely been addressed in the literature [6467], the methodology presented in this study based on local fractal calculus is not complicated, compared to the methodologies addressed in the literature, which are based on fractional calculus and higher-order derivatives [6879]. Moreover, the generalized Burgers equations obtained in both approaches discussed throughout this study are simpler than those addressed in the literature which use various complicated tools such as ultrafunctions [80] and the generalized ultrafunction solution [81] among others [82]. We argue that the methodologies addressed in this study may be also used to derive various generalized partial differential equations that may have important implications in various fields of study.

5. Conclusions

The BSE is one of the most important partial differential equations used in finance and economics studies. However, empirical studies show that several properties of markets cannot be correctly modeled by the conventional BS model. Therefore, in recent years, many generalizations of the BS model based on the concept of BSE with time-dependent parameters have been addressed in the literature. In this paper, we considered a BSE with time-dependent volatility and we proved that a family of modified diffusion equations including the generalized Burgers’ equation with variable coefficients may be obtained accordingly. Our methodologies are based on the notion of Feynman’s propagator, which is well-known in statistical and quantum physics. We focused on power-law volatility and risk which are the main scaling features in financial market fluctuations. We also extended this approach to the case of a local fractal derivative due to the importance of fractal calculus in financial theories and diffusion processes. A fractal generalized Burgers’ equation was derived, which differed from the fractal equations obtained in literature by its simplicity. We argue that such a technique may be useful in the derivation of dissimilar partial differential equations, which could have several implications for applied sciences and financial markets [83]. Work is in progress towards this end.

Acknowledgments

The authors would like to thank the anonymous referees for their useful comments and valuable suggestions.

ORCID iDs

Alireza Khalili Golmankhaneh https://orcid.org/0000-0002-5008-0163


Reference By original order
By published year
By cited within times
By Impact factor

Black F, Scholes M 1973 J. Political Econ 81 637 654
DOI:10.1086/260062 [Cited within: 1]

Deng Z C, Hon Y C, Isakov V 2016 Inv. Prob. 32 115010
DOI:10.1088/0266-5611/32/11/115010 [Cited within: 2]

Baaquie B E 1997 J. Phys. I7EDP Sciences1733 1753
DOI:10.1051/jp1:1997167 [Cited within: 2]

Richards G R 2004 Int. J. Forecast. 23 586 601
DOI:10.1002/for.927 [Cited within: 1]

Brock W, Sayers C 1988 J. Monet. Econ. 22 71 90
DOI:10.1016/0304-3932(88)90170-5

Calvet L, Fisher A 2002 Rev. Econ. Stat. 84 381 406
DOI:10.1162/003465302320259420

Hsieh D A 1991 J. Finance 46 1839 1877
DOI:10.1111/j.1540-6261.1991.tb04646.x

Mandelbrot B B 1997 Fractals and Scaling in FinanceBerlinSpringer


Mantegna R N, Stanley H E 1995 Nature 376 46 49
DOI:10.1038/376046a0

Mantegna R N, Stanley H E 1996 Turbulence and financial markets
Nature 383 587 588

DOI:10.1038/383587a0

Medio A 1992 Chaotic Dynamics Theory and Applications to EconomicsCambridgeCambridge University Press


Nelson D B 1991 Econometrica 52 347 370
DOI:10.2307/2938260

Richards G R 2002 Fractals 10 235 251
DOI:10.1142/S0218348X02001063

Schmitt F, Schertzer D, Lovejoy S 1999 Appl. Stoch. Model Data Anal. 15 29 53
DOI:10.1002/(SICI)1099-0747(199903)15:1<29::AID-ASM357>3.0.CO;2-Z

La Torre D, Marsiglio S, Privileggi F 2018 Chaos 28 055916
DOI:10.1063/1.5023782

La Torre D, Marsiglio S, Privileggi F 2011 Image Anal. Stereol. 30 143 151
DOI:10.5566/ias.v30.p143-151

Peters E E 1989 Financial Analyst 7 434 453


Wang X T, Yan H G, Tang M M, Zhu E H 2010 Physica A 389 452 458
DOI:10.1016/j.physa.2009.09.044

Wang X T 2011 Physica A 390 1623 1634
DOI:10.1016/j.physa.2010.12.021

Reis F D A 1996 J. Phys. A: Math. Gen. 29 7803
DOI:10.1088/0305-4470/29/24/007

Méndez V, Campos D, Fort J 2004 Phys. Rev. E 69 016613
DOI:10.1103/PhysRevE.69.016613

Stanley M H R, Amaral L A N, Buldyrev S V, Havlin S, Leschhorn H, Maass P, Salinger M A, Stanley H E 1996 Nature 379 804
DOI:10.1038/379804a0

Takayasu H, Inaoka H 1992 Phys. Rev. Lett. 68 966 969
DOI:10.1103/PhysRevLett.68.966

Edger A G 1990 Measure, Topology, and Fractal GeometryBerlinSpringer


Abelson H, Disessa A A 1998 Turtle GeometryCambridge, MAThe MIT Press


Elliott R J, Kopp P E 1998 Mathematics of Financial MarketsBerlinSpringer
[Cited within: 1]

Mandelbrot B B 2004 The (mis)behavior of marketsNew YorkBasic Books
[Cited within: 1]

Takayasu H 2003 Application of EconophysicsTokyoSpringer


Mizuno T, Kurihara S, Takayasu M, Takayasu H 2003 Phys. A 324 296 302
DOI:10.1016/S0378-4371(02)01881-2 [Cited within: 1]

Parvate A, Gangal A D 2009 Fractals 17 53 81
DOI:10.1142/S0218348X09004181 [Cited within: 5]

Parvate A, Gangal A D 2011 Fractals 19 271 290
DOI:10.1142/S0218348X11005440 [Cited within: 1]

Golmankhaneh A K, Fernandez A, Golmankhaneh A K, Baleanu D 2018 Entropy 20 1 13


Golmankhaneh A K, Baleanu D 2016 Open Physics 14 542 548
DOI:10.1515/phys-2016-0062

Golmankhaneh A K 2019 Num Com Meth Sci Eng. 1 57 66
[Cited within: 2]

Golmankhaneh A K, Balankin A S 2018 Phys. Lett. A 382 960 967
DOI:10.1016/j.physleta.2018.02.009

Golmankhaneh A K, Tunç C 2019 Appl. Math. Comput. 350 386 401
DOI:10.1016/j.amc.2019.01.025

Golmankhaneh A K, Fernandez A 2018 Fractal Fract 2 1 13
DOI:10.3390/fractalfract2040030 [Cited within: 2]

Satin S, Gangal A D 2016 Fractals 24 1650028
DOI:10.1142/S0218348X16500286 [Cited within: 1]

Ekstrom E, Tysk J 2010 J. Math. Anal. Appl. 368 49 507
DOI:10.1016/j.jmaa.2010.04.014 [Cited within: 1]

Lo C F, Hui C H 2006 J. Math. Anal. Appl. 323 1455 1464
DOI:10.1016/j.jmaa.2005.11.068 [Cited within: 1]

Bos L P, Ware A F 2000 J. Comp. Finance 4 99 107
DOI:10.21314/JCF.2001.073

Rodrigo M R, Mamon R 2007 J. Appl. Math. 2007 62098
DOI:10.1155/2007/62098

Rodrigo M R, Mamon R 2006 Appl. Math. Lett. 19 398 402
DOI:10.1016/j.aml.2005.06.012

Tai C S 2000 J. Multinat. Financial Mark 10 397 420
DOI:10.1016/S1042-444X(00)00031-1

Lo C F, Tang H M, Ku K, Hui C H 2009 J. Appl. Math. 2009 359623
DOI:10.1155/2009/359623

Lo C F, Yuen P H, Hui C H 2000 Int. J. Theor. Appl. Finance 3 661 674
DOI:10.1142/S0219024900000814

Roberts G O, Shortland C F 1997 Math. Finance 7 83 93
DOI:10.1111/1467-9965.00024

Lo C F, Hui C H 2001 Finance 1 73 78
DOI:10.1080/713665552 [Cited within: 2]

Lo C F, Lee H C, Hui V H 2003 Quant. Finance 3 98 107
DOI:10.1088/1469-7688/3/2/304 [Cited within: 3]

Podobnik B, Horvatic D, Petersen A M, Njavro M, Stanley H E 2010 Europ. Phys. J. B 76 487 490
DOI:10.1140/epjb/e2009-00380-3 [Cited within: 1]

Gabaix X, Gopikrishnan P, Plerou V, Stanley H E 2003 Nature 423 267 270
DOI:10.1038/nature01624

Filimonov V, Sornette D 2015 Chaos Sol. Fract. 74 27 45
DOI:10.1016/j.chaos.2014.12.002

Pisarenko V, Sornette D 2012 Europ. Phys. J. Spec. Top. 205 95 115
DOI:10.1140/epjst/e2012-01564-8

Warusawitharana M 2016 Finance and Economics Discussion SeriesWashington, DCBoard of Governors of the Federal Reserve System2016-022
DOI:10.17016/FEDS.2016.022

Borland L, Bouchaud J P 2001 J. Invenst. Strat. 1 65 104
DOI:10.21314/JOIS.2011.075 [Cited within: 1]

Polyanin A D, Zhurov A I, Vyazmin A V 2000 J. Non-Equilib. Thermodyn 25 251 267
DOI:10.1515/JNETDY.2000.017 [Cited within: 1]

Sulaiman F B A, Leach J A, Needham D J 2016 Studies Appl. Math. 136 163 188
DOI:10.1111/sapm.12098 [Cited within: 1]

Pocheketa O A, Popovych R O, Vaneeva O O 2014 Appl. Math. Comp. 243 232 244
DOI:10.1016/j.amc.2014.05.099 [Cited within: 1]

Buyukasik S A, Pashaev O K 2013 Comm. Nonlinear Sci. Numer. Simul. 18 1635 1651
DOI:10.1016/j.cnsns.2012.11.027 [Cited within: 1]

Braden G 2010 Fractal Time: The Secret of 2012 and a New World AgeCarlsbad, CAHay House Inc
[Cited within: 1]

Vrobel S 2011 Fractal time: Why a watched kettle never boilsVol. 14SingaporeWorld Scientific
[Cited within: 1]

Welch K 2000 A Fractal Topology of Time: Deepening into Timelessness2nd EditionAustin, TXFox Finding Press
[Cited within: 1]

Parvate A, Gangal A D 2005 Pramana 64 389 409
DOI:10.1007/BF02704566 [Cited within: 1]

Alibaud N, Droniou J, Vovelle J 2007 J. Hyperbolic Differ. Equ 4 479 499
DOI:10.1142/S0219891607001227 [Cited within: 1]

Karch G, Miao C, Xu X 2008 SIAM J. Math. Anal. 39 1536 1549
DOI:10.1137/070681776

Kiselev A, Nazarov F, Shterenberg R 2008 Dyn. Partial Differ. Equ. 5 211 240
DOI:10.4310/DPDE.2008.v5.n3.a2

Dong H, Du D, Li D 2009 Indiana Univ. Math. J. 58 807 822
DOI:10.1512/iumj.2009.58.3505 [Cited within: 1]

El-Nabulsi R A, Soulati T A, Rezazadeh H 2013 J. Adv. Res. Dyn. Cont. Syst. 5 50 62
[Cited within: 1]

El-Nabulsi R A 2013 Nonlinear Dyn. 74 381 394
DOI:10.1007/s11071-013-0977-6

El-Nabulsi R A 2016 Tbilisi Math. J. 9 279 293
DOI:10.1515/tmj-2016-0014

El-Nabulsi R A 2017 J. Anal. 25 301 308
DOI:10.1007/s41478-017-0058-1

El-Nabulsi R A, Torres D F M 2008 J. Math. Phys. 49 053521 053521 053529
DOI:10.1063/1.2929662

El-Nabulsi R A 2008 Fiz. A 17 71 76
DOI:10.3145/epi.2008.ene.08

El-Nabulsi R A, Wu G-c 2012 Afr. Diaspora J. Math. 13 45


El-Nabulsi R A 2017 J. Nig. Math. Soc. 36 101 112


El-Nabulsi R A 2018 Phys. E: Low-Dim. Syst. Nanostruct. 98 90 104
DOI:10.1016/j.physe.2017.12.026

El-Nabulsi R A 2019 Physica C: Supercond. Appl. 567 1353545
DOI:10.1016/j.physc.2019.1353545

El-Nabulsi R A 2019 Phys. E: Low-Dim. Syst. Nanostruct. 112 115 120
DOI:10.1016/j.physe.2019.04.004

Odzijewicz T, Malinowska A B, Torres D F M 2012 Abstr. Appl. Anal. 24 871912
[Cited within: 1]

Benci V 2013 Adv. Nonlinear Stud. 13 461 486
DOI:10.1515/ans-2013-0212 [Cited within: 1]

Benci V, Baglini L L 2016arXiv:1602.01593
[Cited within: 1]

Tersenov A S 2010 Nonlinear Differ. Equ. Appl. 17 437 452
DOI:10.1007/s00030-010-0061-6 [Cited within: 1]

Yermukanova B, Zhexembay L, Karjanto N 2015arXiv:1504.03074
[Cited within: 1]

相关话题/Generalized diffusion equations