删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Efficient two-dimensional atom localization in a five-level conductive chiral atomic medium via bire

本站小编 Free考研考试/2022-01-02

Sajid Ali1, Muhammad Idrees,2,3,, Bakth Amin Bacha,2,, Arif Ullah2, Muhammad Haneef11Lab of Theoretical Physics, Department of Physics, Hazara University, Mansehra 21300, Pakistan
2Quantum Optics and Quantum Information Research Group, Department of Physics, University of Malakand, Chakdara Dir(L), Khyber Pakhtunkhwa, Pakistan
3Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China

First author contact: Authors to whom any correspondence should be addressed.
Received:2020-07-12Revised:2020-10-21Accepted:2020-10-26Online:2020-12-22


Abstract
We have theoretically investigated two-dimensional atom localization using the absorption spectra of birefringence beams of light in a single wavelength domain. The atom localization is controlled and modified through tunneling effect in a conductive chiral atomic medium with absorption spectra of birefringent beams. The significant localization peaks are investigated in the left and right circularly polarized beam. Single and double localized peaks are observed in different quadrants with minimum uncertainty and significant probability. The localized probability is modified by controlling birefringence and tunneling conditions. These results may be useful for the capability of optical microscopy and atom imaging.
Keywords: 2D atom localization;birefringence beam absorption;chiral atomic medium


PDF (1184KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Sajid Ali, Muhammad Idrees, Bakth Amin Bacha, Arif Ullah, Muhammad Haneef. Efficient two-dimensional atom localization in a five-level conductive chiral atomic medium via birefringence beam absorption spectrum. Communications in Theoretical Physics, 2021, 73(1): 015102- doi:10.1088/1572-9494/abc46c

1. Introduction

During the past few decades, atom localization has attracted attention on both theoretical and experimental fronts, primarily due to its wide scope in atom nanolithography [1, 2], trapping and cooling of neutral atoms [3], moving atoms center-of-mass wave function measurement [4, 5], Bose–Einstein condensation [6, 7], matter waves coherent patterning [8], etc. Various kinds of methods have evolved over the course of its progress. While the initial techniques included phase measurement of standing-wave fields [9, 10], atomic dipole, atomic fluorescence, dark resonance interference, spontaneous emission spectrum, and Raman gain process measurement [1117], they differ from modern ones. One such example is an atom, whose energy levels are placed under the influence of the standing wave fields in a subwavelength domain. This new technique has enabled us to witness some basic phenomena, which among many include electromagnetically induced absorption [18, 19], population trapping [20, 21], superluminal and subluminal propagation of light [2226], Kerr nonlinearity [27, 28], optical bistability [29, 30], four-wave mixing [31, 32], electromagnetically induced transparency [33, 34] and optical multistability [35, 36]. Atom localization phenomena are also investigated by calculating the optical Bloch equations based on the formalism of the density matrix. It turns out that imaginary and real parts of the coherence term are directly related to the probe absorption and dispersion spectrum, respectively. Furthermore, highly efficient and high-resolution atomic localization in the subwavelength region is also observed via level population and probe absorption [3747].

Recently, different schemes have been used for one-dimensional (1D) atom localization in subwavelength space through excited level population measurements [4852], and probe field absorption spectra [5357]. In such cases, the standing wave fields are applied along a single direction (i.e, x-axis) and the atom is localized in the 1D subwavelength space. Many new advanced (high-resolution and high-precision) proposals have emerged recently for two-dimensional (2D) and three-dimensional (3D) atom localization. 2D atom localization is experimentally realized by superimposing two standing wave fields. In 2010, Ivanov et al proposed a tripod four-level atomic scheme for 2D atom localization via excited-state population [41]. Ding and his coworkers, in 2011, introduced a four-level closed-loop system and observed 2D atom localization using the probe absorption measurement and the localization was done in a quadrant subwavelength space [38]. Hamedi et al proposed a five-level atomic scheme for the phase sensitive 2D atom localization via excited-state population [37]. A myriad of other proposals for the 2D atomic localization have appeared, as discussed in [5862].

When linear polarized light passes through a chiral medium it splits into the left (LCP) and right circularly polarized (RCP) beams. The LCP and RCP beams have a slight difference in refractive indices (${n}_{r}^{(+)},{n}_{r}^{(-)}$). The difference in refractive indices $(\delta n={n}_{r}^{(+)}-{n}_{r}^{(-)})$ is known as circular birefringence [6365]. The circular birefringence and chiral medium affects the properties of light–matter interaction [6668]. On a thorough literature survey, it appears no analysis has been carried out for atom localization by the birefringence absorption spectrum using the tunneling effect and conductive chiral medium. Inspired from the above studies, we here introduce a new way to localize atoms in the 2D space using dynamic conductive chiral atomic medium under the effects of quantum tunneling. The information of localization can be extracted by the birefringence absorption spectrum in one wavelength domain. The significant localization peaks are investigated in the LCP and RCP beams’ absorption spectra. Single and double localized peaks in different quadrants with minimum uncertainty and significant probability are observed.

2. Model of the atomic system

A five-level atomic configuration is under consideration for the proposed aims and objectives, as shown in figure 1. Two electric probe fields Ep, that differ by phase φp, are driving between the states $\left|5,3,4\right\rangle $. The Rabi frequency of these probes is Ωp and common detuning Δp. Two magnetic probe fields Bm, differing by phase φm, are driving between the states $\left|1,2,5\right\rangle $. The Rabi frequency of these probes is Ωm and common detuning Δm. A control field E1 is driving between the states $\left|1,4\right\rangle $. The Rabi frequency of the field is Ω1 and its detuning Δ1. Another control field E2 is driving between the states $\left|2,3\right\rangle $. The Rabi frequency of the field is Ω2 and its detuning Δ2. The excited states’ spontaneous decay rates are γ32,γ35,γ41,γ45,γ51, and γ52. The system is closed between the states $\left|1,4,5\right\rangle $ and $\left|2,3,5\right\rangle $ by control and electric/magnetic fields. The levels $\left|3,4\right\rangle $ and $\left|1,2\right\rangle $ are so close to each other that atomic kinetic energy p2/2m obeys the uncertainty principle Δpx and ΔEt. The tunneling between two states $\left|3,4\right\rangle $ and $\left|1,2\right\rangle $ are possible when Δx is larger then the states’ separation ΔL. Under these circumstances, an atom tunnels between the levels $\left|3,4\right\rangle $ and $\left|1,2\right\rangle $ with frequencies ν1T and ν2T.

Figure 1.

New window|Download| PPT slide
Figure 1.Schematic of five-level atomic configuration for the 2D atom localization through dynamic conductive chiral medium under the effects of quantum tunneling using birefringence absorption spectrum in one wavelength domain.


The position dependent tunneling frequencies are written as [5861] ${\nu }_{1T}(x,y)=T[\sin ({\eta }_{1}{kx})+\sin ({\eta }_{2}{ky}+{\varphi }_{3})]$ and ${\nu }_{2T}(x,y)=T[\sin ({\eta }_{3}{kx})+\sin ({\eta }_{5}{ky}+{\varphi }_{4})]$. The parameter T represents the space independent parts of tunneling frequencies and φ3, φ4 its phases. Wave vectors associated with the standing-waves respectively are ki=kηi,(i=1,2,3,5). The interaction Hamiltonian for the system is written as:$\begin{eqnarray}\begin{array}{rcl}{H}_{I} & = & -\displaystyle \frac{\hslash }{2}[{{\rm{\Omega }}}_{m}{{\rm{e}}}^{-{\rm{i}}{{\rm{\Delta }}}_{m}t}\left|1\right. \rangle \left. \langle 5\right|+{{\rm{\Omega }}}_{m}{{\rm{e}}}^{-{\rm{i}}{\varphi }_{m}}{{\rm{e}}}^{-{\rm{i}}{{\rm{\Delta }}}_{m}t}\left|2\right. \rangle \left. \langle 5\right|\\ & & +{{\rm{\Omega }}}_{p}{{\rm{e}}}^{-{\rm{i}}{\varphi }_{p}}{{\rm{e}}}^{-{\rm{i}}{{\rm{\Delta }}}_{p}t}\left|5\right. \rangle \left. \langle 4\right|+{{\rm{\Omega }}}_{p}{{\rm{e}}}^{-{\rm{i}}{{\rm{\Delta }}}_{p}t}\left|5\right. \rangle \left. \langle 3\right|\\ & & +{{\rm{\Omega }}}_{1}{{\rm{e}}}^{-{\rm{i}}{{\rm{\Delta }}}_{1}t}\left|1\right. \rangle \left. \langle 4\right|+{{\rm{\Omega }}}_{2}{{\rm{e}}}^{-{\rm{i}}{{\rm{\Delta }}}_{2}t}\left|2\right. \rangle \left. \langle 3\right|\\ & & +\hslash [{\nu }_{1T}(x,y)\left|1\right. \rangle \left. \langle 2\right|+{\nu }_{2T}(x,y)\left|4\right. \rangle \left. \langle 3\right|]+{\rm{H}}.{\rm{C}}..\end{array}\end{eqnarray}$

The detunings of these fields are related to their corresponding angular frequencies and atomic states’ resonance frequencies as: Δ1=ω1ω14, Δ2=ω2ω23 Δp=ωpω45,35 and Δm=ωmω15,25. The master equation for the density matrix is given by [57, 69]$\begin{eqnarray}\dot{\rho }=-\displaystyle \frac{{\rm{i}}}{{\hslash }}[{H}_{I},\rho ]-\displaystyle \frac{1}{2}\sum {\gamma }_{ij}({\delta }^{\dagger }\delta \rho +\rho {\delta }^{\dagger }\delta -2\delta \rho {\delta }^{\dagger }),\end{eqnarray}$where HI represents the interaction Hamiltonian of the system, γij denotes the spontaneous decay rate from the excited state $\left|i\right\rangle $ to the ground state $\left|j\right\rangle $ (i.e., γ41,γ45,γ32,γ35,γ51,γ52) and δ (δ) is the general raising (lowering) operator. Using ${\rho }_{{ij}}\,={\widetilde{\rho }}_{{ij}}\exp [-{\rm{i}}{{\rm{\Delta }}}_{j}t],j=1,2,p,m$ in the dynamical equations of motion and after simplification, the following coupled rates equations are obtained.$\begin{eqnarray}\begin{array}{rcl}{\mathop{\mathop{\rho }\limits^{\sim }}\limits^{\cdot }}_{35} & = & {A}_{1}{\widetilde{\rho }}_{35}+\displaystyle \frac{{\rm{i}}}{2}{{\rm{\Omega }}}_{p}({\widetilde{\rho }}_{55}-{\widetilde{\rho }}_{33})+\displaystyle \frac{{\rm{i}}}{2}{{\rm{\Omega }}}_{2}{\widetilde{\rho }}_{25}-\displaystyle \frac{{\rm{i}}}{2}{{\rm{\Omega }}}_{m}{\widetilde{\rho }}_{31}\\ & & -\displaystyle \frac{{\rm{i}}}{2}{{\rm{\Omega }}}_{m}{{\rm{e}}}^{{\rm{i}}{\varphi }_{m}}{\widetilde{\rho }}_{32}-\displaystyle \frac{{\rm{i}}}{2}{{\rm{\Omega }}}_{p}{{\rm{e}}}^{-{\rm{i}}{\varphi }_{p}}{\widetilde{\rho }}_{34}-{\rm{i}}{\nu }_{2T}{\widetilde{\rho }}_{45},\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\mathop{\mathop{\rho }\limits^{\sim }}\limits^{\cdot }}_{45} & = & {A}_{1}{\widetilde{\rho }}_{45}+\displaystyle \frac{{\rm{i}}}{2}{{\rm{\Omega }}}_{p}{{\rm{e}}}^{-{\rm{i}}{\varphi }_{p}}({\widetilde{\rho }}_{55}-{\widetilde{\rho }}_{44})+\displaystyle \frac{{\rm{i}}}{2}{{\rm{\Omega }}}_{1}{\widetilde{\rho }}_{15}\\ & & -\displaystyle \frac{{\rm{i}}}{2}{{\rm{\Omega }}}_{m}{{\rm{e}}}^{{\rm{i}}{\varphi }_{m}}{\widetilde{\rho }}_{42}-\displaystyle \frac{{\rm{i}}}{2}{{\rm{\Omega }}}_{p}{\widetilde{\rho }}_{43}-{\rm{i}}{\nu }_{2T}{\widetilde{\rho }}_{35},\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\mathop{\mathop{\rho }\limits^{\sim }}\limits^{\cdot }}_{25} & = & {A}_{2}{\widetilde{\rho }}_{25}+\displaystyle \frac{{\rm{i}}}{2}{{\rm{\Omega }}}_{m}{{\rm{e}}}^{{\rm{i}}{\varphi }_{m}}({\widetilde{\rho }}_{55}-{\widetilde{\rho }}_{22})+\displaystyle \frac{{\rm{i}}}{2}{{\rm{\Omega }}}_{2}{\widetilde{\rho }}_{35}\\ & & -\displaystyle \frac{{\rm{i}}}{2}{{\rm{\Omega }}}_{m}{\widetilde{\rho }}_{21}-\displaystyle \frac{{\rm{i}}}{2}{{\rm{\Omega }}}_{p}{\widetilde{\rho }}_{23}-\displaystyle \frac{{\rm{i}}}{2}{{\rm{\Omega }}}_{p}{{\rm{e}}}^{-{\rm{i}}{\varphi }_{p}}{\widetilde{\rho }}_{24}-{\rm{i}}{\nu }_{1T}{\widetilde{\rho }}_{15},\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\mathop{\mathop{\rho }\limits^{\sim }}\limits^{\cdot }}_{15} & = & {A}_{3}{\widetilde{\rho }}_{15}+\displaystyle \frac{{\rm{i}}}{2}{{\rm{\Omega }}}_{m}{\widetilde{\rho }}_{55}-{\widetilde{\rho }}_{11}+\displaystyle \frac{{\rm{i}}}{2}{{\rm{\Omega }}}_{1}{\widetilde{\rho }}_{45}-\displaystyle \frac{{\rm{i}}}{2}{{\rm{\Omega }}}_{m}{{\rm{e}}}^{-{\rm{i}}{\varphi }_{m}}{\widetilde{\rho }}_{12}\\ & & -\displaystyle \frac{{\rm{i}}}{2}{{\rm{\Omega }}}_{p}{\widetilde{\rho }}_{13}-\displaystyle \frac{{\rm{i}}}{2}{{\rm{\Omega }}}_{p}{{\rm{e}}}^{-{\rm{i}}{\varphi }_{p}}{\widetilde{\rho }}_{14}-{\rm{i}}{\nu }_{1T}{\widetilde{\rho }}_{25}.\end{array}\end{eqnarray}$The terms A1−3 are written in the appendix. Applying the first order perturbation condition to the coupled rates equations, while taking Ωp,m in the first order and Ω1,2 in all orders the atoms are prepared in the metastable state $\left|5\right\rangle $. The population in the other states are assumed to be null. This implies that its density element ${\widetilde{\rho }}_{55}^{(0)}=1$. Then the population in other states are zero such as ${\widetilde{\rho }}_{22,33,44}^{(0)}=0$ and ${\widetilde{\rho }}_{42,43,21,23,12,13}^{(0)}=0$. After application of the first order perturbation condition, the coupled density matrix equations ${\dot{\widetilde{\rho }}}_{\mathrm{35,45},\mathrm{25,15}}$ are solved by considering the following integral [70]$\begin{eqnarray}L(t)={\int }_{-\infty }^{t}{{\rm{e}}}^{-G(t-t^{\prime} )}P{\rm{d}}t={G}^{-1}Y,\end{eqnarray}$where L(t) and Y are column matrices and G is a 4×4 matrix. For more details, we refer the reader to [55, 57]. The matrix form of this equation is written in the appendix. The effective coherence terms ${\widetilde{\rho }}_{35}^{(1)}+{\widetilde{\rho }}_{45}^{(1)}$ and ${\widetilde{\rho }}_{25}^{(1)}+{\widetilde{\rho }}_{15}^{(1)}$ are related to electric effective polarization and magnetization, such as $P\,={Nd}({\widetilde{\rho }}_{35}^{(1)}+{\widetilde{\rho }}_{45}^{(1)})$ and $M=N\mu ({\widetilde{\rho }}_{25}^{(1)}+{\widetilde{\rho }}_{15}^{(1)})$. The effective electric and magnetic dipole moments between the states are respectively $\mu =\sqrt{\tfrac{3{\hslash }({\gamma }_{51}+{\gamma }_{52}){\lambda }^{3}}{8{\pi }^{2}}}$ and $d=c\sqrt{\tfrac{3{\hslash }({\gamma }_{51}+{\gamma }_{52}){\lambda }^{3}}{8{\pi }^{2}}}$. Replacing Ωp=Epd/ and Ωm=Bmμ/ while Bm= μ0(H+M) in the polarization and magnetization equations $P={Nd}({\widetilde{\rho }}_{35}^{(1)}+{\widetilde{\rho }}_{45}^{(1)})$ and $M=N\mu ({\widetilde{\rho }}_{25}^{(1)}+{\widetilde{\rho }}_{15}^{(1)})$, we get$\begin{eqnarray}P={\alpha }_{1}{E}_{p}+{\alpha }_{2}H,M={\alpha }_{3}{E}_{p}+{\alpha }_{4}H.\end{eqnarray}$

The terms α1−4 are given in the appendix. The electric polarization and magnetization in terms of chiral coefficient and electric magnetic susceptibility are given in [28, 47]$\begin{eqnarray}P={\unicode{x0025B}}_{0}{\chi }_{e}{E}_{p}+\displaystyle \frac{{\xi }_{{E}_{p}H}}{c}H,M=\displaystyle \frac{{\xi }_{{{HE}}_{p}}}{{\mu }_{0}c}{E}_{p}+{\chi }_{m}H.\end{eqnarray}$

Comparing (8) and (9), we obtain the following chiral coefficients and electric and magnetic susceptibility$\begin{eqnarray}{\chi }_{e}=\displaystyle \frac{{{Nd}}^{2}}{{\varepsilon }_{0}{\hslash }}\left[\displaystyle \frac{{\alpha }_{1}({\hslash }-N{\mu }^{2}{\mu }_{0}{\alpha }_{4})+N{\mu }^{2}{\mu }_{0}{\alpha }_{2}{\alpha }_{3}}{{\hslash }-N{\mu }^{2}{\mu }_{0}{\alpha }_{4}}\right],\end{eqnarray}$$\begin{eqnarray}{\chi }_{m}=\displaystyle \frac{N{\mu }^{2}{\mu }_{0}{\alpha }_{4}}{{\hslash }-N{\mu }^{2}{\mu }_{0}{\alpha }_{4}},\end{eqnarray}$$\begin{eqnarray}{\xi }_{\mathrm{HE}}=\displaystyle \frac{{Nc}\mu {\mu }_{0}{\alpha }_{3}d}{{\hslash }-N{\mu }^{2}{\mu }_{0}{\alpha }_{4}},\end{eqnarray}$and$\begin{eqnarray}{\xi }_{\mathrm{EH}}=\displaystyle \frac{{Nc}\mu {\mu }_{0}{\alpha }_{2}d}{{\hslash }-N{\mu }^{2}{\mu }_{0}{\alpha }_{4}},\end{eqnarray}$where A1−4 and α1−4 are in the appendix. The refractive indices of the LCP and RCP beams are written as (for more details see [28, 47])$\begin{eqnarray}\begin{array}{l}{n}_{r}^{(\pm )}\\ =\,\sqrt{\left(1+{\chi }_{e}\right)\left(1+{\chi }_{m}\right)-\displaystyle \frac{{\left({\xi }_{\mathrm{EH}}+{\xi }_{\mathrm{HE}}\right)}^{2}}{4}\pm \displaystyle \frac{{\rm{i}}}{2}\left({\xi }_{\mathrm{EH}}-{\xi }_{\mathrm{HE}}\right)},\end{array}\end{eqnarray}$where ${n}_{r}^{(+)}$ stands for the RCP beam complex refractive index and ${n}_{r}^{(-)}$ stands for the LCP beam complex refractive index. If ξEH(HE)=0, then the medium is an ordinary refractive medium, when Re $({n}_{r}^{(\pm )})$ is positive. The medium is negative refractive, when Re $({n}_{r}^{(\pm )})$ is negative. However, if ξEH(HE)≠0, the medium is chiral. The chiral medium contributed additional terms of chiral coefficients to refractive indices along with relative permittivity ϵr=1+χe and permeability μr=1+χm terms. To find the dependence of the dielectric function dependent on conductivity, we use the following Maxwell equations for conductive medium$\begin{eqnarray}{\rm{\nabla }}.E=0,{\rm{\nabla }}.B=0,E=-\displaystyle \frac{\partial B}{\partial t},{\rm{\nabla }}\times B=\mu J+\mu \varepsilon \displaystyle \frac{\partial E}{\partial t},\end{eqnarray}$where E and B are the electric and magnetic fields, respectively. ϵ represents the permittivity and μ represents the permeability of the material. By applying curl to (14), we get$\begin{eqnarray}{{\rm{\nabla }}}^{2}E=\mu \varepsilon \displaystyle \frac{\partial E}{\partial t}+\mu \varepsilon \displaystyle \frac{{\partial }^{2}B}{\partial {t}^{2}},\end{eqnarray}$$\begin{eqnarray}{{\rm{\nabla }}}^{2}B=\mu \varepsilon \displaystyle \frac{\partial B}{\partial t}+\mu \varepsilon \displaystyle \frac{{\partial }^{2}B}{\partial {t}^{2}}.\end{eqnarray}$The solution for the above equations are$\begin{eqnarray}E(r,t)={E}_{0}\exp \,({\rm{i}}(k.r-\omega t)),\end{eqnarray}$$\begin{eqnarray}B(r,t)={B}_{0}\exp \,({\rm{i}}(k.r-\omega t)),\end{eqnarray}$where E0 and B0 are the complex amplitudes. For more details, see [57].

Equations (17) and (18) are the wave equations describing propagation of electromagnetic waves in the metal. Differentiating equation (17) twice and substituting in equation (15), we get$\begin{eqnarray}{k}_{m}^{2}=\mu \varepsilon {\omega }^{2}+{\rm{i}}\mu \sigma \omega ,\end{eqnarray}$$\begin{eqnarray}k={k}_{m1}+{\rm{i}}{k}_{m2},\varepsilon ={\varepsilon }_{r}+{\rm{i}}{\varepsilon }_{i},\sigma ={\sigma }_{r}+{\rm{i}}{\sigma }_{i},\end{eqnarray}$$\begin{eqnarray}{k}_{m}^{2}=(\mu {\varepsilon }_{r}{\omega }^{2}-\mu {\sigma }_{i}\omega )+{\rm{i}}(\mu {\varepsilon }_{i},{\omega }^{2}+\mu {\sigma }_{r}\omega ),\end{eqnarray}$$\begin{eqnarray}{k}_{m1}^{2}-{k}_{m2}^{2}=(\mu {\varepsilon }_{r}{\omega }^{2}-\mu {\sigma }_{i}\omega ),\end{eqnarray}$$\begin{eqnarray}2{k}_{m1}{k}_{m2}=(\mu {\varepsilon }_{i},{\omega }^{2}+\mu {\sigma }_{r}\omega ),\end{eqnarray}$$\begin{eqnarray}k=\pm \displaystyle \frac{{\beta }_{1}}{\sqrt{2}}\left[\sqrt{1\pm {\left(\displaystyle \frac{{\beta }_{2}}{{\beta }_{1}}\right)}^{4}}+{\rm{i}}\sqrt{-1\pm \sqrt{1+{\left(\displaystyle \frac{{\beta }_{2}}{{\beta }_{1}}\right)}^{4}}}\right],\end{eqnarray}$where$\begin{eqnarray}{\beta }_{1}={k}_{0}\sqrt{{\varepsilon }^{{\prime} }-\displaystyle \frac{{\sigma }_{i}}{{\varepsilon }_{0}\omega }},{\beta }_{2}={k}_{0}\sqrt{{\varepsilon }^{{\prime\prime} }+\displaystyle \frac{{\sigma }_{i}}{{\varepsilon }_{0}\omega }}.\end{eqnarray}$

Real and imaginary parts of the permittivity in terms of the corresponding dielectric constants, ${\varepsilon }_{r}={\varepsilon }_{0}\varepsilon ^{\prime} $ and ϵi=ϵ0ϵ″, we have$\begin{eqnarray}{k}_{m1}^{2}-{k}_{m2}^{2}=\mu {\varepsilon }_{0}{\omega }^{2}\left(\varepsilon ^{\prime} -\displaystyle \frac{{\sigma }_{i}}{{\varepsilon }_{0}\omega }\right)={k}_{0}^{2}\left(\varepsilon ^{\prime} -\displaystyle \frac{{\sigma }_{i}}{{\varepsilon }_{0}\omega }\right)={\beta }_{1}^{2},\end{eqnarray}$$\begin{eqnarray}2{k}_{m1}{k}_{m2}=\mu {\varepsilon }_{0}{\omega }^{2}\left(\varepsilon ^{\prime\prime} +\displaystyle \frac{{\sigma }_{r}}{{\varepsilon }_{0}\omega }\right)={k}_{0}^{2}\left(\varepsilon ^{\prime\prime} +\displaystyle \frac{{\sigma }_{r}}{{\varepsilon }_{0}\omega }\right)={\beta }_{2}^{2},\end{eqnarray}$where we used μ0ϵ0=1/c and k0=ω/c. Real and imaginary propagation parameters km1 and km2 are found by separating equations (23) and (24) we get$\begin{eqnarray}\begin{array}{rcl}{k}^{{}_{(R,L)}} & = & \pm {k}_{0}\displaystyle \frac{\sqrt{{\varepsilon }^{{\prime} }-\tfrac{{\sigma }_{i}}{{\varepsilon }_{0}\omega }}}{\sqrt{2}}\left[{\rm{i}}\sqrt{-1\pm \sqrt{1+\displaystyle \frac{{\left({\varepsilon }^{{\prime\prime} }+\tfrac{{\sigma }_{r}}{{\varepsilon }_{0}\omega }\right)}^{4}}{{\left({\varepsilon }^{{\prime} }-\tfrac{{\sigma }_{i}}{{\varepsilon }_{0}\omega }\right)}^{4}}}}\right.\\ & & \left.+\sqrt{1\pm \sqrt{1+\displaystyle \frac{{\left({\varepsilon }^{{\prime\prime} }+\tfrac{{\sigma }_{r}}{{\varepsilon }_{0}\omega }\right)}^{4}}{{\left({\varepsilon }^{{\prime} }-\tfrac{{\sigma }_{i}}{{\varepsilon }_{0}\omega }\right)}^{4}}}}\right].\end{array}\end{eqnarray}$

3. Results and discussion

The birefringence beams absorption coefficients through a dynamic conductive chiral medium are investigated under the effect of quantum tunneling for the atom localization. The decay rate of the atomic state is supposed to γ=36.1 MHz. Here $| {{\rm{\Omega }}}_{\mathrm{1,2}}| =| {{\rm{\Omega }}}_{\mathrm{1,2}}| \exp ({\rm{i}}{\varphi }_{\mathrm{1,2}})$, ω0=104γ and λ=2πc/ω. The other frequency parameters are scaled with γ. In the chiral atomic system, two probes of electric and magnetic fields are applied. The strong control fields are coupled in the system to modify the behavior of electric and magnetic probes. For the conductive chiral medium, we calculated 16 types of wave vectors for birefringence due to three±signs. This is related to 16 types of absorption coefficients and refractive indices. We have localized the atom by the birefringent beams for the cases of (+, +, +), (+, −, −), (−, +, +) and (−, −, −). The absorption coefficient is related to the imaginary part of the complex wave vector (Im $({k}^{{}_{(R,L)}})={A}^{{}_{(R,L)}}$), while the real part of the complex wave vector is related to phase velocity and group velocity.

In figure 2, the plots are traced for atom localization through the dynamic conductive chiral medium under the effects of quantum tunneling using the birefringence absorption spectrum in one wavelength domain. Under the specific parametric condition, we have noticed two localized peaks in both the LCP and RCP light beams in inverse space of kx and ky. For the case, (+, +, +) and (−, −, −) two localized peaks are investigated by LCP and RCP beams’ absorption spectra. At the condition (+, +, +) two localized peaks are noted at the LCP and RCP beams absorption spectrum in the first and fourth quadrants in the 2D inverse position space. Here, one localized peak is in the first and another one is in the fourth quadrant. It means that we have two possible localized positions for an atom localization as shown in figures 2(a) and (b). At the condition (−, −, −) two localized peaks are noted at the LCP and RCP beams amplification (negative absorption) spectrum in the first and fourth quadrants in 2D inverse position space. It means the amplification occurs in the birefringent beams at the conditions of (−, −, −). At the birefringence beams amplifications, two downward localized peaks are investigated in the 2D plane (shown as figures 2(c) and (d)). It has been pointed out that these localized peaks also show two possible positions for the atom localization using birefringence absorption spectrum in a single wavelength domain.

Figure 2.

New window|Download| PPT slide
Figure 2.Birefringence absorption coefficients as functions of (kx, ky). The parameters supposed here are γ=36.1 GHz, γ32,35,41,45=2γ, γ51,52=0.2γ, Δp=0.5γ, Δ1=0γ, φ1=π/4, φ2=π/3, φp=π/2 φm=0, ∣Ω1,2∣=20γ, σi,r=1000S/m, η1,3=1, η2,4=−1, T=10, φ3=3π/2, φ4=π/2 (+, +, +) birefringence condition for (a) and (b) while (−, −, −) birefringence condition for (c) and (d).


In figure 3, the plots are traced for atom localization through dynamic conductive chiral medium under the effects of quantum tunneling using birefringence absorption/amplification spectra in one wavelength domain of 2D inverse space. The parametric condition for this figure is the same as given in figure 2, but we have changed only the birefringence condition from (+, +, +) and (−, −, −) to (+, −, −) and (−, +, +), respectively. Two large localized and two small localized peaks were reported by the absorption and amplification spectra of the RCP and LCP beams in the 2D inverse plane in one wavelength domain. At condition (+, −, −), the RCP beam shows two small localized peaks in the second and third quadrants and two large localized peaks in the first and fourth quadrants. The localized peaks at the absorption spectrum of the LCP beam are the mirror images of localized peaks, which occur by the absorption spectrum of RCP beams as shown in figures 3(a) and (b). Further, two large localized and two small localized peaks were reported by the amplification spectra of the RCP and LCP beams in the 2D inverse plane in one wavelength domain. At condition (−, +, +), the RCP beam shows two small localized peaks in the second and third quadrants and two large localized peaks in the first and fourth quadrants by its amplification spectra. The localized peaks at the amplification spectrum of the LCP beam are the mirror images of localized peaks that occur by the amplification spectrum of RCP beams as shown in figures 3(c) and (d).

Figure 3.

New window|Download| PPT slide
Figure 3.Birefringence absorption coefficients as functions of (kx, ky). The parameters supposed here are γ=36.1 GHz, γ32,35,41,45=2γ, γ51,52=0.2γ, Δp=0.5γ, Δ1=0γ, φ1=π/4, φ2=π/3, φp=π/2 φm=0, ∣Ω1,2∣=20γ, σi, r=1000 S m−1, η1,3=1, η2,4=−1, T=10, φ3=3π/2, φ4=π/2 (+, −, −) birefringence condition for (a) and (b) while (−, +, +) birefringence condition for (c) and (d).


To explicitly show the high resolution and high precision atomic localization through the birefringence absorption probe spectra, we modify the 2D atom localization behaviors as shown in figure 4. In figure 4, the plots are traced for atom localization through the dynamic conductive chiral medium under the effects of quantum tunneling using birefringence absorption/amplification spectra in one wavelength domain. The condition of (+, +, +) the RCP and LCP beams’ absorption spectra show a single broad localized peak in the first quadrant. It means that we have a single possible localized position for an atom as shown in figures 4(a) and (b). Furthermore, when we changed the birefringent condition to (−, −, −), the downward localized peaks were investigated by RCP and LCP beam amplification spectra. In this figure, it is reported that the conditional position probability occurs at a specific point and is maximum there. The localized probability occurs at the LCP and RCP beams amplification spectra and are the mirror images of localized probability occurring at absorption spectra as shown in figures (c) and (d).

Figure 4.

New window|Download| PPT slide
Figure 4.Birefringence absorption coefficients as functions of (kx, ky). The parameters supposed here are γ=36.1 GHz, γ41=0.27γ, γ32=0.21γ, γ51=0.97γ, γ52=0.7γ, γ45=2.7γ, γ35=0.3γ, Δp=0.5γ, Δ1=−1γ, φ1=π/2, φ2=π/3, φp=π/2 φm=π/4, ∣Ω1∣=15γ, ∣Ω2∣=10γ, σr=10000 S m−1, σi=1500 S m−1, η1=1.35, η2=0.5, η3=0.2, η4=0.8, T=10, φ3=π/2, φ4=π/3 (+, +, +) birefringence condition for (a) and (b) while (−, −, −) birefringence condition for (c) and (d).


To modify the 2D atom microscopy for advanced high resolution and high precision, the birefringence absorption/amplification spectra are checked at another parametric condition. In figure 5, the plots are traced for atom localization through the dynamic conductive chiral medium under the effect of quantum tunneling using birefringence absorption/amplification spectra in one wavelength domain. The shift in the localized peaks are reported in the absorption and amplification spectra. We have investigated more interesting results such that the shift occurs in the localized peaks for other parametric conditions under same birefringence condition. The localized peak was investigated in the joint region of the second and third quadrants of the 2D space by the absorption/amplification spectra of the RCP and LCP beams under the conditions (+, +, +) and (−, −, −). It means that we have a single possible localized position for an atom in the joint region of the second and third quadrants. The localized peaks that occur at birefringent absorption spectra are the mirror images of the localized peaks that occur at birefringent amplification spectra, as depicted by figures 5(a)–(d).

Figure 5.

New window|Download| PPT slide
Figure 5.Birefringence absorption coefficients as functions of (kx, ky). The parameters supposed here are γ=36.1 GHz, γ41,32,51,52,45,35,=2.5γ, Δp=0.5, Δ1=0γ, φ1=π/4, φ2=π/3, φp=π/2 φm=0, ∣Ω1,2∣=21γ, σi, r=1000 S m−1, η1,3=1, η2,4=−1, T=10, φ3=3π/2, φ4=π/2 (+, +, +) birefringence condition for (a) and (b) while (−, −, −) birefringence condition for (c) and (d).


4. Conclusion

In conclusion, a five-level chiral atomic medium (driven by two electric and magnetic probes with the two extra driving control fields) are used to modify the birefringence under quantum tunneling conditions. Likewise, density matrix formalism and Maxwell’s equation are also used to modify optical birefringence influenced by complex conductivity and tunneling effect. Moreover, 16 types of absorption coefficients are reported for conductive chiral atomic medium under the complex conductivity conditions. Therefore, the two-dimensional atom localization is investigated using the absorption spectrum of birefringence beams of light in a single wavelength domain. The localized peaks are studied for the conditions of (+, +, +), (+, −, −), (−, +, +) and (−, −, −) of the left and right circularly polarized beams absorption spectra. Two and a single localized peaks are reported in different quadrants with minimum uncertainty and significant probability. The localized probability is modified with the control of birefringence, tunneling and complex conductivity amplitude. These results may be useful for the capability of optical microscopy and atom imaging.

Appendix

The terms α1−4 occurring in equation (8) are written here. These terms are measured from coherence ${\widetilde{\rho }}_{35}$, ${\widetilde{\rho }}_{45}$, ${\widetilde{\rho }}_{25}$ and ${\widetilde{\rho }}_{15}$ using equation equation (7)$\begin{eqnarray*}{\alpha }_{1}=\displaystyle \frac{{{\rm{e}}}^{-{\rm{i}}({\varphi }_{1}+{\varphi }_{2}+{\varphi }_{p})}({Q}_{1}+2{\mathrm{ie}}^{{\rm{i}}(2{\varphi }_{1}+{\varphi }_{2})}({A}_{3}| {{\rm{\Omega }}}_{2}{| }^{2}+4{A}_{1}({\nu }_{1T}^{2}+{A}_{2}{A}_{3})+4{\rm{i}}{A}_{2}{A}_{3}{\nu }_{2T}+4{\rm{i}}{\nu }_{1T}^{2}{\nu }_{2T}+{{\rm{e}}}^{{\rm{i}}{\varphi }_{p}}({A}_{2}| {{\rm{\Omega }}}_{1}{| }^{2}+{Q}_{2})))}{(4{A}_{1}{A}_{3}+| {{\rm{\Omega }}}_{1}{| }^{2})| {{\rm{\Omega }}}_{2}{| }^{2}+4{A}_{1}({A}_{2}| {{\rm{\Omega }}}_{1}{| }^{2}+4{A}_{1}({A}_{2}{A}_{3}+{\nu }_{1T}^{2}))+16({A}_{2}{A}_{3}+{\nu }_{1T}^{2}){\nu }_{2T}^{2}-8| {{\rm{\Omega }}}_{1}| | {{\rm{\Omega }}}_{2}| {\nu }_{1T}{\nu }_{2T}\cos ({\varphi }_{1}-{\varphi }_{2})},\end{eqnarray*}$$\begin{eqnarray*}{\alpha }_{2}=\displaystyle \frac{{{\rm{e}}}^{-{\rm{i}}({\varphi }_{1}+{\varphi }_{2})}(4{A}_{1}| {{\rm{\Omega }}}_{1}| {{\rm{e}}}^{{\rm{i}}{\varphi }_{2}}({A}_{2}+{\rm{i}}{\nu }_{1T}{{\rm{e}}}^{{\varphi }_{m}})+| {{\rm{\Omega }}}_{1}| {{\rm{e}}}^{{\rm{i}}{\varphi }_{2}}{Q}_{3}+| {{\rm{\Omega }}}_{2}| {{\rm{e}}}^{{\rm{i}}{\varphi }_{1}}(4{\rm{i}}{\nu }_{1T}({A}_{1}+{\rm{i}}{\nu }_{2T})+{{\rm{e}}}^{{\rm{i}}{\varphi }_{m}}(4{A}_{1}{A}_{3}+| {{\rm{\Omega }}}_{1}{| }^{2}+4{\rm{i}}{A}_{3}{\nu }_{2T})))}{(4{A}_{1}{A}_{3}+| {{\rm{\Omega }}}_{1}{| }^{2})| {{\rm{\Omega }}}_{2}{| }^{2}+4{A}_{1}({A}_{2}| {{\rm{\Omega }}}_{1}{| }^{2}+4{A}_{1}({A}_{2}{A}_{3}+{\nu }_{1T}^{2}))+16({A}_{2}{A}_{3}+{\nu }_{1T}^{2}){\nu }_{2T}^{2}-8| {{\rm{\Omega }}}_{1}| | {{\rm{\Omega }}}_{2}| {\nu }_{1T}{\nu }_{2T}\cos ({\varphi }_{1}-{\varphi }_{2})},\end{eqnarray*}$$\begin{eqnarray*}{\alpha }_{3}=\displaystyle \frac{{{\rm{e}}}^{-{\rm{i}}{\varphi }_{p}}(| {{\rm{\Omega }}}_{2}| {{\rm{e}}}^{{\rm{i}}{\varphi }_{2}}({{\rm{e}}}^{{\rm{i}}{\varphi }_{p}}(| {{\rm{\Omega }}}_{1}^{2}| +4{A}_{1}({A}_{3}+{\rm{i}}{\nu }_{1T}))+4{\rm{i}}({A}_{3}+{\rm{i}}{\nu }_{1T}){\nu }_{2T})+{{\rm{e}}}^{{\rm{i}}{\varphi }_{1}}| {{\rm{\Omega }}}_{1}^{2}| (| {{\rm{\Omega }}}_{2}{| }^{2}+4({A}_{2}+{\rm{i}}{\nu }_{1T})({A}_{1}+{\mathrm{ie}}^{{\rm{i}}{\varphi }_{p}}{\nu }_{2T})))}{(4{A}_{1}{A}_{3}+| {{\rm{\Omega }}}_{1}{| }^{2})| {{\rm{\Omega }}}_{2}{| }^{2}+4{A}_{1}({A}_{2}| {{\rm{\Omega }}}_{1}{| }^{2}+4{A}_{1}({A}_{2}{A}_{3}+{\nu }_{1T}^{2}))+16({A}_{2}{A}_{3}+{\nu }_{1T}^{2}){\nu }_{2T}^{2}-8| {{\rm{\Omega }}}_{1}| | {{\rm{\Omega }}}_{2}| {\nu }_{1T}{\nu }_{2T}\cos ({\varphi }_{1}-{\varphi }_{2})}\end{eqnarray*}$and$\begin{eqnarray*}{\alpha }_{4}=\displaystyle \frac{2{\rm{i}}({A}_{1}| {{\rm{\Omega }}}_{2}^{2}| +4{A}_{1}^{2}({A}_{2}+{\rm{i}}{\nu }_{1T})4{A}_{1}{{\rm{e}}}^{{\rm{i}}{\varphi }_{m}}(4{A}_{1}{A}_{3}+| {{\rm{\Omega }}}_{1}^{2}| +4{\rm{i}}{A}_{1}{\nu }_{1T})+4({A}_{2}+{{\rm{e}}}^{{\rm{i}}{\varphi }_{m}}({A}_{3}+{\rm{i}}{\nu }_{1T})+{\rm{i}}{\nu }_{1T}){\nu }_{2T}^{2})+4{Q}_{4}{{\rm{e}}}^{\tfrac{{\rm{i}}{\varphi }_{m}}{2}}}{(4{A}_{1}{A}_{3}+| {{\rm{\Omega }}}_{1}{| }^{2})| {{\rm{\Omega }}}_{2}{| }^{2}+4{A}_{1}({A}_{2}| {{\rm{\Omega }}}_{1}{| }^{2}+4{A}_{1}({A}_{2}{A}_{3}+{\nu }_{1T}^{2}))+16({A}_{2}{A}_{3}+{\nu }_{1T}^{2}){\nu }_{2T}^{2}-8| {{\rm{\Omega }}}_{1}| | {{\rm{\Omega }}}_{2}| {\nu }_{1T}{\nu }_{2T}\cos ({\varphi }_{1}-{\varphi }_{2})}.\end{eqnarray*}$The terms A1−4 and Q1−4 occurring in α1−4 are defined as$\begin{eqnarray*}{A}_{1}=-\left[{\rm{i}}{{\rm{\Delta }}}_{p}+\displaystyle \frac{1}{2}{\gamma }_{45}+\displaystyle \frac{1}{2}{\gamma }_{35}\right],\end{eqnarray*}$$\begin{eqnarray*}{A}_{2}={\rm{i}}({{\rm{\Delta }}}_{1}-{{\rm{\Delta }}}_{p})-\displaystyle \frac{1}{2}({\gamma }_{52}+{\gamma }_{45}+{\gamma }_{35}+{\gamma }_{32}),\end{eqnarray*}$$\begin{eqnarray*}{A}_{3}={\rm{i}}({{\rm{\Delta }}}_{1}-{{\rm{\Delta }}}_{p})-\displaystyle \frac{1}{2}({\gamma }_{51}+{\gamma }_{45}+{\gamma }_{35}+{\gamma }_{41}),\end{eqnarray*}$$\begin{eqnarray*}{Q}_{1}=2{{\rm{e}}}^{2{\rm{i}}{\varphi }_{1}}| {{\rm{\Omega }}}_{1}| | {{\rm{\Omega }}}_{2}| {\nu }_{1T}+2{{\rm{e}}}^{{\rm{i}}(2{\varphi }_{2}+{\varphi }_{p})}| {{\rm{\Omega }}}_{1}| | {{\rm{\Omega }}}_{2}| {\nu }_{1T},\end{eqnarray*}$$\begin{eqnarray*}{Q}_{2}=4{A}_{1}({A}_{2}{A}_{3}+{\nu }_{1T}^{2})+4{\rm{i}}({A}_{2}{A}_{3}+{\nu }_{1T}^{2}){\nu }_{2T},\end{eqnarray*}$$\begin{eqnarray*}{Q}_{3}=(| {{\rm{\Omega }}}_{2}^{2}| +4{\rm{i}}{A}_{2}{\nu }_{2T}-4| {{\rm{\Omega }}}_{1}| {{\rm{e}}}^{{\rm{i}}{\varphi }_{2}}{\nu }_{2T}{{\rm{e}}}^{{\rm{i}}{\varphi }_{m}})\end{eqnarray*}$and$\begin{eqnarray*}{Q}_{4}=| {{\rm{\Omega }}}_{1}| | {{\rm{\Omega }}}_{2}| {\nu }_{2T}\cos ({\varphi }_{1}-{\varphi }_{2}+\displaystyle \frac{{\varphi }_{m}}{2}).\end{eqnarray*}$The matrix form of equation (7) is defined as$\begin{eqnarray*}G=\left(\begin{array}{cccc}{A}_{1} & -{\rm{i}}{\nu }_{2T}^{* } & \tfrac{{\rm{i}}}{2}{{\rm{\Omega }}}_{2}^{* } & 0\\ -{\rm{i}}{\nu }_{2T} & {A}_{2} & 0 & \tfrac{{\rm{i}}}{2}{{\rm{\Omega }}}_{1}^{* }\\ \tfrac{{\rm{i}}}{2}{{\rm{\Omega }}}_{2} & 0 & {A}_{3} & -{\rm{i}}{\nu }_{1T}^{* }\\ 0 & \tfrac{{\rm{i}}}{2}{{\rm{\Omega }}}_{1} & -{\rm{i}}{\nu }_{1T} & {A}_{4}\end{array}\right),\end{eqnarray*}$$\begin{eqnarray*}Y=\left(\begin{array}{c}\tfrac{{\rm{i}}}{2}{{\rm{\Omega }}}_{p}\\ \tfrac{{\rm{i}}}{2}{{\rm{\Omega }}}_{p}^{* }{{\rm{e}}}^{-{\rm{i}}{\varphi }_{p}}\\ \tfrac{{\rm{i}}}{2}{{\rm{\Omega }}}_{m}{{\rm{e}}}^{{\rm{i}}{\varphi }_{m}}\\ \tfrac{{\rm{i}}}{2}{{\rm{\Omega }}}_{m}\end{array}\right),L(t)=\left(\begin{array}{c}{\widetilde{\rho }}_{35}\\ {\widetilde{\rho }}_{45}\\ {\widetilde{\rho }}_{35}\\ {\widetilde{\rho }}_{15}\end{array}\right).\end{eqnarray*}$

Reference By original order
By published year
By cited within times
By Impact factor

Johnson K Thywissen J Dekker N Berggren K Chu A Younkin R Prentiss M 1998 Localization of metastable atom beams with optical standing waves: nanolithography at the Heisenberg limit
Science 280 1583 1586

DOI:10.1126/science.280.5369.1583 [Cited within: 1]

Gorshkov A V Jiang L Greiner M Zoller P Lukin M D 2008 Coherent quantum optical control with subwavelength resolution
Phys. Rev. Lett. 100 093005

DOI:10.1103/PhysRevLett.100.093005 [Cited within: 1]

Phillips W D 1998 Laser cooling and trapping of neutral atoms
Rev. Mod. Phys. 70 721 741

DOI:10.1103/RevModPhys.70.721 [Cited within: 1]

Evers J Qamar S Zubairy M S 2007 Atom localization and centerof-mass wave-function determination via multiple simultaneous quadrature measurements
Phys. Rev. A 75 053809

DOI:10.1103/PhysRevA.75.053809 [Cited within: 1]

Kapale K T Qamar S Zubairy M S 2003 Spectroscopic measurement of an atomic wave function
Phys. Rev. A 67 023805

DOI:10.1103/PhysRevA.67.023805 [Cited within: 1]

Wu Y Yang X Sun C 2000 Systematic method to study the general structure of Bose-Einstein condensates with arbitrary spin
Phys. Rev. A 62 063603

DOI:10.1103/PhysRevA.62.063603 [Cited within: 1]

Collins G P 1996 Experimenters produce new Bose-Einstein condensate (s) and possible puzzles for theorists
Phys. Today 49 18 21

DOI:10.1063/1.2807533 [Cited within: 1]

Mompart J Ahufinger V Birkl G 2009 Coherent patterning of matter waves with subwavelength localization
Phys. Rev. A 79 053638

DOI:10.1103/PhysRevA.79.053638 [Cited within: 1]

Storey P Collett M Walls D 1992 Measurement-induced diffraction and interference of atoms
Phys. Rev. Lett. 68 472 475

DOI:10.1103/PhysRevLett.68.472 [Cited within: 1]

Storey P Collett M Walls D 1993 Atomic-position resolution by quadrature-field measurement
Phys. Rev. A 47 405 418

DOI:10.1103/PhysRevA.47.405 [Cited within: 1]

Kunze S Rempe G Wilkens M 1994 Atomic-position measurement via internal-state encoding
Europhys. Lett. 27 115 121

DOI:10.1209/0295-5075/27/2/007 [Cited within: 1]

Qamar S Zhu S-Y Zubairy M S 2000 Atom localization via resonance fluorescence
Phys. Rev. A 61 063806

DOI:10.1103/PhysRevA.61.063806

Liu C Gong S Cheng D Fan X Xu Z 2006 Atom localization via interference of dark resonances
Phys. Rev. A 73 025801

DOI:10.1103/PhysRevA.73.025801

Herkommer A Schleich W Zubairy M 1997 Autler-Townes microscopy on a single atom
J. Mod. Opt. 44 2507 2513

DOI:10.1080/09500349708231897

Ding C Li J Zhan Z Yang X 2011 Two-dimensional atom localization via spontaneous emission in a coherently driven five-level m-type atomic system
Phys. Rev. A 83 063834

DOI:10.1103/PhysRevA.83.063834

Jiang X Li J Sun X 2017 Two-dimensional atom localization based on coherent field controlling in a five-level M-type atomic system
Opt. Express 25 31678 31687

DOI:10.1364/OE.25.031678

Qamar S Mehmood A Qamar S 2009 Subwavelength atom localization via coherent manipulation of the Raman gain process
Phys. Rev. A 79 033848

DOI:10.1103/PhysRevA.79.033848 [Cited within: 1]

Bharti V Natarajan V 2015 Study of a four-level system in vee + ladder configuration
Opt. Commun. 356 510 514

DOI:10.1016/j.optcom.2015.08.042 [Cited within: 1]

Chanu S R Pandey K Natarajan V 2012 Conversion between electromagnetically induced transparency and absorption in a three-level lambda system
Europhys. Lett. 98 44009

DOI:10.1209/0295-5075/98/44009 [Cited within: 1]

Khan S Kumar M P Bharti V Natarajan V 2017 Coherent population trapping (CPT) versus electromagnetically induced transparency (EIT)
Eur. Phys. J. D 71 38

DOI:10.1140/epjd/e2017-70676-x [Cited within: 1]

Arimondo E 1996 V coherent population trapping in laser spectroscopy
Prog. Opt. 35 257 354

DOI:10.1016/S0079-6638(08)70531-6 [Cited within: 1]

Idrees M Kalsoom H Bacha B A Ullah A Wang L-G 2020 Continuum and undefine hole burning regions via pulse propagation in a four-level Doppler broadened atomic system
Eur. Phys. J. Plus. 135 698

DOI:10.1140/epjp/s13360-020-00705-0 [Cited within: 1]

Bharti V Natarajan V 2017 Sub-and super-luminal light propagation using a Rydberg state
Opt. Commun. 392 180 184

DOI:10.1016/j.optcom.2016.12.080

Hau L V Harris S E Dutton Z Behroozi C H 1999 Light speed reduction to 17 metres per second in an ultracold atomic gas
Nature 397 594 598

DOI:10.1038/17561

Mirza A B Singh S 2017 Subluminal and superluminal light propagation via electromagnetically induced transparency in radiatively and inhomogeneously broadened media
J. Mod. Opt. 64 716 724

DOI:10.1080/09500340.2016.1260173

Idrees M Kalsoom H Bacha B A Ullah A Wang L-G 2020 Continuum and undefine hole burning regions via pulse propagation in a four-level Doppler broadened atomic system
Eur. Phys. J. Plus 135 698

DOI:10.1140/epjp/s13360-020-00705-0 [Cited within: 1]

Schmidt H Imamoglu A 1996 Giant Kerr nonlinearities obtained by electromagnetically induced transparency
Opt. Lett. 21 1936 1938

DOI:10.1364/OL.21.001936 [Cited within: 1]

Bacha B A Abdul Jabar M S 2018 The event cloaking from a birefringent medium via Kerr nonlinearity
J. Optics 20 095703

DOI:10.1088/2040-8986/aad6a9 [Cited within: 3]

Lugiato L A 1984 II theory of optical bistability
Prog. Opt. 21 69 216

DOI:10.1016/S0079-6638(08)70122-7 [Cited within: 1]

Bonifacio R Lugato L A 1982 Theory of optical bistability
Dissipative Systems in Quantum Optics Berlin Springer 61 92

DOI:10.1007/978-3-642-81717-5_4 [Cited within: 1]

Liu Z-Y Xiao J-T Lin J-K Wu J-J Juo J-Y Cheng C-Y Chen Y-F 2017 High-efficiency backward four-wave mixing by quantum interference
Sci. Rep. 7 15796

DOI:10.1038/s41598-017-16062-5 [Cited within: 1]

Ferraz J Felinto D Acioli L Vianna S 2005 Quantum interference in atomic vapor observed by four-wave mixing with incoherent light
Opt. Lett. 30 1876 1878

DOI:10.1364/OL.30.001876 [Cited within: 1]

Fleischhauer M Imamoglu A Marangos J P 2005 Electromagnetically induced transparency: optics in coherent media
Rev. Mod. Phys. 77 633 673

DOI:10.1103/RevModPhys.77.633 [Cited within: 1]

Alzetta G 1997 Induced transparency
Phys. Today 50 36

DOI:10.1063/1.881806 [Cited within: 1]

Li H Zhang H Sun H Hu X Sun D Li X 2017 Multiple spontaneously generated coherence and phase control of optical bistability and multistability in a tripod four-level atomic medium
Appl. Opt. 56 4995 5002

DOI:10.1364/AO.56.004995 [Cited within: 1]

Hamedi H R Sahrai M Khoshsima H Juzeliunas G 2017 Optical bistability forming due to a Rydberg state
J. Opt. Soc. Am. B 34 1923 1929

DOI:10.1364/JOSAB.34.001923 [Cited within: 1]

Hamedi H Juzeliunas G 2016 Phase-sensitive atom localization for closed-loop quantum systems
Phys. Rev. A 94 013842

DOI:10.1103/PhysRevA.94.013842 [Cited within: 2]

Ding C Li J Yang X Zhang D Xiong H 2011 Proposal for efficient two-dimensional atom localization using probe absorption in a microwave-driven four-level atomic system
Phys. Rev. A 84 043840

DOI:10.1103/PhysRevA.84.043840 [Cited within: 1]

Ivanov V S Rozhdestvensky Y V Suominen K-A 2014 Threedimensional atom localization by laser fields in a four-level tripod system
Phys. Rev. A 90 063802

DOI:10.1103/PhysRevA.90.063802

Zhu Z Yang W-X Xie X-T Liu S Liu S Lee R-K 2016 Threedimensional atom localization from spatial interference in a double two-level atomic system
Phys. Rev. A 94 013826

DOI:10.1103/PhysRevA.94.013826

Ivanov V Rozhdestvensky Y 2010 Two-dimensional atom localization in a four-level tripod system in laser fields
Phys. Rev. A 81 033809

DOI:10.1103/PhysRevA.81.033809 [Cited within: 1]

Rahmatullah Qamar S 2013 Two-dimensional atom localization via probe-absorption spectrum
Phys. Rev. A 88 013846

DOI:10.1103/PhysRevA.88.013846

Zhu Z Yang W-X Chen A-X Liu S Lee R-K 2015 Twodimensional atom localization via phase-sensitive absorption-gain spectra in five-level hyper inverted-Y atomic systems
J. Opt. Soc. Am. B 32 1070 1077

DOI:10.1364/JOSAB.32.001070

Wang Z Cao D Yu B 2016 Three-dimensional atom localization via electromagnetically induced transparency in a three-level atomic system
Appl. Opt. 55 3582 3588

DOI:10.1364/AO.55.003582

Mao Y Wu J 2017 High-precision three-dimensional atom localization in a microwave-driven atomic system
J. Opt. Soc. Am. B 34 1070 1074

DOI:10.1364/JOSAB.34.001070

Qi Y Zhou F Huang T Niu Y Gong S 2012 Three-dimensional atom localization in a five-level M-type atomic system
J. Mod. Opt. 59 1092 1099

DOI:10.1080/09500340.2012.697203

Bacha B A Khan T Khan N Ullah S A Jabar A Rehman A U 2018 The hybrid mode propagation of surface plasmon polaritons at the interface of graphene and a chiral medium
Eur. Phys. J. Plus 133 509

DOI:10.1140/epjp/i2018-12386-1 [Cited within: 3]

Paspalakis E Knight P 2001 Localizing an atom via quantum interference
Phys. Rev. A 63 065802

DOI:10.1103/PhysRevA.63.065802 [Cited within: 1]

Paspalakis E Terzis A Knight P 2005 Quantum interference induced sub-wavelength atomic localization
J. Mod. Opt. 52 1685 1694

DOI:10.1080/09500340500072489

Idrees M Bacha B A Javed M Ullah S A 2017 Precise position measurement of an atom using superposition of two standing wave fields
Laser Phys. 27 045202

DOI:10.1088/1555-6611/aa5680

Shah S A Ullah S Idrees M Bacha B A Javed M Ullah S A 2019 Surface plasmon induced atom localization in a tripod-type four level atomic system
Phys. Scr. 94 035401

DOI:10.1088/1402-4896/aaf67f

Jabar M S A Bacha B A Jalaluddin M Ahmad I 2015 Atom microscopy via dual resonant superposition
Commun. Theor. Phys. 64 741

DOI:10.1088/0253-6102/64/6/741 [Cited within: 1]

Wang Z Wu X Lu L Yu B 2014 High-efficiency one-dimensional atom localization via two parallel standing-wave fields
Laser Phys. 24 105501

DOI:10.1088/1054-660X/24/10/105501 [Cited within: 1]

Kapale K T Zubairy M S 2006 Subwavelength atom localization via amplitude and phase control of the absorption spectrum. II
Phys. Rev. A 73 023813

DOI:10.1103/PhysRevA.73.023813

Sahrai M Tajalli H Kapale K T Zubairy M S 2005 Subwavelength atom localization via amplitude and phase control of the absorption spectrum
Phys. Rev. A 72 013820

DOI:10.1103/PhysRevA.72.013820 [Cited within: 1]

Xu J Hu X-M 2007 Sub-half-wavelength localization of an atom via trichromatic phase control
J. Phys. B 40 1451 1459

DOI:10.1088/0953-4075/40/7/013

Ali K Ullah M Bacha B A Jabar A 2019 Complex conductivity-dependent two-dimensional atom microscopy
Eur. Phys. J. Plus 134 618

DOI:10.1140/epjp/i2019-12978-1 [Cited within: 4]

Ding C Li J Yang X Zhan Z Liu J-B 2011 Two-dimensional atom localization via a coherence-controlled absorption spectrum in an n-tripod-type five-level atomic system
J. Phys. B 44 145501

DOI:10.1088/0953-4075/44/14/145501 [Cited within: 2]

Wan R-G Kou J Jiang L Jiang Y Gao J-Y 2011 Two-dimensional atom localization via controlled spontaneous emission from a driven tripod system
J. Opt. Soc. Am. B 28 10 17

DOI:10.1364/JOSAB.28.000010

Wan R-G Kou J Jiang L Jiang Y Gao J-Y 2011 Twodimensional atom localization via quantum interference in a coherently driven inverted-y system
Opt. Commun. 284 985 990

DOI:10.1016/j.optcom.2010.10.066

Wan R-G Kou J Jiang L Jiang Y Gao J-Y 2011 Twodimensional atom localization via interacting double-dark resonances
J. Opt. Soc. Am. B 28 622 628

DOI:10.1364/JOSAB.28.000622 [Cited within: 1]

Idrees M Ullah1 M Bacha B A Ullah A Wang L-G 2020 High-resolution two-dimensional atomic microscopy in a tripod-type four-level atomic medium via standing wave fields
Laser Phys. 30 115402

DOI:10.1088/1555-6611/abbeda [Cited within: 1]

Kwon D H Werner P L Werner D H 2008 Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation
Opt. Exp. 16 11802 11807

DOI:10.1364/OE.16.011802 [Cited within: 1]

Wang B B 1999 Measurement of circular and linear birefringence in chiral media and optical materials using the photoelastic modulator
Proc. SPIE 3535 294 302

DOI:10.1117/12.337476

Narushima T Okamoto H 2016 Circular dichroism microscopy free from commingling linear dichroism via discretely modulated circular polarization
Sci. Rep. 6 35731

DOI:10.1038/srep35731 [Cited within: 1]

Wang B Sparks W B Germer T A Leadbetter A 2009 A spectroscopic polarimeter for detecting chiral signatures in astrobiological samples
Proc. SPIE 7441 744108

DOI:10.1117/12.826378 [Cited within: 1]

Silverman M P Sohn R B 1986 Efiects of circular birefringence on light propagation and reflection
Am. J. Phy. 54 69 76

DOI:10.1119/1.14745

Kang L Hao Z Taiwei J Douglas Y Werner H 2015 Handedness dependent electromagnetically induced transparency in hybrid chiral metamaterials
Sci. Rep. 5 12224

DOI:10.1038/srep12224 [Cited within: 1]

Iqbal H Idrees M Javed M Bacha B A Khan S Ullah S A 2017 Goos hanchen shift from cold and hot atomic media using kerr nonlinearity
J. Russ. Laser Res. 38 426 436

DOI:10.1007/s10946-017-9663-3 [Cited within: 1]

Khan M I Idrees M Bacha B A Khan H Ullah A Haneef M 2020 Optical soliton through induced cesium doppler broadening medium
Phys. Scr. 95 085102

DOI:10.1088/1402-4896/aba055 [Cited within: 1]

相关话题/Efficient dimensional localization