全文HTML
--> --> -->












氩(Ar)作为宇宙丰度元素之一, 其各种离化度离子广泛存在于太阳耀斑、超行星和黑洞的吸积盘等天体等离子体环境中. 早期的光学不透明度工程, 对Ar16+和Ar17+光电离截面作了系统的计算研究, 给出了大量可供分析天体辐射光谱的参考数据[10-12]. 2000年, 钱德拉空间观察站在塞弗特星系NGC 3783中观察到Ar16+的辐射谱线, 这些谱线的分析需要理论数据作为依据[13]. 由此可见, 研究等离子环境中Ar16+能级和辐射光谱的理论, 不仅对天体等离子体的状态诊断和光谱分析起着重要的作用, 而且由于其核外有两个电子, 是考察电子与原子核、电子与电子间相互作用和相对论效应的理想体系[14-22]. 目前对Ar16+能级的研究主要集中在非屏蔽下能级结构和跃迁数据的计算. 如Saha等[14]在非相对论变分框架, 提出了一种新的试探性波函数, 在包含径向和角向关联效应下, 计算了Ar16+基态能量, 获得了较高精度的结果; Costa等[15]在Dirac-Fock近似下计算了Ar16+高激发态到基态的跃迁能、辐射跃迁几率和非辐射跃迁几率; Goryaev等[16]基于Z展开方法的MZ代码计算了Ar16+共振态到基态和低激发态之间的跃迁能和跃迁几率, 为了提高计算精度, 文中的相对论效应包含了Breit作用. Saha等[17]在非相对论框架下计算了弱耦合等离子体环境中2pnd (n = 3—6)以及2pnp (n = 3—6)双电子原子的能级结构, 他们发现随着等离子体耦合强度的增加, 原子趋于不稳定, 且束缚态电子的个数逐渐减少. Fang等[18]研究了等离子环境对

尽管目前已开展了大量研究工作, 但对等离子屏蔽下Ar16+能级结构的研究结果匮乏, 有关相对论效应对等离子体中原子能级和跃迁性质影响的报道更少. Chaudhuri等[23]分别利用标准的屏蔽库仑势和余弦屏蔽库仑势对等离子体环境效应下类氢离子基态和最低的两个激发态能级结构进行了计算, 讨论了相对论修正项中的质量修正项、达尔文修正项以及自旋-轨道相互作用项在等离子体环境下的行为. Hu等[24]在库仑屏蔽势下对类氢离子的激发能和跃迁几率进行了计算, 分析了相对论效应对束缚态能级的影响, 结果表明, 库仑屏蔽势可以很好地描述弱耦合等离子体环境对原子结构和跃迁线的影响, 屏蔽势减小原子能级间的跃迁能, 同时指出相对论能量对低电荷类氢离子束缚态能级的影响可以忽略不计. 然而, 以上的解析方法对单电子体系是适用的, 很难推广到多电子体系.
本文基于变分理论, 发展了一套处理弱耦合等离子体环境中多电子原子(离子)基态和激发态非相对论能量及其相对论修正能量的解析计算方法. 为了包括内外壳层电子的不同屏蔽效应以及交换效应, 组态波函数采用了反对称性的Hartree-Fock波函数, 同时将内外层电子径向轨道的变分参数取为独立的值. 我们以类氦氩离子为例, 计算了等离子体环境下基态、单激发态和双激发态的非相对论能级, 给出了质量修正、单体和双体达尔文修正、自旋-自旋接触相互作用和轨道-轨道相互作用等相对论修正项的能量值, 并讨论离子体屏蔽效应对能级和波函数的影响.
2.1.非相对论能量
对于孤立双电子原子, 非相对论哈密顿量可以表示为




















2
2.2.相对论修正
非相对论能量的相对论修正哈密顿量可以写成








u | ${\alpha _{1{\rm{s}}}}$ | ENR | EMC | ED1 | ΔERS | ET | Ref.[20] | Ref.[25,26] |
0 | 5.6875 | ?32.3477 | ?0.0696508 | 0.0587822 | ?0.01087 | ?32.35857 | ?32.4176 | ?32.3612 |
0.1 | 5.68614 | ?31.1633 | ?0.0695843 | 0.0587401 | ?0.01084 | ?31.17414 | ?31.2324 | ?31.177 |
0.2 | 5.68218 | ?30.0095 | ?0.0693905 | 0.0586174 | ?0.01077 | ?30.02027 | ?30.079 | ?30.0237 |
0.3 | 5.67577 | ?28.8854 | ?0.0690781 | 0.0584193 | ?0.01066 | ?28.89606 | ?28.9557 | — |
0.4 | 5.66706 | ?27.7899 | ?0.0686549 | 0.0581507 | ?0.01050 | ?27.80040 | ?27.8614 | — |
0.5 | 5.65616 | ?26.7223 | ?0.0681282 | 0.0578158 | ?0.01031 | ?26.73261 | ?26.7963 | ?26.7395 |
0.6 | 5.64318 | ?25.6817 | ?0.067505 | 0.0574187 | ?0.01009 | ?25.69179 | ?25.7576 | — |
0.7 | 5.62821 | ?24.6674 | ?0.0667916 | 0.0569630 | ?0.00983 | ?24.67723 | ?24.7457 | — |
0.8 | 5.61134 | ?23.6788 | ?0.0659942 | 0.0564522 | ?0.00954 | ?23.68834 | ?23.7006 | ?23.7594 |
0.9 | 5.59263 | ?22.7151 | ?0.0651186 | 0.0558895 | ?0.00923 | ?22.72433 | ?22.7986 | — |
1.0 | 5.57215 | ?21.7758 | ?0.0641701 | 0.0552778 | ?0.00889 | ?21.78469 | ?21.8629 | — |
表1相对论修正对C4+基态1s2 1S能级的影响(单位: a.u.)
Table1.Effects of relativistic correction on ground state 1s2 1S energies level in C4+ (unit: a.u.).
2
3.1.Ar16+非相对论能量
为了研究相对论修正对原子能级结构的影响, 我们对弱耦合等离子环境下类氦Ar16+基态1s2 1S、单激发态1sns (n = 2—5) 1,3S, 1snp (n = 2—5) 1,3P和双激发态2snp (n = 2—5) 1,3P的非相对论能量及其相对论修正能量值进行了系统的计算.对于双电子体系单重态, 其原子态的Racah波函数可以展开为

2S+1 | n | 1sns 2S+1S | 1snp 2S+1P | 2snp 2S+1P | ||||||||
${\alpha _{1{\rm{s}}}}$ | ${\alpha _{n{\rm{s}}}}$ | ENR | ${\alpha _{1{\rm{s}}}}$ | ${\alpha _{n{\rm{p}}}}$ | ENR | ${\alpha _{2{\rm{s}}}}$ | ${\alpha _{n{\rm{p}}}}$ | ENR | ||||
1 | 1 | 17.6875 | — | ?312.848 | — | — | — | — | — | — | ||
2 | 17.9324 | 17.3433 | ?198.384 | 18.0107 | 16.9176 | ?197.969 | 17.4113 | 17.8229 | ?77.601 | |||
3 | 17.9815 | 17.2194 | ?178.14 | 18.0008 | 16.9725 | ?178.018 | 17.9428 | 17.2934 | ?56.8575 | |||
4 | 17.9924 | 17.1623 | ?171.068 | 18.0001 | 16.9852 | ?171.017 | 17.9766 | 17.2143 | ?49.655 | |||
5 | 17.9961 | 17.129 | ?167.799 | 18 | 16.9901 | ?167.773 | 17.9882 | 17.1692 | ?46.3425 | |||
3 | 2 | 18.0137 | 17.1931 | ?199.196 | 17.9577 | 17.266 | ?198.504 | — | — | — | ||
3 | 18.0031 | 17.1286 | ?178.355 | 17.99 | 17.1509 | ?178.162 | — | — | — | |||
4 | 18.0012 | 17.0962 | ?171.155 | 17.9961 | 17.1079 | ?171.076 | — | — | — | |||
5 | 18.0006 | 17.0768 | ?167.843 | 17.9981 | 17.0845 | ?167.803 | — | — | — |
表2Ar16+ 1sns, 1snp和2s2p组态变分参数
Table2.Variation parameters of 1sns, 1snp and 2snp configurations in Ar16+.
2
3.2.等离子环境中Ar16+基态和激发态相对论能级
在球张量的形式下, 将(10)—(13)式代入各相对论修正项(14)式, 利用不可约张量理论完成径向、角向和自旋部分的积分, 最终可以得到各原子态解析的相对论能量参数表达式. 以基态1s2 (1S)态和激发态1s2s (1S)态为例, 基态1s2 (1S)各相对论修正项的解析参数表达式为u | ${\alpha _{1{\rm{s}}}}$ | ENR | EMC | ED1 | ΔERS | ET |
0 | 17.6875 | ?312.848 | ?6.51488 | 5.30399 | ?1.21089 | ?314.05889 |
0.1 | 17.6871 | ?309.263 | ?6.51425 | 5.30360 | ?1.21065 | ?310.47365 |
0.2 | 17.6858 | ?305.708 | ?6.51238 | 5.30246 | ?1.20992 | ?306.91792 |
0.3 | 17.6837 | ?302.184 | ?6.50929 | 5.30057 | ?1.20872 | ?303.39272 |
0.4 | 17.6808 | ?298.688 | ?6.50501 | 5.29796 | ?1.20705 | ?299.89505 |
0.5 | 17.6771 | ?295.222 | ?6.49957 | 5.29463 | ?1.20494 | ?296.42694 |
0.6 | 17.6726 | ?291.785 | ?6.49299 | 5.29061 | ?1.20238 | ?292.98738 |
0.7 | 17.6674 | ?288.377 | ?6.48530 | 5.28591 | ?1.19939 | ?289.57639 |
0.8 | 17.6614 | ?284.997 | ?6.47652 | 5.28055 | ?1.19597 | ?286.19297 |
0.9 | 17.6547 | ?281.645 | ?6.46668 | 5.27453 | ?1.19215 | ?282.83715 |
1.0 | 17.6473 | ?278.32 | ?6.45580 | 5.26787 | ?1.18793 | ?279.50793 |
表3Ar16+基态1s2 1S相对论性能量(单位: a.u.)
Table3.Relativistic correction on ground state 1s2 1S energies level in Ar16+ (unit: a.u.).
u | ${\alpha _{2{\rm{s}}}}$ | ${\alpha _{2{\rm{p}}}}$ | ENR | EMC | ED1 | ED2 | ESSC | EOO | ΔERS | ET |
0 | 17.4113 | 17.8229 | ?77.6010 | ?0.59499 | 0.31621 | ?8.39310 × 10?4 | 1.67862 × 10?3 | ?0.0006009 | ?0.27854 | ?77.87954 |
0.1 | 17.4043 | 17.8174 | ?74.0566 | ?0.59406 | 0.31583 | ?8.38360 × 10?4 | 1.67672 × 10?3 | ?6.00393 × 10?4 | ?0.27800 | ?74.33460 |
0.2 | 17.3839 | 17.8014 | ?70.6207 | ?0.59139 | 0.31472 | ?8.35602 × 10?4 | 1.67120 × 10?3 | ?5.98927 × 10?4 | ?0.27644 | ?70.89714 |
0.3 | 17.351 | 17.7755 | ?67.2898 | ?0.58711 | 0.31294 | ?8.31163 × 10?4 | 1.66233 × 10?3 | ?5.96551 × 10?4 | ?0.27393 | ?67.56373 |
0.4 | 17.3064 | 17.7402 | ?64.0605 | ?0.58132 | 0.31053 | ?8.25157 × 10?4 | 1.65031 × 10?3 | ?5.93313 × 10?4 | ?0.27055 | ?64.33105 |
0.5 | 17.2508 | 17.6959 | ?60.9298 | ?0.57415 | 0.30754 | ?8.17686 × 10?4 | 1.63537 × 10?3 | ?5.89259 × 10?4 | ?0.26637 | ?61.19617 |
0.6 | 17.1845 | 17.6429 | ?57.8948 | ?0.56569 | 0.30401 | ?8.08845 × 10?4 | 1.61769 × 10?3 | ?5.84432 × 10?4 | ?0.26146 | ?58.15626 |
0.7 | 17.1081 | 17.5816 | ?54.9531 | ?0.55606 | 0.29998 | ?7.98720 × 10?4 | 1.59744 × 10?3 | ?5.78871 × 10?4 | ?0.25586 | ?55.20896 |
0.8 | 17.0219 | 17.5122 | ?52.1022 | ?0.54534 | 0.29546 | ?7.87391 × 10?4 | 1.57478 × 10?3 | ?5.72611 × 10?4 | ?0.24966 | ?52.35186 |
0.9 | 16.9262 | 17.4349 | ?49.3398 | ?0.53361 | 0.29051 | ?7.74933 × 10?4 | 1.54987 × 10?3 | ?5.65688 × 10?4 | ?0.24289 | ?49.58269 |
1.0 | 16.8213 | 17.3499 | ?46.6639 | ?0.52098 | 0.28514 | ?7.61414 × 10?4 | 1.52283 × 10?3 | ?5.58134 × 10?4 | ?0.23563 | ?46.89953 |
表8Ar16+基态2s2p 1P相对论性能量(单位: a.u.)
Table8.Relativistic correction on excited state 2s2p 1P energies level in Ar16+ (unit: a.u.).
从表3—表8可以看出, 电荷亏损

u | ${\alpha _{1{\rm{s}}}}$ | ${\alpha _{2{\rm{s}}}}$ | ENR | EMC | ED1 | ED2 | ESSC | ΔERS | ET |
0 | 17.9324 | 17.3433 | ?198.384 | ?3.93094 | 3.07620 | ?7.249983 × 10?3 | 1.450003 × 10?2 | ?0.84749 | ?199.23149 |
0.1 | 17.9319 | 17.3364 | ?194.822 | ?3.92982 | 3.07562 | ?7.245793 × 10?3 | 1.44916 × 10?2 | ?0.84695 | ?195.66895 |
0.2 | 17.9306 | 17.3164 | ?191.335 | ?3.92657 | 3.07394 | ?7.233613 × 10?3 | 1.44672 × 10?2 | ?0.84540 | ?192.18040 |
0.3 | 17.9285 | 17.284 | ?187.921 | ?3.92130 | 3.07121 | ?7.213953 × 10?3 | 1.44279 × 10?2 | ?0.84288 | ?188.76388 |
0.4 | 17.9256 | 17.2401 | ?184.577 | ?3.91415 | 3.06749 | ?7.187233 × 10?3 | 1.43745 × 10?2 | ?0.83947 | ?185.41647 |
0.5 | 17.9218 | 17.1852 | ?181.301 | ?3.90522 | 3.06284 | ?7.153833 × 10?3 | 1.43077 × 10?2 | ?0.83523 | ?182.13623 |
0.6 | 17.9173 | 17.1198 | ?178.092 | ?3.89462 | 3.05729 | ?7.114063 × 10?3 | 1.42281 × 10?2 | ?0.83022 | ?178.92222 |
0.7 | 17.912 | 17.0445 | ?174.947 | ?3.88245 | 3.05090 | ?7.068203 × 10?3 | 1.41364 × 10?2 | ?0.82448 | ?175.77148 |
0.8 | 17.906 | 16.9594 | ?171.866 | ?3.86880 | 3.04371 | ?7.016463 × 10?3 | 1.40329 × 10?2 | ?0.81807 | ?172.68407 |
0.9 | 17.8992 | 16.865 | ?168.847 | ?3.85377 | 3.03575 | ?6.959053 × 10?3 | 1.39181 × 10?2 | ?0.81106 | ?169.65806 |
1.0 | 17.8918 | 16.7615 | ?165.889 | ?3.83745 | 3.02706 | ?6.896133 × 10?3 | 1.37923 × 10?2 | ?0.80349 | ?166.69249 |
表4Ar16+激发态1s2s 1S相对论性能量(单位: a.u.)
Table4.Relativistic correction on excited state 1s2s 1S energies level in Ar16+ (unit: a.u.).
u | ${\alpha _{1{\rm{s}}}}$ | ${\alpha _{2{\rm{s}}}}$ | ENR | EMC | ED1 | ΔERS | ET |
0 | 18.0137 | 17.1931 | ?199.196 | ?3.97703 | 3.10590 | ?0.87113 | ?200.06713 |
0.1 | 18.0133 | 17.1858 | ?195.635 | ?3.97594 | 3.10534 | ?0.87060 | ?196.50560 |
0.2 | 18.0122 | 17.1646 | ?192.149 | ?3.97276 | 3.10370 | ?0.86906 | ?193.01806 |
0.3 | 18.0104 | 17.1305 | ?188.735 | ?3.96761 | 3.10104 | ?0.86657 | ?189.60157 |
0.4 | 18.0078 | 17.0841 | ?185.392 | ?3.96062 | 3.09742 | ?0.86320 | ?186.25520 |
0.5 | 18.0046 | 17.0263 | ?182.119 | ?3.95189 | 3.09289 | ?0.85900 | ?182.97800 |
0.6 | 18.0006 | 16.9574 | ?178.912 | ?3.94152 | 3.08748 | ?0.85404 | ?179.76604 |
0.7 | 17.996 | 16.878 | ?175.77 | ?3.92962 | 3.08124 | ?0.84838 | ?176.61838 |
0.8 | 17.9907 | 16.7885 | ?172.692 | ?3.91627 | 3.07421 | ?0.84206 | ?173.53406 |
0.9 | 17.9847 | 16.6891 | ?169.676 | ?3.90156 | 3.06643 | ?0.83513 | ?170.51113 |
1.0 | 17.9781 | 16.5803 | ?166.721 | ?3.88557 | 3.05792 | ?0.82765 | ?167.54865 |
表5Ar16+激发态1s2s 3S相对论性能量(单位: a.u.)
Table5.Relativistic correction on excited state 1s2s 3S energies level in Ar16+ (unit: a.u.).
u | ${\alpha _{1{\rm{s}}}}$ | ${\alpha _{2{\rm{p}}}}$ | ENR | EMC | ED1 | ED2 | ESSC | EOO | ΔERS | ET |
0 | 18.0107 | 16.9176 | ?197.969 | ?3.58167 | 2.80005 | ?2.073823 × 10?3 | 4.147643 × 10?3 | ?0.0064010 | ?0.78595 | ?198.75495 |
0.1 | 18.0103 | 16.9115 | ?194.403 | ?3.58123 | 2.79986 | ?2.071283 × 10?3 | 4.142563 × 10?3 | ?6.394563 × 10?3 | ?0.78569 | ?195.18869 |
0.2 | 18.0091 | 16.8936 | ?190.903 | ?3.57994 | 2.79929 | ?2.063883 × 10?3 | 4.127763 × 10?3 | ?6.375753 × 10?3 | ?0.78496 | ?191.68796 |
0.3 | 18.007 | 16.8646 | ?187.467 | ?3.57782 | 2.79834 | ?2.051933 × 10?3 | 4.103873 × 10?3 | ?6.345353 × 10?3 | ?0.78377 | ?188.25077 |
0.4 | 18.0042 | 16.8251 | ?184.094 | ?3.57490 | 2.79703 | ?2.035733 × 10?3 | 4.071453 × 10?3 | ?6.304033 × 10?3 | ?0.78214 | ?184.87614 |
0.5 | 18.0007 | 16.7755 | ?180.783 | ?3.57121 | 2.79536 | ?2.015513 × 10?3 | 4.031023 × 10?3 | ?6.252373 × 10?3 | ?0.78009 | ?181.56309 |
0.6 | 17.9963 | 16.7162 | ?177.532 | ?3.56677 | 2.79335 | ?1.991533 × 10?3 | 3.983063 × 10?3 | ?6.190923 × 10?3 | ?0.77762 | ?178.30962 |
0.7 | 17.9913 | 16.6477 | ?174.339 | ?3.56161 | 2.79099 | ?1.963993 × 10?3 | 3.927983 × 10?3 | ?6.120133 × 10?3 | ?0.77478 | ?175.11378 |
0.8 | 17.9855 | 16.57 | ?171.203 | ?3.55574 | 2.78830 | ?1.933093 × 10?3 | 3.866193 × 10?3 | ?6.040453 × 10?3 | ?0.77155 | ?171.97455 |
0.9 | 17.979 | 16.4835 | ?168.124 | ?3.54919 | 2.78527 | ?1.899033 × 10?3 | 3.798063 × 10?3 | ?5.952253 × 10?3 | ?0.76797 | ?168.89197 |
1.0 | 17.9718 | 16.3883 | ?165.101 | ?3.54198 | 2.78193 | ?1.861983 × 10?3 | 3.723953 × 10?3 | ?5.855883 × 10?3 | ?0.76404 | ?165.86504 |
表6Ar16+激发态1s2p 1P相对论性能量(单位: a.u.)
Table6.Relativistic correction on excited state 1s2p 1P energies level in Ar16+ (unit: a.u.).
u | ${\alpha _{1{\rm{s}}}}$ | ${\alpha _{2{\rm{p}}}}$ | ENR | EMC | ED1 | EOO | ΔERS | ET |
0 | 17.9577 | 17.266 | ?198.504 | ?3.54736 | 2.77539 | 6.7643 × 10?3 | ?0.76521 | ?199.26921 |
0.1 | 17.9573 | 17.26 | ?194.937 | ?3.54694 | 2.77522 | 6.75783 × 10?3 | ?0.76496 | ?195.70196 |
0.2 | 17.9562 | 17.2424 | ?191.436 | ?3.54571 | 2.77469 | 6.738923 × 10?3 | ?0.76428 | ?192.20028 |
0.3 | 17.9543 | 17.2138 | ?187.998 | ?3.54369 | 2.77381 | 6.70833 × 10?3 | ?0.76317 | ?188.76117 |
0.4 | 17.9517 | 17.1749 | ?184.622 | ?3.54091 | 2.77260 | 6.66673 × 10?3 | ?0.76164 | ?185.38364 |
0.5 | 17.9483 | 17.1261 | ?181.306 | ?3.53739 | 2.77106 | 6.61473 × 10?3 | ?0.75972 | ?182.06572 |
0.6 | 17.9443 | 17.0678 | ?178.05 | ?3.53315 | 2.76919 | 6.55273 × 10?3 | ?0.75741 | ?178.80741 |
0.7 | 17.9396 | 17.0002 | ?174.852 | ?3.52822 | 2.76700 | 6.48123 × 10?3 | ?0.75474 | ?175.60674 |
0.8 | 17.9342 | 16.9237 | ?171.71 | ?3.52262 | 2.76450 | 6.40083 × 10?3 | ?0.75172 | ?172.46172 |
0.9 | 17.9281 | 16.8384 | ?168.624 | ?3.516370 | 2.76170 | 6.31163 × 10?3 | ?0.74836 | ?169.37236 |
1.0 | 17.9214 | 16.7445 | ?165.593 | ?3.509490 | 2.75859 | 6.21423 × 10?3 | ?0.74469 | ?166.33769 |
表7Ar16+基态1s2p 3P相对论性能量(单位: a.u.)
Table7.Relativistic correction on excited state 1s2p 3P energies level in Ar16+ (unit: a.u.).

Figure1. Relativistic corrections against parameter u for 1s2 1S, 1s2s 1,3S, 1s2p 1,3P and 2s2p 1P of Ar16+.
等离子体效应导致的原子能级移动是反映等离子体内部性质的重要参量. 通过计算, 我们发现等离子体环境导致电荷亏损减小, 即核外电子感受到的原子核的影响减弱, 能级位置发生偏移. 此外我们发现, 由等离子效应导致的非相对论能量偏移量大于相对论修正部分的偏移量. 图2以单激发态1sns 和双激发态2s2p的单重态为例, 分别给出了等离子体效应产生的总能量(非相对论能量+相对论修正能量)偏移与等离子体屏蔽参数之间的关系, 其中纵坐标


Figure2. Plasma energy shifts against parameter u.
2
3.3.等离子效应对波函数的影响
由于等离子屏蔽效应改变核外电子感受到原子核的势场, 从而导致核外电子的波函数形状发生改变, 并进一步导致原子能级位置、跃迁谱线以及碰撞动力学参数的改变. 下面我们将借助(6)式和变分参数的数值展示等离子体屏蔽对不同原子态电子轨道波函数的影响. 图3分别给出了屏蔽参数u = 0, 0.5和1时, 1sns单重态s轨道径向波函数模方. 图3(a)和图3(b)分别给出了基态1s2和激发态1s4s单重态内壳层1s轨道径向波函数模方|R1s|2. 可以看到, 基态1s2和高激发态1s4s内壳层1s电子轨道的波函数几乎一样, 且等离子体屏蔽效应对其影响可以忽略不计; 图3(c)和图3(d)分别给出了1s2s 1S, 1s4s 1S单重态外壳层2s和4s轨道径向波函数模方|R2s|2和|R4s|2. 可以看到, 屏蔽参数越大, 电子轨道越往外侧延展, 且4s轨道比2s轨道延展的明显. 这表明等离子体屏蔽效应使得原子外壳层电子远离原子核, 且激发态越高, 电子轨道感受到等离子体屏蔽效应越明显.
Figure3. Module of radial wave functions for inner and outer shell electron.