原子级范德瓦尔斯(vdW)异质结由于其独特的物理特性,一直是量子材料领域中最引人注目的研究对象之一。这些系统的层间耦合对实现新颖的物理观测和丰富界面功能起着至关重要的作用。由于二维(2D)过渡金属二卤化金属(TMD)的原子半导体具有不同的能带排列和层间相互作用,因此由该类材料垂直堆叠构成的异质结具有更引人关注的光学和光电特性。具体而言,此类vdW异质结中的层间激子由来自不同2D层的载流子组成,并在电荷分离过程中发挥重要作用。与层内激子相比,层间激子通常具有更长的电子-空穴复合寿命,因此在某些情况下可能会影响太阳能电池和光电探测器中的光吸收。此外,层间激子对层间距离的敏感性使得能够通过晶格参数的外部调制来有效地调节材料特性。因此,探索vdW异质结中的层间激子,尤其是它们对不同调谐方法的动态响应的潜在机制具有重要的基础和实践意义。
目前,已有多种不同的调谐方法,例如材料选择,层数,堆叠顺序,电磁场等等。但这些方法仅实现了晶格参数的有限变化。与上述几种方法相比,高压是诱导其晶体结构和电子结构发生剧烈变化的有效方法。目前对vdW异质结层间激子的高压调谐鲜有报道,这可能与在高压腔内制作高质量单层异质结的难度有关。然而,定量研究高压对vdW异质结的光学和光电性能的有效调控仍是十分必要的。
最近,中国科学院物理研究所/北京凝聚态物理国家研究中心博士后马肖莉在洪芳副研究员、于晓辉研究员的指导下,联合北京交通大学张小娴教授、何大伟教授,以及北京理工大学孙家涛教授等,通过金刚石压砧(DAC)对单层WS2 /MoSe2异质结施加压力,有效地调节了WS2/MoSe2异质结的电子结构和层间耦合。
他们首先通过对单层WS2、MoSe2和WS2/MoSe2 异质结进行荧光测量,发现随着压力逐渐增大,其荧光峰的强度均明显减弱(图2),这可能与其压力诱导的直接带隙到间接带隙的跃迁相关。与单层WS2、MoSe2相比,WS2/MoSe2 异质结的层间激子峰(IX峰)在压力作用下表现出更为复杂的演化,因为它不仅与两个组分的电子结构相关,而且还依赖于层间耦合。通过系统地研究0到8.9 GPa 压力下WS2/MoSe2 异质结的荧光峰,发现随着压力的增加,XWS2的荧光峰强与异质结的IX峰强相比逐渐受到抑制(图2E),当压力增加到8.9 GPa时,该峰完全消失,只有IX峰保留。这说明了在该异质结体系中,主要的荧光发射由层内激子向层间激子转变。也就是说,施加外部压力可以有效增强vdW异质结的层间耦合。另外,有趣的是,理论和实验研究均表明,与单层WS2 和MoSe2的层内激子能随压力增加而明显蓝移的现象相比,WS2/MoSe2异质结的层间激子能仅表现出微弱的压力依赖性(图3),这与其他双层TMD样品的高压响应也有显著差异。对于这一现象,有两种可能的解释:一是WS2的导带边缘和MoSe2的价带边缘,在压力下以相当的速度向同一方向移动;其次,杂化带可能存在于两个组分的带边附近,并且它们对压力不敏感。另外,第一性原理计算揭示了外加压力下较强的层间相互作用导致了WS2/MoSe2异质结中层间激子行为的增强,并验证了层间激子的稳定性。这为研究vdW异质结的层间相互作用提供了一种有效的策略,揭示了WS2/MoSe2异质结中层间激子的增强,将对各种类似量子系统的材料和器件设计具有重要意义。
该工作得到了科技部国家重点研发计划、国家自然科学基金委以及中科院先导专项等的支持。
相关工作链接:
[1] Robust Interlayer Exciton in WS2/MoSe2 van der Waals Heterostructure under High Pressure, Xiaoli Ma, Shaohua Fu, Jianwei Ding, Meng Liu, Ang Bian, Fang Hong*, Jiatao Sun*, Xiaoxian Zhang*, Xiaohui Yu* and Dawei He, Nano Lett. 21(19), 8035–8042 (2021)
https://pubs.acs.org/doi/full/10.1021/acs.nanolett.1c02281
图1. 单层WS2/ MoSe2异质结的构建及光学特性。
图2. 不同压力下单层MoSe2、WS2以及WS2/MoSe2异质结的荧光谱和层间激子峰的归一化强度。
图3. WS2/MoSe2异质结中层间和层内激子的转变示意图,以及归一化后单层MoSe2、WS2和WS2/MoSe2异质结的压力依赖荧光谱图。
图4. 外加压力作用下WS2/MoSe2异质结双分子层的计算能带结构和差分电荷密度。
Nano Lett.21, 8035 (2021).pdf
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
高压下WS2/MoSe2异质结中稳定的层间激子
本站小编 Free考研考试/2021-12-27
相关话题/结构 高压 材料 电子 光学
HfTe3单晶中发现高压诱导的高度各向异性超导电性
电荷密度波(CDW)和超导电性(SC)是凝聚态体系中两种典型的与强电-声耦合和费米面不稳定性密切相关的集体电子行为。CDW往往出现在低维结构的材料体系中,而SC是一种三维的宏观量子现象。实验研究表明,在许多低维CDW材料中通过掺杂、加压等调控手段破坏CDW可以诱导出SC。因此,对CDW材料进行物态调 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27基于材料基因工程发现材料非晶形成能力的判据
非晶玻璃材料是典型的复杂体系。其中,非晶合金(又称为金属玻璃)兼具金属和玻璃、固体和液体的特征,呈现优异的机械、物理和化学性能,在高端装备、能源、信息等高技术领域有重要应用。非晶合金也是研究、认识复杂体系中科学问题和现象的重要材料模型。 一般认为,任何金属或合金在特定条件下都可以形成非晶态材料,其 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27磁畴壁拓扑结构在实验上的发现与调控
兼具温度、电流、磁场等多物理场协同调控的高分辨洛伦兹透射电镜在实空间探索纳米尺度新型磁畴结构、原位揭示与磁性相关的新奇物理现象微观机制以及自旋原理性器件应用方面发挥着越来越重要的作用。中国科学院物理研究所/北京凝聚态物理国家研究中心磁学实验室张颖研究团队在沈保根院士总体组织下,近几年利用高分辨磁畴多 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27电化学红外光谱揭示光合放氧中心锰簇拟合物在多重氧化还原状态中的结构重排
2021年10月4日,Journal of Physical Chemistry letters 在线报道了中国科学院物理研究所/北京凝聚态物理国家研究中心软物质物理实验室翁羽翔研究组(SM6组)题为“电化学红外光谱揭示光合放氧中心锰簇拟合物在多重氧化还原状态中的结构重排(Structural Re ...中科院物理研究所 本站小编 Free考研考试 2021-12-27铁基超导体(Ba0.6K0.4)Fe2As2的本征电子结构和超导能隙
铁基高温超导体的超导电性是非常规超导机理研究的重要组成部分,精细的电子结构和超导能隙结构是理解铁基超导体超导机理的前提和基础。然而,即使对于被最早和最广泛研究的最佳掺杂铁基超导体(Ba0.6K0.4)Fe2As2,其电子结构和超导能隙结构仍然存在诸多争议,包括超导态下布里渊区中心(Γ点)附近平带的起 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27国际首台大动量极低温深紫外激光角分辨光电子能谱系统研制成功并投入使用
角分辨光电子能谱技术(ARPES)是当代凝聚态物理和材料科学研究中能直接测量电子结构的最重要的实验手段。在众多前沿物理问题的研究中,如高温超导体和其它非常规超导体的超导机理、拓扑材料的探索以及二维材料的超导与奇异物性等方面,角分辨光电子能谱技术都发挥着至关重要的作用。随着研究问题的深入,对光电子能谱 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27新型二维磁性材料VTe2中的奇异磁性和多铁性
低维磁性体系以其新奇的晶体结构和量子特性,在自旋电子学等方面具有广阔的应用前景。磁性多层薄膜CrI3的成功制备,使二维磁性材料的发现和探索成为凝聚态物理科学研究的重要前沿。目前,低维磁性半导体的研究主要集中在两方面:通过外延生长发现新的磁性材料,和调控磁性以探究独特的磁作用机制。多种二维磁性材料,如 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27“听风辨器”——关联电子系统中的太赫兹光回波与元激发时空干涉
多数物理实验技术通过线性响应来探测材料的物理性质,而新发展起来的非线性谱学则是通过探测材料的非线性响应来获得体系更多的信息。这类新谱学技术的代表之一是二维相干光谱学——该技术运用多个光脉冲激发体系,然后测量体系的非线性响应。在红外、可见光、与紫外波段,这一强有力的谱学手段被广泛应用于化学、生物学等领 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27强自旋-轨道耦合材料(InSb)纳米线和超导体复合“岛”的电子奇偶性完整相图
近日,中国科学院物理研究所/北京凝聚态物理国家研究中心Q02组的沈洁特聘研究员和荷兰代尔夫特理工大学Leo Kouwenhoven组、微软-代尔夫特量子实验室、荷兰爱因霍弗理工大学Erik Bakker组合作,在强自旋-轨道耦合材料InSb纳米线和超导铝的复合系统做成的量子器件——“马约拉纳岛”中测 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27国内首台高重频高通量高次谐波超快角分辨光电子能谱仪搭建完成并实现应用
角分辨光电子能谱仪(ARPES)因其具有能量和动量分辨能力,是探测材料能带结构的重要手段。随着超快激光技术的不断发展,结合泵浦-探测技术的超快角分辨光电子能谱仪(TR-ARPES)由于兼具时间分辨能力,可以用来探测非平衡态的电子能带信息,因此近年来备受人们的重视。特别是基于高次谐波产生(HHG)的T ...中科院物理研究所 本站小编 Free考研考试 2021-12-27