删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

铁基超导体(Ba0.6K0.4)Fe2As2的本征电子结构和超导能隙

本站小编 Free考研考试/2021-12-27

铁基高温超导体的超导电性是非常规超导机理研究的重要组成部分,精细的电子结构和超导能隙结构是理解铁基超导体超导机理的前提和基础。然而,即使对于被最早和最广泛研究的最佳掺杂铁基超导体(Ba0.6K0.4)Fe2As2,其电子结构和超导能隙结构仍然存在诸多争议,包括超导态下布里渊区中心(Γ点)附近平带的起源,布里渊区角落(M点)附近的能带和费米面的拓扑结构,以及Γ点和M点附近精确的超导能隙结构等。这些问题的深入研究,对于厘清争议和理解铁基超导体的超导机理具有重要的意义。
  中国科学院物理研究所/北京凝聚态物理国家研究中心超导国家重点实验室周兴江研究组的博士生蔡永青、黄建伟以及赵林副研究员等,利用新一代基于飞行时间分析器的真空紫外激光角分辨光电子能谱的超高分辨率和同时探测二维动量空间的独特优势,结合氦灯光源的光电子能谱,对高质量最佳掺杂(Ba0.6K0.4)Fe2As2超导体进行了全面系统的电子结构和超导能隙的研究,揭示了其本征的电子结构和超导能隙结构。
  最佳掺杂(Ba0.6K0.4)Fe2As2 布里渊区中心Γ点附近,在超导态会出现一个“平带”结构,长期以来对其起源一直存在着完全不同的理解(可能存在的四种解释如图1所示)。利用激光角分辨光电子能谱,对新鲜解理的样品和退化的样品能带结构之间的比较表明,退化的样品中超导相干峰被强烈压制,但平带结构基本保持不变,因而会更加明显地显现出来(图2)。对M点附近的能带仔细测量发现,在超导温度以上相干性很差的能带,在超导态形成了具有很强超导相干峰的能带(图3)。在超导态M点形成的能带, 与在Γ点附近发现的“平带”结构具有很好的对应关系(图4)。 在Γ点和M点观测到了非常清晰的能带复制现象,这种能带复制在正常态和超导态下都可以观测到,有可能是由表面重构导致(图5)。
  基于以上的结果,他们建立一个新的完整的图像来理解最佳掺杂(Ba0.6K0.4)Fe2As2的电子结构(图6)。Γ点附近平带的起源,是由M点的能带复制到Γ点以及Γ点附近能带的超导回弯两部分共同组成。对能带结构的准确认识,结合更精细的测量,有助于提取出准确的超导能隙,建立完整的超导能隙图像。如图7所示,在Γ点附近三个能带展现出三个不同的超导能隙,M点附近的两个能带对应的超导能隙约为5.5meV,远小于之前所有ARPES的测量结果。
  该工作直接观测到了超导态下和正常态下在Γ点和M点能带的复制现象,确定了超导态下Γ点附近平带的起源,在Γ点和M点建立了新的超导能隙结构。这些结果澄清并解决了关于最佳掺杂(Ba0.6K0.4)Fe2As2的电子结构和超导能隙的一系列争议,为检验并建立理论来理解铁基超导体的超导机理提供了关键的信息。
  相关研究结果发表在近期的Science Bulletin上,Yongqing Cai et al., Genuine electronic structure and superconducting gap structure in (Ba0.6K0.4)Fe2As2 Superconductor. Science Bulletin 66(18) (2021)1839-1848。上述研究工作获得了国家自然科学基金委、科技部和中国科学院等的资助。
  文章链接: https://doi.org/10.1016/j.scib.2021.05.015

图1. 超导态下(Ba0.6K0.4)Fe2As2 Γ点附近的平带及其可能的起源

图2. 激光ARPES测量的超导态下(Ba0.6K0.4)Fe2As2 Γ点附近样品退化前和退化后的平带结构

图3. 超导态和正常态下(Ba0.6K0.4)Fe2As2 M点的能带结构

图4. 超导态下(Ba0.6K0.4)Fe2As2在Γ点和M点电子结构的比较

图5. 超导态和正常态下(Ba0.6K0.4)Fe2As2在Γ和M点之间的能带复制

图6. 超导态下(Ba0.6K0.4)Fe2As2在Γ点处平带的形成机理

图7. 最佳掺杂 (Ba0.6K0.4)Fe2As2的超导能隙结构

Science Bulletin 66, 1839 (2021).pdf
相关话题/结构 电子 测量 激光 光电子

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 自压缩少周期飞秒激光脉冲的产生
    少周期飞秒驱动源是产生极紫外波段孤立阿秒脉冲的重要条件,采用常规方案需要经过光谱展宽与脉冲压缩两个过程,不仅效率低,而且压缩元件对大能量脉冲的承受能力也极为有限。近年来人们利用光谱展宽过程中的非线性效应实现色散补偿,即自压缩效应,为这一问题的解决提供了新的思路,不仅简化了脉冲压缩过程,也有利于大能量 ...
    本站小编 Free考研考试 2021-12-27
  • 激光诱导液态水中产生非平衡态等离子体
    光诱导的水动力学是水科学和物理化学中的一个基本问题。它对于能源科学、大气科学和生物学有着重要的意义,一些重要应用包括光催化制氢、大气中的光化学反应、激光医疗手术等等。由于激光脉冲的超快特性和复杂的光与物质相互作用机制,之前的工作主要集中在水体系中发生的纳秒尺度以上的宏观动力学行为,包括冲击波发射、气 ...
    本站小编 Free考研考试 2021-12-27
  • “听风辨器”——关联电子系统中的太赫兹光回波与元激发时空干涉
    多数物理实验技术通过线性响应来探测材料的物理性质,而新发展起来的非线性谱学则是通过探测材料的非线性响应来获得体系更多的信息。这类新谱学技术的代表之一是二维相干光谱学——该技术运用多个光脉冲激发体系,然后测量体系的非线性响应。在红外、可见光、与紫外波段,这一强有力的谱学手段被广泛应用于化学、生物学等领 ...
    本站小编 Free考研考试 2021-12-27
  • 强自旋-轨道耦合材料(InSb)纳米线和超导体复合“岛”的电子奇偶性完整相图
    近日,中国科学院物理研究所/北京凝聚态物理国家研究中心Q02组的沈洁特聘研究员和荷兰代尔夫特理工大学Leo Kouwenhoven组、微软-代尔夫特量子实验室、荷兰爱因霍弗理工大学Erik Bakker组合作,在强自旋-轨道耦合材料InSb纳米线和超导铝的复合系统做成的量子器件——“马约拉纳岛”中测 ...
    本站小编 Free考研考试 2021-12-27
  • 国内首台高重频高通量高次谐波超快角分辨光电子能谱仪搭建完成并实现应用
    角分辨光电子能谱仪(ARPES)因其具有能量和动量分辨能力,是探测材料能带结构的重要手段。随着超快激光技术的不断发展,结合泵浦-探测技术的超快角分辨光电子能谱仪(TR-ARPES)由于兼具时间分辨能力,可以用来探测非平衡态的电子能带信息,因此近年来备受人们的重视。特别是基于高次谐波产生(HHG)的T ...
    本站小编 Free考研考试 2021-12-27
  • 基于预啁啾管理放大技术的高增益高平均功率光纤激光器
    高功率超快光纤激光具有光束质量好、散热性能佳、转换效率高、体积尺寸小等优势,在工业制造、国防军事及医疗检测等领域具有重要应用。除了工业领域脆性材料加工和微纳结构制造方面日益增长的需求外,高重频高功率超快光纤激光在高通量高次谐波及阿秒脉冲产生等科研领域也发挥着越来越重要的作用。目前在超快光纤激光领域, ...
    本站小编 Free考研考试 2021-12-27
  • 中子衍射研究:一种新的自旋结构及巨压磁效应
    压磁效应(Baromagnetic Effect, BME),即压力诱导磁矩变化的效应,其在智能设备、传感器和磁电(ME)应用等领域具有潜在应用价值。  中国科学院物理研究所/北京凝聚态物理国家研究中心磁学国家重点实验室M03组胡凤霞研究员、沈保根院士领导的团队致力于Mn基三元金属间化合物MnMX( ...
    本站小编 Free考研考试 2021-12-27
  • 原位测量量子液体中同位素杂质浓度技术
    氦是最轻的单原子分子,由不确定性关系可知在液相或固相中氦原子具有非常剧烈的量子零点运动,因此是研究量子液体与量子固体最合适的体系。氦同时也是最纯净的体系—所有由其他元素构成杂质都将因为范德华相互作用被吸附固定,从而不会影响氦本身的性质。但是由于氦存在两种稳定同位素4He和3He,因此同位素杂质成为极 ...
    本站小编 Free考研考试 2021-12-27
  • 基于软模板的原子层组装技术实现多重纳米结构的精准调控加工
    利用各种纳米加工技术制备的纳米结构和器件在微纳光子学、微纳电子学、生物学及纳米能源等领域发挥了非常重要作用,但同时也对纳米加工的尺寸、形状、空间排列和组装等工艺控制提出了越来越高的要求。现有的传统纳米加工技术,例如电子束曝光、聚焦离子束直写、阳极氧化和自组装技术通常在实现无序、杂化、不规则及变径等特 ...
    本站小编 Free考研考试 2021-12-27
  • 新型网状β-EuSn2As2高压晶体结构及其两步重构相变机制
    拓扑绝缘体由于其独特的能带结构和受拓扑保护的量子性质,近年来是凝聚态物理领域中一个重要的研究方向。近两年来,本征磁性拓扑绝缘体的发现,掀起了新一波的研究热潮,因为在这类磁性拓扑绝缘体中,磁性和拓扑表面态之间的相互作用会产生许多奇异的拓扑量子效应,例如:量子反常霍尔效应,手性马约拉纳费米子和轴子绝缘体 ...
    本站小编 Free考研考试 2021-12-27