删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

实验证实磁性拓扑半金属EuB6

本站小编 Free考研考试/2021-12-27

时间反演对称和能带拓扑的相互作用是拓扑物态研究的关键之一。在时间反演不变体系中,宇称相反的自旋简并能带发生反转会导致非平庸拓扑态的产生,比如量子自旋霍尔效应的实现和狄拉克半金属的发现。而在磁性材料中,磁有序会破缺时间反演对称,宇称相反的自旋劈裂能带发生反转会产生更多新奇的拓扑态,比如量子反常霍尔效应和磁性外尔半金属态,这是当前凝聚态物理领域的前沿热点研究之一。
  2020年,中国科学院物理研究所/北京凝聚态物理国家研究中心T03组博士生聂思敏(现为斯坦福大学博士后)、王志俊特聘研究员、翁红明研究员、方忠院士和香港科技大学戴希教授等人【Phys. Rev. Lett. 124, 076403 (2020)】通过第一性原理计算和低能有效模型分析,预言EuB6在顺磁态是拓扑平庸的窄带隙半导体,进入铁磁态后,时间反演对称破缺,交换场会导致能带劈裂,自旋向上态的能隙减小而自旋向下态的能隙变大,最终自旋向上的能带发生反转,形成磁性拓扑半金属态(图1e)。在2002年,Denlinger等人【Phys. Rev. Lett. 89, 157601 (2002)】就利用角分辨光电子能谱(ARPES)测量了EuB6的电子结构,实验结果显示在顺磁态的能带结构有约1eV的带隙,与理论计算不符。
  中科院物理所EX7组博士生高顺业、钱天研究员和丁洪研究员,EX10组博士后伊长江和石友国研究员,T03组王志俊特聘研究员,中国人民大学博士生徐升和夏天龙教授,丹麦技术大学博士后李航,斯坦福大学博士后聂思敏等合作,利用同步辐射光源ARPES再次对EuB6的电子结构进行了仔细的测量,发现EuB6(001)解理面存在Eu和B两种截止面。在Eu截止面上观测到的是悬挂键形成的平庸表面态,与早期的ARPES结果一致。在B截止面上,他们观测到了体态的能带,与理论计算符合(图2)。他们继续测量了B截止面体态能带随温度的变化,观测到伴随铁磁转变发生自旋劈裂和能带反转,在铁磁态形成了时间反演对称破缺的磁性拓扑半金属态(图3)。
  与之前实验证实的磁性拓扑半金属材料相比,EuB6磁性拓扑半金属态的电子结构十分理想,能带交叉位于费米能级并且没有其他能带的干扰,有利于相关的拓扑物性的实现和研究,比如在二维极限下EuB6薄膜的量子反常霍尔效应。
  该研究工作近期发表在【Physical Review X 11,021016 (2021)】上,论文并列第一作者为高顺业(实验测量)、徐升(样品制备)、李航(实验测量)、伊长江(样品制备),共同通讯作者为石友国、夏天龙、钱天。该工作得到了科技部(2016YFA0300600、2019YFA0308602、2016YFA0401000、2017YFA0403401、2017YFA0302901),国家自然科学基金委(U1832202、11874422、11888101、U2032204、12004416、12074425、U1875192、11974395),中国科学院(QYZDB-SSW-SLH043、XDB33020100、XDB28000000)等项目的支持。
  文章链接:https://journals.aps.org/prx/abstract/10.1103/PhysRevX.11.021016

图1. EuB6的计算电子结构和磁性质。

图2. 顺磁态下Eu截止面和B截止面的ARPES实验结果。

图3. B截止面的温度依赖ARPES实验结果。

图4. 铁磁态下B截止面的面内和面外ARPES实验结果。

PRX 11, 021016 (2021).pdf
相关话题/实验 测量 金属 结构 博士后

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于软模板的原子层组装技术实现多重纳米结构的精准调控加工
    利用各种纳米加工技术制备的纳米结构和器件在微纳光子学、微纳电子学、生物学及纳米能源等领域发挥了非常重要作用,但同时也对纳米加工的尺寸、形状、空间排列和组装等工艺控制提出了越来越高的要求。现有的传统纳米加工技术,例如电子束曝光、聚焦离子束直写、阳极氧化和自组装技术通常在实现无序、杂化、不规则及变径等特 ...
    本站小编 Free考研考试 2021-12-27
  • 新型网状β-EuSn2As2高压晶体结构及其两步重构相变机制
    拓扑绝缘体由于其独特的能带结构和受拓扑保护的量子性质,近年来是凝聚态物理领域中一个重要的研究方向。近两年来,本征磁性拓扑绝缘体的发现,掀起了新一波的研究热潮,因为在这类磁性拓扑绝缘体中,磁性和拓扑表面态之间的相互作用会产生许多奇异的拓扑量子效应,例如:量子反常霍尔效应,手性马约拉纳费米子和轴子绝缘体 ...
    本站小编 Free考研考试 2021-12-27
  • 金属玻璃薄膜的原子尺度分形结构研究
    非晶态材料中无序原子结构的认识是理解非晶的非平衡态弛豫动力学和玻璃转变等过程的物理机制的基础,也是调控非晶态材料优异性能的关键。由于不存在平移对称性,非晶态结构中的原子位置和的排列规则很难像晶体材料一样,利用常规的结构表征手段(如透射电镜)进行研究。非晶态材料中原子结构的表征和解析已经成为非晶态物理 ...
    本站小编 Free考研考试 2021-12-27
  • 近邻层结构相变调控钌氧化物磁电特性的研究进展
    在ABO3钙钛矿型的过渡金属氧化物中,由金属离子和氧离子构成的氧八面体的畸变与功能材料中电荷、轨道、自旋等电子自由度高度耦合,决定着材料的宏观物性。随着现代薄膜制备技术的精进,科学家们已经能够在单原胞层的尺度对薄膜材料的结构进行人工设计和剪裁,提高已具备的物性,甚至可以按需订制特殊的功能。氧化物薄膜 ...
    本站小编 Free考研考试 2021-12-27
  • 高能量密度无负极锂金属电池研究进展
    目前,基于锂离子插层化学的传统锂离子电池已经无法满足各种新兴领域对锂电池能量密度的需求。因此以高能量密度著称的锂金属电池作为最具潜力的电池体系再次引起了研究人员的广泛关注。在所有锂金属电池中无负极锂金属电池(AF-LMB)可以将全电池能量密度推向极致,超过450 Whkg-1,被视为高能量密度锂金属 ...
    本站小编 Free考研考试 2021-12-27
  • 掺杂Mott绝缘体的电子结构演变研究取得重要进展
    自1986年铜氧化物高温超导体发现以来,其高温超导机理的研究一直是凝聚态物理中的一个核心问题。铜氧化物高温超导体的母体是反铁磁Mott绝缘体,通过向母体中掺入适量的载流子(电子或空穴),可以实现高温超导电性。由此产生的一个首要问题是,Mott绝缘态是如何随掺杂逐渐演变进入超导态的。进一步具体来讲,M ...
    本站小编 Free考研考试 2021-12-27
  • 新型二维原子晶体硒化亚铜的制备及其纯热驱动结构相变的研究
    材料的结构相变是一个很普遍的物理过程,有着极丰富的应用。人们很早就开始研究纯热驱动的三维材料结构相变,并扩展到其他因素引起的相变。而在二维材料中,已发现的结构转变是由应变、激光、电子注入、电子/离子束、化学计量的热损失、化学处理或这些方法与退火相结合引起的。比如:单层MoS2和MoTe2的结构相变需 ...
    本站小编 Free考研考试 2021-12-27
  • QueenFRET:实现活细胞膜蛋白动力学的精密测量
    细胞膜既是保护细胞的重要屏障,也是细胞与外界物质和信息交换的界面。空间总厚度约为10纳米的细胞膜(含突出于细胞膜两侧的膜蛋白结构)可被视为准二维凝聚相体系。磷脂双层膜及镶嵌于膜上的众多蛋白质,整体上具有“多重界面复杂流体"的行为和特征。膜本身的二维流动性和三维起伏涨落为膜蛋白动力学的精密测量造成严重 ...
    本站小编 Free考研考试 2021-12-27
  • 反铁磁金属氮化铬超薄膜的电子态相变研究
    超薄导电材料在透明显示、柔性电子皮肤、可穿戴光伏器件等方面具有广泛的应用前景,是应用材料领域争相角逐的前沿领域。现代微电子器件不仅要求这些超薄材料具有优异的导电性和透光性,还要求它们能够具有更为丰富的物理特性,例如磁性、热电性、延展性和抗腐蚀性等,为设计下一代移动智能多功能器件提供备选材料。过渡金属 ...
    本站小编 Free考研考试 2021-12-27
  • 发现二维金属中奇异的等离激元
    光照射在固体材料上会使其中的电子形成两类激发:一种是电子-空穴的对激发,称为激子;另一种是电子的集体振荡,称为等离激元。等离激元有很多奇特的应用,例如等离激元通过与光耦合形成图1所示的极化激元 (Surface plasmon polariton, SPP),在电路中进行能量和信号的传输。理想情况下 ...
    本站小编 Free考研考试 2021-12-27