蒋李兵1,
钟卫军2,
王壮1,,
1.国防科技大学ATR重点实验室 长沙 410073
2.宇航动力学国家重点实验室 西安 724403
基金项目:国防科技重点实验室基金(6142503180202)
详细信息
作者简介:任笑圆:男,1991年生,博士生,研究方向为目标检测识别、图像融合
蒋李兵:男,1982年生,讲师,研究方向为SAR图像解译、图像融合
钟卫军:男,1982年生,工程师,研究方向为空间目标探测与识别
王壮:男,1973年生,教授,研究方向为雷达信息处理、空间目标监视、目标识别
通讯作者:王壮 zhuang_wang@sina.com
中图分类号:TN911.73; TP391计量
文章访问数:203
HTML全文浏览量:159
PDF下载量:60
被引次数:0
出版历程
收稿日期:2020-06-01
修回日期:2021-03-28
网络出版日期:2021-04-29
刊出日期:2021-12-21
A Vision-based Method for 3D Pose Estimation of Non-cooperative Space Target
Xiaoyuan REN1,Libing JIANG1,
Weijun ZHONG2,
Zhuang WANG1,,
1. Key Laboratory on ATR, National University of Defense Technology, Changsha 410073, China
2. State Key Laboratory of Astronautic Dynamics, Xi’an 724403, China
Funds:The Key Laboratory Foundation of National Defense Technology (6142503180202)
摘要
摘要:基于视觉的非合作空间目标3维姿态估计,关键在于建立观测图像与目标模型的特征关联。当前方法往往通过采用复杂的多维特征、产生候选关联结果的方式确保特征关联的准确性,难以兼顾算法效率。为解决以上问题,该文提出一种结合深度学习技术的姿态估计方法,首先通过深度神经网络得到姿态初值,然后基于姿态初值建立图像和目标模型之间的特征关联,进而求解目标姿态。所提方法中,深度神经网络提供了稳定的姿态初值,缩小了特征关联的候选空间;在姿态初值的支撑下采取了更为高效的特征提取与匹配方法。仿真实验表明,该文方法相比于现有方法更好地兼顾了算法准确率和效率。
关键词:姿态估计/
空间目标/
深度学习/
特征匹配
Abstract:Establishing correspondence between the target model and the input image is an important step for the pose estimation of non-cooperative space target. Current methods always rely on complex image features and generation of candidate, which can be costly and time consuming. To solve the problems above, this paper proposes a pose estimation method that first conducts initial estimation based on deep neural network and then conducts accurate estimation through correspondence between the known target model and the input image is proposed. The deep neural network provides the stable initial value which reduces the candidates of correspondence between the target model and image. In addition, a more efficient feature extraction and matching method is adopted in this paper instead of complex multi-dimensional features. The simulation results show that the method proposed performs well both in efficiency and accuracy.
Key words:Pose estimation/
Space target/
Deep learning/
Feature matching
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=b145724a-a4a0-4311-bbf3-3e1a7d9db0a4