师君如1,
张明川1,,,
王倩玉1,
朱军龙1,
张宏科2
1.河南科技大学信息工程学院 洛阳 471023
2.北京交通大学下一代互联网互联设备国家工程实验室 北京 100044
基金项目:国家自然科学基金(61871430, 61976243),中原科技创新领军人才(214200510012),河南省教育厅基础研究专项(19zx010),河南省教育厅重点科研项目(20A520011)
详细信息
作者简介:吴庆涛:男,1975年生,教授,研究方向为云计算、物联网、下一代网络
师君如:女,1997年生,硕士生,研究方向为信息中心网络
张明川:男,1977年生,教授,研究方向为物联网、下一代网络、机器学习
王倩玉:女,1991年生,硕士生,研究方向为信息中心网络
朱军龙:男,1982年生,副教授,研究方向为人工智能、机器学习、新型网络
张宏科:男,1957年生,教授,研究方向为下一代网络、智慧协同网络
通讯作者:张明川 zhang_mch@haust.edu.cn
中图分类号:TN919.2; TP393计量
文章访问数:74
HTML全文浏览量:45
PDF下载量:21
被引次数:0
出版历程
收稿日期:2020-08-27
修回日期:2021-09-24
网络出版日期:2021-10-22
刊出日期:2021-12-21
A Three-level Name Lookup Method Based on Deep Bloom Filter for Named Data Networking
Qingtao WU1,Junru SHI1,
Mingchuan ZHANG1,,,
Qianyu WANG1,
Junlong ZHU1,
Hongke ZHANG2
1. School of Information Engineering, Henan University of Science and Technology, Luoyang 471023, China
2. National Engineering Laboratory for Next Generation Internet Interconnection Devices, Beijing Jiaotong University, Beijing 100044, China
Funds:The National Natural Science Foundation of China (61871430, 61976243), The Leading Talents of Science and Technology in the Central Plain of China (214200510012), The Basic Research Projects in the University of Henan Province (19zx010), The Key Project of the Education Department Henan Province (20A520011)
摘要
摘要:为提高命名数据网络(Name Data Networking, NDN)路由过程中内容名字查找的效率,该文提出一种基于深度布隆过滤器的3级名字查找方法。该方法使用长短记忆神经网络(Long Short Term Memory, LSTM)与标准布隆过滤器相结合的方法优化名字查找过程;采用3级结构优化内容名字在内容存储器(Content Store, CS)、待定请求表(Pending Interest Table, PIT)中的精确查找过程,提高查找精度并降低内存消耗。从理论上分析了3级名字查找方法的假阳性率,并通过实验验证了该方法能够有效节省内存、降低查找过程的假阳性。
关键词:命名数据网络/
内容名字查找/
深度布隆过滤器/
内存消耗
Abstract:A three-level name lookup method based on deep Bloom filter is proposed to improve the searching efficiency of content name in the routing progress of the Named Data Networking (NDN). Firstly, in this method, the Long Short Term Memory (LSTM) is combined with standard Bloom filter to optimize the name searching progress. Secondly, a three-level structure is adopted to optimize the accurate content name lookup progresses in the Content Store (CS) and the Pending Interest Table (PIT) to promote lookup accuracy and reduce memory consumption. Finally, the error rate generated by content name searching method based on deep Bloom filter structure is analyzed in theory, and the experiment results prove that the proposed the three-level lookup structure can compress memory and decrease the error effectively.
Key words:Named Data Networking (NDN)/
Content name lookup/
Deep Bloom filter/
Memory consumption
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=3d1d89af-626b-4ed2-8020-91fc07bcb63e