谌竟成,
谢璐,
赵云涛
武汉科技大学冶金自动化与检测技术教育部工程研究中心 武汉 430081
基金项目:国家自然科学基金(51774219)
详细信息
作者简介:李维刚:1977年生,教授,博士生导师,研究方向为人工智能与机器学习算法
谌竟成:1997年生,硕士生,研究方向为图像处理
谢璐:1996年生,博士生,研究方向为语义分割
赵云涛:1983年生,副教授,研究方向为3维点云数据处理
通讯作者:李维刚 liweigang.luck@foxmail.com
中图分类号:TN911.73计量
文章访问数:369
HTML全文浏览量:155
PDF下载量:61
被引次数:0
出版历程
收稿日期:2020-12-07
修回日期:2021-03-21
网络出版日期:2021-04-09
刊出日期:2021-11-23
Semi Supervised Learning of Metallographic Data Based on Self-organizing Incremental and Graph Convolution Neural Network
Weigang LI,,Jingcheng SHEN,
Lu XIE,
Yuntao ZHAO
Engineering Research Center for Metallurgical Automation and Measurement Technology of Ministry of Education, Wuhan 430081, China
Funds:The National Natural Science Foundation of China (51774219)
摘要
摘要:采用深度学习对钢铁材料显微组织图像分类,需要大量带标注信息的训练集。针对训练集人工标注效率低下问题,该文提出一种新的融合自组织增量神经网络和图卷积神经网络的半监督学习方法。首先,采用迁移学习获取图像数据样本的特征向量集合;其次,通过引入连接权重策略的自组织增量神经网络(WSOINN)对特征数据进行学习,获得其拓扑图结构,并引入胜利次数进行少量人工节点标注;然后,搭建图卷积网络(GCN)挖掘图中节点的潜在联系,利用Dropout手段提高网络的泛化能力,对剩余节点进行自动标注进而获得所有金相图的分类结果。针对从某国家重点实验室收集到的金相图数据,比较了在不同人工标注比例下的自动分类精度,结果表明:在图片标注量仅为传统模型12%时,新模型的分类准确度可达到91%。
关键词:自组织增量神经网络/
图卷积神经网络/
自动标注/
钢材显微组织
Abstract:It needs a large number of training sets with annotation information to classify microstructure images of steel materials by deep learning. To solve the problem of low efficiency of manual image annotation, a new semi-supervised learning method combining self-organizing incremental neural network and graph convolutional neural network is proposed. Firstly, it uses transfer learning to obtain the feature vector set of images. Secondly, it obtains the topology structure by adopting the Weighted Self-Organizing Incremental Neural Network(WSOINN) based on connection weight strategy to learn feature data, and manually annotates a small number of nodes which are selected by the number of victories of node. Then, a Graph Convolution Network (GCN) is built to mine the potential connections of nodes in the graph, dropout is used to improve the generalization ability of the network, and the remaining nodes are automatically annotated to obtain the classification results of the metallograph. Experiment on the metallographic data collected from a state key laboratory, the accuracy of automatic classification under different manual annotation ratio is compared. The results show when the image annotation amount is only 12% of the traditional model, and the classification accuracy of the proposed model can reach up to 91%.
Key words:Self-Organizing Incremental Neural Network(SOINN)/
Graph Convolution Network(GCN)/
Automatic annotation/
Steel material microstructure
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=f5394ce1-8939-4a14-b5c1-44a36411cbbd