李亚安3,
金海燕1, 2,
鲁晓锋1, 2
1.西安理工大学计算机科学与工程学院 西安 710048
2.陕西省网络计算与安全技术重点实验室 西安 710048
3.西北工业大学航海学院 西安 710072
基金项目:国家自然科学基金(61703333, U1934222),陕西省自然科学基础研究计划(2019JQ-746, 18JK0557),陕西省重点实验室项目(20JS088),西安市碑林区科技计划项目 (GX2017)
详细信息
作者简介:李晓花:女,1986年生,博士,讲师,研究方向为多目标跟踪,多传感器信息融合
李亚安:男,1961年生,博士,教授,研究方向为目标定位与跟踪,特征提取与分类
金海燕:女,1976年生,博士,教授,博士生导师,研究方向为机器学习,目标优化,智能信息处理
鲁晓锋:男,1976年生,博士,副教授,硕士生导师,研究方向为视觉目标检测与跟踪,深度学习
通讯作者:李晓花 lixiaohua@xaut.edu.cn
中图分类号:TN957计量
文章访问数:219
HTML全文浏览量:124
PDF下载量:37
被引次数:0
出版历程
收稿日期:2021-06-22
修回日期:2021-08-16
网络出版日期:2021-08-30
刊出日期:2021-10-18
Multistatic Passive Radar Multi-target Tracking Under Target-measurement-illuminator Data Association Uncertainty
Xiaohua LI1, 2,,,Ya’an LI3,
Haiyan JIN1, 2,
Xiaofeng LU1, 2
1. School of Computer and Engineering, Xi’an University of Technology, Xi’an 710048, China
2. Shaanxi Key Laboratory for Network Computing and Security Technology, Xi’an 710048, China
3. School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, 710072, China
Funds:The National Natural Science Foundation of China (61703333, U1934222), The Natural Science Basic Research Program of Shaanxi Province (2019JQ-746 and 18JK0557), The Kay Laboratory of Shaanxi Provincial Department of Education (20JS088), The Science and Technology Project of Beilin District (GX2017)
摘要
摘要:不同于传统多目标跟踪,除了量测-目标数据关联模糊问题外,外辐射源雷达跟踪系统新增了量测-发射机数据关联模糊问题。针对此问题,该文通过引入一个新的关联变量来表示量测和发射机之间的数据关联关系,提出了目标-量测-发射机3维数据关联改进概率多假设跟踪(PMHT)算法。该算法利用期望极大化(EM)算法的独立性假设条件得到最大后验概率意义下的最优跟踪。为了增加目标-量测-发射机之间数据关联的准确性,提高多目标与量测后验关联概率的精确度,将量测信息设定为均值相同协方差不同的混合高斯分布。针对距离-多普勒量测的非线性性,利用无味卡尔曼平滑(UKS)算法进行多目标状态估计。仿真结果表明,对于FKIE外辐射源雷达数据集(杂波密度很高),所提算法的目标与航迹关联成功率高,抗杂波性能强,证明了算法的有效性。
关键词:外辐射源雷达/
多目标跟踪/
概率多假设跟踪/
无味卡尔曼平滑算法/
数据关联
Abstract:Different from the traditional multi-target tracking problem which has the measurements to targets data association uncertainty problem, the multistatic passive radar multi-target tacking system has the additional measurements to illuminators data association uncertainty problem, which means the data association relationship is three dimensional. A novel target-measurement-illuminator Probabilistic Multiple Hypothesis Tracking (PMHT) algorithm is proposed, which introduces a new data association variable to represent the data association relationship. The proposed algorithm is based on the Expectation-Maximization (EM). To handle the nonlinear problem of range-Doppler measurements, the Unscented Kalman Smoother (UKS) is used to get the multi-targets’ estimated states. To increase the data association accuracy, the measurements are set to mixture Gaussian distribution. Simulation results show that for the FKIE passive radar data set, the proposed algorithm can track multi-targets effectively in dense clutter environment.
Key words:Multistatic passive radar/
Multi-target tracking/
Probabilistic Multiple Hypothesis Tracking (PMHT)/
Unscented Kalman Smoother (UKS)/
Data association
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=a13b6699-188f-49f3-a79d-afa708434214