刘小晗1,,,
付飞蚺1
1.长春理工大学计算机科学技术学院 长春 130022
2.长春理工大学人工智能学院 长春 130022
基金项目:山东省支持青岛海洋科学与技术试点国家实验室重大科技专项(2018SDKJ0102-6)
详细信息
作者简介:方明:男,1977年生,副教授,博士,硕士生导师,研究方向为图像处理、计算机视觉
刘小晗:女,1995年生,硕士生,研究方向为图像处理、计算机视觉
付飞蚺:男,1989年生,博士,研究方向为图像处理、计算机视觉
通讯作者:刘小晗 liuxh928@163.com
中图分类号:TN911.73; TP391计量
文章访问数:307
HTML全文浏览量:73
PDF下载量:82
被引次数:0
出版历程
收稿日期:2020-09-27
修回日期:2021-04-25
网络出版日期:2021-07-14
刊出日期:2021-12-21
Multi-scale Underwater Image Enhancement Network Based on Attention Mechanism
Ming FANG2, 1,Xiaohan LIU1,,,
Feiran FU1
1. School of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
2. School of Artificial Intelligence, Changchun University of Science and Technology, Changchun 130022, China
Funds:The Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao)(2018SDKJ0102-6)
摘要
摘要:水下图像往往会因为光的吸收和散射而出现颜色退化与细节模糊的现象,进而影响水下视觉任务。该文通过水下成像模型合成更接近水下图像的数据集,以端到端的方式设计了一个基于注意力的多尺度水下图像增强网络。在该网络中引入像素和通道注意力机制,并设计了一个多尺度特征提取模块,在网络开始阶段提取不同层次的特征,通过带跳跃连接的卷积层和注意力模块后得到输出结果。多个数据集上的实验结果表明,该方法在处理合成水下图像和真实水下图像时都能有很好的效果,与现有方法相比能更好地恢复图像颜色和纹理细节。
关键词:水下图像增强/
深度学习/
注意力机制/
多尺度特征
Abstract:Due to the absorption and scattering, color degradation and detail blurring often occur in underwater images, which will affect the underwater visual tasks. A multi-scale underwater image enhancement network based on attention mechanism is designed in an end-to-end manner by synthesizing dataset closer to underwater images through underwater imaging model. In the network, pixel and channel attention mechanisms are introduced. A new multi-scale feature extraction module is designed to extract the features of different levels at the beginning of the network, and the output results are obtained via a convolution layer and an attention module with skip connections. Experimental results on multiple datasets show that the proposed method is effective in processing both synthetic and real underwater images. It can better recover the color and texture details of images compared with the existing methods.
Key words:Underwater image enhancement/
Deep learning/
Attention mechanism/
Multi-scale features
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=e10cc049-43a8-4d7e-a90d-eb99493be432