刘颖,
李志军
湘潭大学自动化与电子信息学院 湘潭 411105
基金项目:国家重点研发计划(2018AAA0103300)
详细信息
作者简介:马铭磷:男,1978年生,副教授,研究生导师,研究方向为射频集成电路设计、非线性电路与系统
刘颖:女,1997年生,硕士生,研究方向为开关电路系统非线性动力学
李志军:男,1973年生,教授,研究生导师,研究方向为非线性电路与系统、数模混合集成电路
通讯作者:马铭磷 minglin_ma@xtu.edu.cn
中图分类号:TN601计量
文章访问数:136
HTML全文浏览量:66
PDF下载量:36
被引次数:0
出版历程
收稿日期:2020-08-06
录用日期:2021-03-09
修回日期:2021-03-06
网络出版日期:2021-04-25
刊出日期:2021-12-21
Study on Coexistence of Multipe Attractors in Memristor-based Switching Chaotic Circuits
Minglin MA,,Ying LIU,
Zhijun LI
College of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China
Funds:The National Key Research and Development Project(2018AAA0103300)
摘要
摘要:为了研究忆阻开关电路的动力学行为,该文提出一种具有多吸引子共存现象的忆阻开关混沌电路。在该电路中存在多吸引子分岔,当系统中发生边界碰撞之后,系统中将产生不同的吸引子共存现象。其中包括单周期极限环与混沌吸引子共存,不同的混沌吸引子共存,对称的2周期极限环共存现象,以及对称的2周期极限环与5周期极限环共存现象等。该文通过相图、分岔图等数值仿真,分析了该电路的动力学行为,并利用PSIM电路仿真验证了其电路的可行性,对开关电路中多吸引子共存现象和混沌应用的研究具有重要意义。
关键词:忆阻器/
开关电路/
多吸引子分岔/
共存吸引子
Abstract:In order to study the dynamic behavior of memristor switch circuit, a memristor-based switched chaotic circuit with multiple coexisting attractors is designed. There exists multiple attractor bifurcation in this circuit system. When boundary collisions occurs in the system, there are different attractors coexisting in the system. It includes the coexistence of the single periodic limit cycles with chaotic attractors, different chaotic attractors, symmetric 2-periodic limit cycles, and symmetric 2-periodic limit cycles with 5-periodic limit cycles. The dynamic behavior of the circuit system is analyzed by numerical simulation of phase diagram and bifurcation diagram. And the feasibility of the circuit is verified by PSIM circuit simulation, this paper is of great significance to the study of multiple attractor bifurcation in switching circuits and the application of chaos.
Key words:Memristor/
Switching circuit/
Multiple attractor bifurcation/
Coexisting attractor
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=1608a448-6d4a-49c4-9817-423b9925e331