马文强
哈尔滨理工大学 哈尔滨 150080
详细信息
作者简介:卢迪:女,1971年生,教授,博士,研究方向为数据融合、图像处理
马文强:男,1992年生,硕士生,研究方向为图像处理、手势识别
通讯作者:卢迪 ludizeng@hrbust.edu.cn
中图分类号:TN911.73计量
文章访问数:755
HTML全文浏览量:507
PDF下载量:226
被引次数:0
出版历程
收稿日期:2020-12-14
修回日期:2021-04-15
网络出版日期:2021-04-30
刊出日期:2021-11-23
Gesture Recognition Based on Improved YOLOv4-tiny Algorithm
Di LU,,Wenqiang MA
Harbin University of Science and Technology, Harbin 150080, China
摘要
摘要:随着人机交互的发展,手势识别越来越重要。同时,移动端应用发展迅速,将人机交互技术在移动端实现是一个发展趋势。该文提出一种改进YOLOv4-tiny的手势识别算法。首先,在YOLOv4-tiny网络基础上,添加空间金字塔池化(SPP)模块,融合了图像的局部和全局特征,增强网络的准确定位能力。其次,在YOLOv4-tiny原网络的3个最大池化层和新增SPP模块后各添加一个1×1的卷积模块,减少了网络的参数,提高网络的预测速度。在此基础上,利用K-means++算法生成适合检测手势的先验框,加快网络检测手势。在手势数据集NUS-II上,与YOLOv3-tiny算法和YOLOv4-tiny算法进行对比,改进算法平均精度均值(mAP)为100%,每秒传输帧数(fps)为377,可以快速准确地检测识别手势。将该文改进算法部署在安卓(Android)移动端,实现了移动端实时的手势检测与识别,对人机交互的发展有很大的研究意义。
关键词:手势识别/
人机交互/
YOLOv4-tiny/
安卓
Abstract:With the development of human-computer interaction, gesture recognition is becoming more and more important. At the same time, mobile terminal applications are developing rapidly, it is a development trend to implement human-computer interaction technology on the mobile terminal. An improved YOLOv4-tiny gesture recognition algorithm is proposed. Firstly, on the basis of YOLOv4-tiny network, the Spatial Pyramid Pooling(SPP) module is added to integrate the local and global features of the image to enhance the accurate positioning ability of the network. Secondly, a 1×1 convolution is added after the 3 maximum pooling layers of the original YOLOv4-tiny network and the newly added SPP module, which reduces the network parameters and improves the prediction speed of the network. On this basis, the K-means++ algorithm is used to generate an anchor box suitable for detecting gestures to speed up the network detection of gestures. In the gesture dataset NUS-II, compared with the YOLOv3-tiny algorithm and the YOLOv4-tiny algorithm, the improved algorithm mean Average Precision(mAP) is 100%, frames per second (fps) is 377, which can detect and recognize gestures quickly and accurately. The improved algorithm of this paper is deployed on the Android mobile terminal to realize the real-time gesture detection and recognition on the mobile terminal, which has great research significance for the development of human-computer interaction.
Key words:Gesture recognition/
Human computer interaction/
YOLOv4-tiny/
Android
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=f9ecdd79-84e2-41c2-b7ed-66430c77d967