崔腾鹤,
刘鹏宇,
刘畅
1.北京工业大学信息学部 北京 100124
2.先进信息网络北京实验室 北京 100124
基金项目:国家自然科学基金(61672064),国家重点研发计划(2018YFF01010100),青海省基础研究计划(2020-ZJ-709)
详细信息
作者简介:贾克斌:男,1962年生,教授,研究方向为多媒体信息系统、模式识别
崔腾鹤:男,1996年生,硕士生,研究方向为视频编码
刘鹏宇:女,1979年生,副教授,研究方向为多媒体信息系统
刘畅:女,1994年生,博士生,研究方向为3D视频编码
通讯作者:贾克斌 kebinj@bjut.edu.cn
中图分类号:TN919.81计量
文章访问数:471
HTML全文浏览量:150
PDF下载量:56
被引次数:0
出版历程
收稿日期:2020-05-26
修回日期:2020-12-15
网络出版日期:2021-01-05
刊出日期:2021-07-10
Fast Prediction Algorithm in High Efficiency Video Coding Intra-mode Based on Deep Feature Learning
Kebin JIA,,Tenghe CUI,
Pengyu LIU,
Chang LIU
1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
2. Beijing Laboratory of Advanced Information Networks, Beijing 100124, China
Funds:The National Natural Science Foundation of China (61672064), The National Key Research and Development Project of China (2018YFF01010100), The Basic Research Program of Qinghai Province (2020-ZJ-709)
摘要
摘要:高效视频编码(HEVC)标准相对于H.264/AVC标准提升了压缩效率,但由于引入的编码单元四叉树划分结构也使得编码复杂度大幅度提升。对此,该文提出一种针对HEVC帧内编码模式下编码单元(CU)划分表征矢量预测的多层特征传递卷积神经网络(MLFT-CNN),大幅度降低了视频编码复杂度。首先,提出融合CU划分结构信息的降分辨率特征提取模块;其次,改进通道注意力机制以提升特征的纹理表达性能;再次,设计特征传递机制,用高深度编码单元划分特征指导低深度编码单元的划分;最后建立分段特征表示的目标损失函数,训练端到端的CU划分表征矢量预测网络。实验结果表明,在不影响视频编码质量的前提下,该文所提算法有效地降低了HEVC的编码复杂度,与标准方法相比,编码复杂度平均下降了70.96%。
关键词:高效视频编码/
复杂度降低/
深度学习/
帧内编码
Abstract:Compared to H.264/AVC coding standard, High Efficiency Video Coding (HEVC) improves the compression efficiency, but the consequent disadvantage is the significant increase in encoding complexity by using the quad-tree partition. A Multi-Layer Feature Transfer Convolutional Neural Network (MLFT-CNN) for Coding Unit (CU) division and characterization vector prediction in HEVC intra coding mode is proposed, which greatly reduces the complexity of video coding. Firstly, a reduced-resolution feature extraction module incorporating CU partition structure information is proposed. Then, the channel attention mechanism is improved for a better texture expression performance of the feature. After that, the feature transfer mechanism is designed to use the feature division of high-depth coding unit to guide the division of low-depth coding unit. Finally, the target loss function represented by the segmented feature is established, and the end-to-end CU division represents the vector prediction network. The experimental results show that the proposed algorithm effectively reduces the encoding complexity of HEVC without affecting the video coding quality. Specifically, compared to the standard method, the encoding complexity on the standard test sequence is reduced by 70.96% on average.
Key words:High Efficiency Video Coding(HEVC)/
Complexity reduction/
Deep learning/
Intra coding
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=833d0b90-b148-4866-829e-430e6dfbba3a