董绍武1, 2, 3, 4,,,
白杉杉1, 2,
高喆1, 2
1.中国科学院国家授时中心 西安 710600
2.中国科学院时间频率基准重点实验室 西安 710600
3.中国科学院大学 北京 100049
4.中国科学院大学天文与空间科学学院 北京 100049
基金项目:国家自然科学基金(11773030);中国科学院青年创新促进会资助项目(2020402)
详细信息
作者简介:赵书红:女,1984年生,副研究员,博士,研究方向为UTC(NTSC)时间保持技术、原子钟频率驾驭技术、北斗系统时间基准和时间传递方法
董绍武:男,1963年生,研究员,博士生导师,研究方向为标准时间的产生与保持(守时)技术、GNSS时间系统
白杉杉:女,1987年生,助理研究员,博士生,研究方向为原子钟频率驾驭技术、时间尺度算法
高喆:女,1991年生,研究实习员,硕士生,研究方向为高精度卫星双向时间传递
通讯作者:董绍武 sdong@ntsc.ac.cn
中图分类号:TN96; TH714计量
文章访问数:272
HTML全文浏览量:182
PDF下载量:33
被引次数:0
出版历程
收稿日期:2019-11-20
修回日期:2020-11-17
网络出版日期:2020-12-03
刊出日期:2021-05-18
Research on An Optimized Frequency Steering Algorithm
Shuhong ZHAO1, 2,Shaowu DONG1, 2, 3, 4,,,
Shanshan BAI1, 2,
Zhe GAO1, 2
1. National Time Service Center, CAS, Xi’an 710600, China
2. Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, CAS, Xi’an 710600, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
4. School of Astronomy and Space Science, UCAS, Beijing 100049, China
Funds:The National Natural Science Foundation of China (11773030), The Youth Innovation Promotion Association Foundation of the Chinese Academy of Sciences(2020402)
摘要
摘要:为满足各应用领域对高精度时间性能不断提升的需求,该文设计实现了一种迭代的优化频率驾驭算法,主要分为纸面时间计算和实际物理信号实现两个部分。其中纸面时间计算采用ALGOS算法,利用实时原子钟数据和Circular T公报数据计算获得准确可靠的时间尺度,保障了驾驭参考的准确性和实时性。实时物理信号实现采用最优二次型高斯控制算法与Kalman算法综合,通过实时调整参数,计算出最优的频率驾驭量,将该驾驭量输送至频率调整设备,最终实现高精度时间信号的输出,整个驾驭系统是闭环的。该文基于我国时间基准保持系统和原子钟组,搭建试验平台,采用该算法对一台氢钟进行为期140天的频率驾驭,最终对输出的物理信号进行性能评估。试验结果表明,该算法有效提高了驾驭后物理信号的准确度和稳定度,驾驭后信号与国际标准时间协调世界时(UTC)相比,相位偏差保持在±3 ns以内,且30天稳定度优于5×10–16。
关键词:高精度时间/
时间尺度/
时间保持/
频率驾驭/
Kalman算法/
最优二次型高斯控制算法
Abstract:In order to meet the increasing demands for the performance of time in various application fields, an optimized frequency steering algorithm is designed and implemented in this paper, which is mainly divided into two parts: paper time scale calculation and physical signal implementation. ALGOS algorithm is adopted for the paper time scale calculation, and then an accurate and reliable time scale is calculated by using real-time atomic clock data and Circular T data, which ensures the accuracy and real-time steering reference scale. Real-time physical signals are implemented using an optimal Linear Quadratic Gaussian (LQG) control algorithmand and Kalman algorithm. By adjusting parameters in real time, the optimal frequency steering value is generated, this value is sent to the frequency adjustment device, and finally the output of the high-precision time signal is realized. The entire steering system is closed-loop. Based on time keeping system and atomic clock assemble, a test platform is built, and the algorithm is used to perform a 140 days frequency steering on a hydrogen maser clock, and finally the performance evaluation of the output physical signal is performed. Experimental results show that this algorithm improves effectively the accuracy and stability of the output physical signal. Compared with Universal Time Co-ordinated (UTC), the output time signal maintains a time deviation within ± 3 ns, and its stability is better than 5×10–16 at 30 days.
Key words:High precision time/
Time scale/
Time keeping/
Frequency steering/
Kalman algorithm/
Linear quadratic Gaussian control algorithm
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=37876bb2-edc3-45b3-ad6f-7b188181e654