董鹏宇,,
陈游,
周一鹏,
肖冰松
空军工程大学航空工程学院 西安 710038
基金项目:航空科学基金(20175596020)
详细信息
作者简介:王红卫:男,1974年生,副教授,博士,研究方向为信息对抗理论与技术,电子对抗总体技术
董鹏宇:男,1995年生,硕士生,研究方向为信息对抗理论与技术,雷达信号处理
陈游:男,1983年生,副教授,博士后,研究方向为信息对抗理论与技术
周一鹏:男,1992年生,博士生,研究方向雷达信号处理,电子对抗技术
肖冰松:男,1982年生,副教授,研究方向为雷达信号处理
通讯作者:董鹏宇 Hickey1212@163.com
中图分类号:TN97计量
文章访问数:428
HTML全文浏览量:136
PDF下载量:52
被引次数:0
出版历程
收稿日期:2020-02-26
修回日期:2020-09-30
网络出版日期:2020-10-12
刊出日期:2021-03-22
Recognition Method of Radar Signal Based on the Energy Cumulant of Choi-Williams Distribution and Improved Semi-supervised Na?ve Bayes
Hongwei WANG,Pengyu DONG,,
You CHEN,
Yipeng ZHOU,
Bingsong XIAO
Aeronautics Engineering College, Aire Force Engineering University, Xi’an 710038, China
Funds:Aeronautical Science Foundation (20175596020)
摘要
摘要:针对非合作电子侦察雷达信号识别中先验信息残缺的问题,该文提出一种基于Choi-Williams时频分布(CWD)的改进半监督朴素贝叶斯的识别算法(ISNB)。首先对CWD进行降噪预处理,然后通过计算降噪后CWD不同时间下各频率采样值的积累量,从而得到CWD的能量积累量这一新特征;针对传统的半监督朴素贝叶斯(SNB)在更新训练样本集过程中会产生迭代错误的不足,通过在无标签样本集生成的置信度列表中选取置信度高的样本添加到有标签样本集中,再利用预测后的分类结果对分类器参数进行改进,进而构建改进的SNB分类器,有效解决了传统SNB算法分类精度低且分类性能不稳定的缺点。理论分析和仿真结果表明,所提方法相比于传统SNB算法均提高了3%左右;在相同信噪比下,相比于传统的主成分分析加支持向量机法,该算法具有更高的分类识别率和更好的分类性能。
关键词:雷达信号识别/
Choi-Williams时频分布/
能量累积量/
朴素贝叶斯/
半监督学习
Abstract:In order to solve incomplete prior information of radar in non-cooperative electronic countermeasure environment, a novel recognition algorithm named ISNB (Improved Semi-supervised Na?ve Bayes) based on the energy cumulant of Choi-Williams Distribution(CWD) is put forward. This algorithm extracts the energy cumulant of Choi-Williams distribution of radar signals as the recognition feature. The energy cumulant of CWD is attained by calculating the accumulations of each frequency sample value with the different time samples. Before this procedure, CWD is processed by base noise reduction. Considering disadvantages of traditional Semi-supervised Na?ve Bayes(SNB) which comes from repeated errors in updating sample sets, it uses ISNB to construct classifier, and then completes the recognition of tested sample sets. ISNB selects those samples with high degree of confidence which comes from generated confidence. Theoretical analysis and simulation results show that the proposed method is about 3% higher than the traditional SNB algorithm. Under the same signal-to-noise ratio, this algorithm has higher classification recognition rate and better classification performance than the traditional principal component analysis plus support vector machine.
Key words:Radar signal recognition/
Choi-Williams Distribution(CWD)/
Energy cumulant/
Na?ve Bayes(NB)/
Semi-supervised learning
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=05ca64a0-0a6a-4009-9eb8-ec35d20b0aec