王安3,
王永娟1, 2,,,
王涛1, 2
1.战略支援部队信息工程大学 郑州 450001
2.河南省网络密码技术重点实验室 郑州 450001
3.北京理工大学计算机学院 北京 100081
基金项目:国家自然科学基金(61872040),河南省网络密码技术重点实验室开放基金(LNCT2019-S02),“十三五”国家密码发展基金(MMJJ20170201)
详细信息
作者简介:袁庆军:男,1993年生,讲师,研究方向为机器学习侧信道分析
王安:男,1983年生,副教授,研究方向为侧信道分析与防护技术
王永娟:女,1982年生,研究员,研究方向为侧信道分析与密码系统安全
王涛:男,1995年生,硕士生,研究方向为机器学习侧信道分析
通讯作者:王永娟 pinkywyj@163.com
中图分类号:TP309.7计量
文章访问数:1853
HTML全文浏览量:748
PDF下载量:67
被引次数:0
出版历程
收稿日期:2019-08-07
修回日期:2019-10-31
网络出版日期:2019-11-27
刊出日期:2020-08-18
An Improved Template Analysis Method Based on Power Traces Preprocessing with Manifold Learning
Qingjun YUAN1, 2,An WANG3,
Yongjuan WANG1, 2,,,
Tao WANG1, 2
1. PLA Strategic Support Force Information Engineering University , Zhengzhou 450001, China
2. Henan Key Laboratory of Network Cryptography Technology, Zhengzhou 450001, China
3. School of Computer Science, Beijing Institute of Technology, Beijing 100081, China
Funds:The National Natural Science Foundation of China (61872040), The Fund of Henan Key Laboratory of Network Cryptography Technology (LNCT2019-S02), The National Cryptographic Development Fund of the 13th Five-Year Plan (MMJJ20170201)
摘要
摘要:能量数据作为模板攻击过程中的关键对象,具有维度高、有效维度少、不对齐的特点,在进行有效的预处理之前,模板攻击难以奏效。针对能量数据的特性,该文提出一种基于流形学习思想进行整体对齐的方法,以保留能量数据的变化特征,随后通过线性投影的方法降低数据的维度。使用该方法在Panda 2018 challenge1标准数据集进行了验证,实验结果表明,该方法的特征提取效果优于传统的PCA和LDA方法,能大幅度提高模板攻击的成功率。最后采用模板攻击恢复密钥,仅使用两条能量迹密钥恢复成功率即可达到80%以上。
关键词:信息安全/
模板攻击/
流形学习/
能量数据/
对齐算法/
降维算法
Abstract:As the key object in the process of template analysis, power traces have the characteristics of high dimension, less effective dimension and unaligned. Before effective preprocessing, template attack is difficult to work. Based on the characteristics of energy data, a global alignment method based on manifold learning is proposed to preserve the changing characteristics of power traces, and then the dimensionality of data is reduced by linear projection. The method is validated in Panda 2018 challenge1 standard datasets respectively. The experimental results show that the feature extraction effect of this method is superior over that of traditional PCA and LDA methods. Finally, the method of template analysis is used to recover the key, and the recovery success rates can reach 80% with only two traces.
Key words:Information security/
Template analysis/
Manifold learning/
Power traces/
Alignment algorithm/
Dimension reduction algorithm
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=cc8aecce-fe18-4440-b241-73796c0171df