张宏伟2,
胡航1,,,
潘钰2,
井锦玲3
1.空军工程大学信息与导航学院 西安 710077
2.空军工程大学研究生院 西安 710077
3.中国人民解放军94162部队 西安 710600
基金项目:国家自然科学基金(61571460, 61901509, 61671475),博士后创新人才计划(BX201700108),空军工程大学校长基金 (XZJK2019033),空军工程大学信息与导航学院创新基金 (YNLX1904025)
详细信息
作者简介:达新宇:男,1961年生,博士生导师,研究方向为现代通信理论与技术
张宏伟:男,1997年生,硕士生,研究方向为认知无线网络
胡航:男,1989年生,讲师,研究方向为绿色通信与无人机网络
潘钰:女,1995年生,博士生,研究方向为无人机协同通信
井锦玲:女,1977年生,工程师,研究方向为指挥自动化
通讯作者:胡航 xd_huhang@126.com
中图分类号:TN92计量
文章访问数:913
HTML全文浏览量:419
PDF下载量:54
被引次数:0
出版历程
收稿日期:2020-01-14
修回日期:2020-04-30
网络出版日期:2020-07-08
刊出日期:2020-08-18
Throughput Optimization of Secondary Link in Cognitive UAV Network
Xinyu DA1,Hongwei ZHANG2,
Hang HU1,,,
Yu PAN2,
Jinling JING3
1. Information and Navigation College, Aire Force Engineering University, Xi’an 710077, China
2. Graduate School, Aire Force Engineering University, Xi’an 710077, China
3. Unit 94162 of PLA, Xi’an 710600, China
Funds:The National Natural Science Foundation of China (61571460, 61901509, 61671475), The National Postdoctoral Program for Innovative Talents (BX201700108), The President Foundation of Air Force Engineering University (XZJK2019033), The Innovation Foundation of Air Force Engineering University (YNLX1904025)
摘要
摘要:无人机(UAV)的便携性和高机动性使其与认知无线电(CR)结合的应用场景更加实用。在构建的无人机认知无线网络(CRN)模型中,该文提出UAV单弧度吞吐量优化方案,在确保检测概率的前提下优化感知弧度最大化UAV平均吞吐量。考虑在信道条件不理想情况下进一步改善感知性能,提出基于协作频谱感知(CSS)的多弧度吞吐量优化方案,利用交替迭代优化(AIO)算法对感知弧度和弧度数量进行联合优化以最大化吞吐量。仿真结果表明,该文提出的多弧度协作频谱感知方案在信道衰落严重时,对于主用户(PU)服务质量(QoS)和UAV吞吐量有明显提升。
关键词:认知无线电/
无人机/
频谱感知/
帧结构/
吞吐量
Abstract:The application of Unmanned Air Vehicles (UAV)-enabled Cognitive Radio (CR) is widely used due to the convenience and high mobility of the UAV. In the UAV-based Cognitive Radio Network (CRN), the throughput optimization scheme in single radian is firstly investigated, in which the sensing radian is optimized to maximize the average throughput of UAV. Then, a multi-radian throughput optimization scheme based on Cooperative Spectrum Sensing (CSS) is studied to improve the sensing performance under the non-ideal channel, and the throughput of the UAV is maximized by utilizing an Alternative Iterative Optimization (AIO) algorithm. The simulation results show that the proposed scheme has better performance on improving the throughput of the UAV and ensuring the Quality-of-Service (QoS) of the Primary User (PU) when the channel fading is serious.
Key words:Cognitive Radio (CR)/
Unmanned Air Vehicle (UAV)/
Spectrum Sensing (SS)/
Frame structure/
Throughput
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=dd71329d-91f6-4c7c-ad20-f2a6737cfb24