杨雪飞1, 2,
陈芳4,
李曦5
1.武汉科技大学 计算机科学与技术学院 武汉 430065
2.智能信息处理与实时工业系统湖北省重点实验室 武汉 430065
3.华中科技大学材料成形与模具技术国家重点实验室 武汉 430074
4.武汉科技大学校医院超声影像科 武汉 430065
5.华中科技大学人工智能与自动化学院 武汉 430074
基金项目:国家自然科学基金(61873323),材料成形与模具技术国家重点实验室开放课题研究基金(P2018-016),湖北省自然科学基金(2017CFB506),智能信息处理与实时工业系统湖北省重点实验室开放课题项目(2016znss02A, znxx2018ZD01),大学生科技创新基金项目(18ZRA076)
详细信息
作者简介:付晓薇:女,1977年生,教授,研究方向为图像处理、计算机视觉、信号处理与分析
杨雪飞:女,1994年生,硕士生,研究方向为图像处理、深度学习
陈芳:女,1972年生,研究方向为肌骨超声图像的调节
李曦:男,1977年生,教授,研究方向为计算机应用,复杂非线性系统的建模和控制
通讯作者:付晓薇 fxw_wh0409@wust.edu.cn
中图分类号:TN911.73计量
文章访问数:2394
HTML全文浏览量:953
PDF下载量:124
被引次数:0
出版历程
收稿日期:2019-07-31
修回日期:2020-03-18
网络出版日期:2020-04-11
刊出日期:2020-07-23
An Adaptive Medical Ultrasound Images Despeckling Method Based on Deep Learning
Xiaowei FU1, 2, 3,,,Xuefei YANG1, 2,
Fang CHEN4,
Xi LI5
1. College of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430065, China
2. Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan 430065, China
3. State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
4. Department of Ultrasound and Imaging, Wuhan University of Science and Technology Hospital, Wuhan 430065, China
5. School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
Funds:The National Natural Science Foundation of China (61873323), The Open Fund Project of State Key Laboratory of Material Processing and Die & Mould Technology (P2018-016), The Natural Science Foundation of Hubei Provincial (2017CFB506), The Open Fund Project of Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System (2016znss02A, znxx2018ZD01), The University Student Science and Technology Innovation Fund Project (18ZRA076)
摘要
摘要:针对传统医学超声图像去斑方法的不足,该文提出一种自适应多曝光融合框架和前馈卷积神经网络模型图像去斑方法。首先,制作超声图像训练数据集;然后,提出一种自适应增强因子的多曝光融合框架,增强图像进行有效特征提取;最后,通过网络训练去斑模型并获得去斑后的图像。实验结果表明,该文较已有的方法,能更有效地滤除医学超声图像中的斑点噪声并更多的保留图像细节。
关键词:超声图像/
深度学习/
多曝光融合框架/
乘性斑点噪声
Abstract:Considering the shortage of traditional medical ultrasound image despeckle methods, an adaptive multi-exposure fusion framework and feedforward convolutional neural network model image despeckle method is proposed. Firstly, an ultrasound image training data set is produced. Then, a multi-exposure fusion framework with adaptive enhancement factors is proposed to enhance the image for effective feature extraction.Finally, a speckle model is trained through the network and a speckle image is obtained. Experimental results show that, compared with the existing methods, this paper can more effectively remove speckle noise in medical ultrasound images and retain more image details.
Key words:Ultrasound image/
Deep learning/
Multi-exposure fusion framework/
Multiplicative speckle noise
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=02032fa2-6c4a-4cda-afc0-042f8d330a9f