吴倩1,
杜玉改1,
方刚2,
石晓龙2,
许鹏2, 3,,
1.温州大学计算机与人工智能学院 温州 325035
2.广州大学计算科技研究院 广州 510006
3.黔南民族师范学院计算机与信息学院 都匀 558000
基金项目:国家重点研发计划(2019YFA0706402),国家自然科学基金(61572367, 61573017, 61972107, 61972109)
详细信息
作者简介:刘文斌:男,1969年生,教授,研究方向为生物信息学
吴倩:女,1994年生,硕士,研究方向为生物信息学
杜玉改:女,1993年生,硕士,研究方向为生物信息学
方刚:男,1969年生,教授,研究方向为生物信息学
石晓龙:男,1975年生,教授,研究方向为生物信息学
许鹏:男,1986年生,博士后,研究方向为生物信息学
通讯作者:许鹏 gdxupeng@gzhu.edu.cn
中图分类号:TP301计量
文章访问数:1668
HTML全文浏览量:522
PDF下载量:193
被引次数:0
出版历程
收稿日期:2019-10-29
修回日期:2020-01-20
网络出版日期:2020-02-27
刊出日期:2020-06-22
Drug Recommendation Based on Individual Specific Biomarkers
Wenbin LIU1, 2,Qian WU1,
Yugai DU1,
Gang FANG2,
Xiaolong SHI2,
Peng XU2, 3,,
1. College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China
2. Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China
3. School of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun 558000, China
Funds:The National Key R&D Program of China (2019YFA0706402), The National Natural Science Foundation of China (61572367, 61573017, 61972107, 61972109)
摘要
摘要:基于个性化标志物的药物推荐研究,有助于实现个性化用药及推动精准医疗的发展。该文利用基因表达谱数据及蛋白质网络信息,基于基因2维高斯分布方法筛选出个性化网络标志物。进而综合考虑靶基因的重要性和药物的副作用,提出了一种计算药物对个性化标志物影响权重的方法。将该方法应用于肺腺癌、肾透明细胞癌和子宫内膜癌数据集,通过启发式搜索方法,得到每个疾病样本重要药物推荐列表。结果表明,推荐的药物列表在同种癌症不同样本中既存在一致性,也表现出很大的差异性,如药物种类及药物排序差异,这说明个性化药物在疾病治疗中的重要性及必要性。通过从药物数据库中搜索药物组合对疾病治疗的影响作用表明,该文方法筛选得到的许多药物组合对具体疾病治疗具有积极影响,这进一步证明该文基于个性化网络标志物的药物推荐方法的准确性。该文的研究将有效促进精准化医疗的发展。
关键词:精准医疗/
个性化标志物/
网络标志物/
药物推荐
Abstract:Drug recommendation research based on personalized markers can help to achieve personalized medicine and promote the development of precision medicine. In this paper, a method for calculating the weight of drugs on personalized markers is proposed, which first uses gene expression profile data and protein network information to filter out personalized network markers based on gene two-dimensional Gaussian distribution and then uses the importance degree of genes and the drugs side effect data to calculate the weight of drugs. This method is applied to lung adenocarcinoma, kidney renal clear cell carcinoma and uterine corpus endometrial carcinoma. Through the iterative process, a list of important drug recommendations for each disease sample is got. The results show that there are some differences in the recommended drug list and the ordering importance of drugs in different cases of the same kind of cancer, which indicates the importance and necessity of personalized drugs in the treatment of diseases. By querying the relationship between drugs from the drug database, many of the drug combinations screened by this method have a positive effect on the treatment of specific diseases, which further proves the accuracy of the drug recommendation methods based on personalized network markers. This study will effectively promote the development of precision medicine.
Key words:Precision medicine/
Personalized biomarkers/
Network biomarkers/
Drug recommendation
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=1cba1858-9565-46e4-b200-c574cea06afc