陈前斌,,
唐伦
1.重庆邮电大学通信与信息工程学院 重庆 400065
2.重庆邮电大学移动通信重点实验室 重庆 400065
基金项目:国家自然科学基金(61571073),重庆市教委科学技术研究项目(KJZD-M201800601)
详细信息
作者简介:王威丽:女,1994年生,博士生,研究方向为虚拟化网络切片、人工智能算法等
陈前斌:男,1967年生,教授,博士生导师,研究方向为个人通信、多媒体信息处理与传输、下一代移动通信网络
唐伦:男,1973年生,教授,博士生导师,研究方向为新一代无线通信网络、异构蜂窝网络
通讯作者:陈前斌 cqb@cqupt.edu.cn
中图分类号:TN929.5计量
文章访问数:1375
HTML全文浏览量:428
PDF下载量:55
被引次数:0
出版历程
收稿日期:2019-07-15
修回日期:2020-02-12
网络出版日期:2020-03-03
刊出日期:2020-06-22
Online Anomaly Detection for Virtualized Network Slicing
Weili WANG,Qianbin CHEN,,
Lun TANG
1. School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
2. Key Laboratory of Mobile Communications, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Funds:The National Natural Science Foundation of China (61571073), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-M201800601)
摘要
摘要:在虚拟化网络切片场景中,底层物理网络中一个物理节点(PN)或一条物理链路(PL)的异常会造成多个网络切片的性能退化。因网络中每个时刻都会产生新的测量数据,该文设计了两种在线异常检测算法实时监督物理网络的工作状态。首先,该文提出了一种基于在线一类支持向量机(OCSVM)的PN异常检测算法,该算法可根据每个时刻虚拟节点(VNs)的新测量数据进行模型参数的更新而不需要任何标签数据;其次,基于虚拟链路两端点间测量数据的自然相关性,该文提出基于在线典型相关分析(CCA)的PL异常检测算法,该算法只需要少量标签数据就可以准确分析出PL的异常情况。仿真结果验证了该文所提在线异常检测算法的有效性和鲁棒性。
关键词:虚拟网络切片/
异常检测/
在线一类支持向量机/
在线典型相关分析
Abstract:In virtualized network slicing scenario, one anomaly Physical Node (PN) or Physical Link (PL) in substrate networks will cause performance degradation of multiple network slices. For new measurements are achieved in each period, two online anomaly detection algorithms to monitor the working states of substrate networks in real time are designed. An online One-Class Support Vector Machine (OCSVM) algorithm is first proposed in this paper to detect the working states of PNs. Without requiring any labeled data, the model parameters of OCSVM can be updated based on the new measurements of Virtual Nodes (VNs) in each iteration. Then, an online Canonical Correlation Analysis (CCA) based PL anomaly detection algorithm is proposed according to the natural correlation of measurements between neighboring VNs of virtual links. With a small amount of labeled data, the algorithm can accurately analyze the working states of PLs. The simulation results verify the effectiveness and robustness of the proposed online anomaly detection algorithms for the virtualized network slicing.
Key words:Virtualized network slicing/
Anomaly detection/
Online One-Class Support Vector Machine (OCSVM)/
Online Canonical Correlation Analysis (CCA)
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=685511eb-f518-46b5-aa9e-3e514b985d0a