删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于约束总体最小二乘的单站DOA/TDOA联合误差校正与定位算法

本站小编 Free考研考试/2022-01-03

左燕,
陈志猛,,
蔡立平
杭州电子科技大学自动化学院 ??杭州 ??310018
基金项目:国家自然科学基金(61673146),浙江省自然科学基金(LY16F030009)

详细信息
作者简介:左燕:女,1980年生,博士,副教授,研究方向为无源定位、智能信息处理和信息融合
陈志猛:男,1993年生,硕士生,研究方向为无源定位
蔡立平:男,1994年生,硕士生,研究方向为无源定位
通讯作者:陈志猛 zhimchen@qq.com
中图分类号:TN958.97

计量

文章访问数:1415
HTML全文浏览量:400
PDF下载量:49
被引次数:0
出版历程

收稿日期:2018-07-04
修回日期:2018-12-25
网络出版日期:2019-01-18
刊出日期:2019-06-01

Single-observer DOA/TDOA Registration and Passive Localization Based on Constrained Total Least Squares

Yan ZUO,
Zhimeng CHEN,,
Liping CAI
School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
Funds:The National Natural Science Foundation of China (61673146), The Zhejiang Provincial Natural Science Foundation (LY16F030009)


摘要
摘要:多基外辐射源雷达定位系统受系统偏差影响较大。该文针对多基外辐射源雷达到达角度(DOA)和到达时差(TDOA)联合定位系统,提出一种基于约束总体最小二乘(CTLS)的无源定位和误差校正算法。首先引入辅助变量,将DOA和TDOA非线性观测方程进行线性化处理。考虑伪线性化后定位方程中噪声矩阵各分量统计相关特性,将无源定位与误差校正联合优化问题建立为CTLS模型,并采用牛顿迭代方法对模型求解。在此基础上,考虑辅助变量与目标位置的关联性,设计关联最小二乘算法改进目标位置估计值,采用后验迭代方法进一步提高系统偏差估计精度。最后推导了算法的理论误差。仿真结果表明:该算法能够有效地估计目标位置和系统偏差。
关键词:无源定位/
误差校正/
多基外辐射源雷达/
到达角度和时差/
约束总体最小二乘法
Abstract:The system biases degrade seriously the location precision for the multi-static passive radar system. A joint registration and passive localization algorithm based on Constrained Total Least Squares (CTLS) using Direction Of Arrival (DOA) and Time Difference Of Arrival (TDOA) measurements is developed to address the multi-static radar localization problem under the influence of system biases. Firstly, the nonlinear DOA and TDOA measurement equations are linearized by introducing auxiliary variables. Considering the statistical correlation properties of the noise matrix in the pseudo-linear equations, a joint biases registration and passive localization problem is formulated as a CTLS problem and the Newton’s method is applied to solving the CTLS problem. Moreover, a dependent least squares algorithm is designed to improve the target position estimation using the relationship between auxiliary variables and target position. An iterative post-estimate procedure is exploited to enhance further the estimation accuracy of the system biases. Finally, the theoretical error of the proposed algorithm is derived. Simulations demonstrate that the proposed algorithm can effectively estimate the system biases and target position.
Key words:Passive localization/
Registration/
Multi-static passive radar/
DOA and TDOA/
Constrained Total Least Squares (CTLS)



PDF全文下载地址:

https://jeit.ac.cn/article/exportPdf?id=ee0ffb85-b830-4dc3-8ad1-181e12c8d33d
相关话题/系统 信息 智能 统计 优化