马润琳,,
刘云龙,
王耀玮,
陈前斌
1.重庆邮电大学通信与信息工程学院 ??重庆 ??400065
2.重庆邮电大学移动通信技术重点实验室 ??重庆 ??400065
基金项目:国家自然科学基金(61571073),重庆市教委科学技术研究项目(KJZD-M201800601)
详细信息
作者简介:唐伦:男,1973年生,教授,博士,研究方向为新一代无线通信网络、异构蜂窝网络、软件定义无线网络等
马润琳:女,1993年生,硕士生,研究方向为5G网络切片、无线资源分配
刘云龙:男,1992年生,硕士生,研究方向为5G无线自回传网络中的资源分配问题
王耀玮:男,1991年生,硕士生,研究方向基于卷积神经网络的车辆识别问题
陈前斌:男,1967年生,教授,博士生导师,研究方向为个人通信、多媒体信息处理与传输、下一代移动通信网络等
通讯作者:马润琳 357135128@qq.com
中图分类号:TN929.5计量
文章访问数:2078
HTML全文浏览量:512
PDF下载量:36
被引次数:0
出版历程
收稿日期:2018-04-18
修回日期:2019-02-16
网络出版日期:2019-03-05
刊出日期:2019-06-01
Joint Admission Control and Resource Allocation Algorithm for Access and Backhaul Integrated Small Base Station
Lun TANG,Runlin MA,,
Yunlong LIU,
Yaowei WANG,
Qianbin CHEN
1. School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
2. Key Laboratory of Mobile Communication Technology, Chongqing University of Post and Telecommunications, Chongqing 400065, China
Funds:The National Natural Science Foundation of China (61571073), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-M201800601)
摘要
摘要:针对全双工无线接入与回传一体化小基站场景下长期的频谱效率和能效同时最大化问题,该文提出一种基于近似动态规划理论的接入与回传一体化小基站接入控制与资源分配联合优化算法。该算法首先联合考虑当前基站的资源使用和功率配置情况,在任一用户需求动态到达以及平均时延、小基站回传速率和传输功率约束下,使用受限马尔科夫决策过程(CMDP)建立频谱效率最大化和功率消耗最小化的多目标优化模型,其次运用切比雪夫理论将多目标优化问题转化为单目标问题,并使用拉格朗日对偶分解法进一步转化为非受限的马尔科夫决策过程(MDP)问题。最后,为了解决其求解时存在的“维度灾”爆炸问题,该文提出基于近似动态规划的无线接入与回传一体化小基站资源动态分配算法进行求解,得到此时的接入与资源分配策略。仿真结果表明,所提算法能在保证平均时延约束、小基站回传速率约束和传输功率约束的同时最大化长期平均频谱效率和能效。
关键词:接入与回传一体化小基站/
近似动态规划理论/
受限马尔科夫决策过程/
切比雪夫理论
Abstract:To maximize the long-term spectral efficiency and energy efficiency of a full duplex wireless access and backhaul integrated small base station scene, approximate dynamic programming based joint admission control and resource allocation optimization algorithm is proposed. The algorithm firstly considers the resource usage and power configuration of the current base station, the dynamic demand of user, the constraints of average delay as well as backhaul rate and transmission power. The corresponding multi-objective optimization model of maximum spectrum efficiency and minimizes power consumption is established by using the Constrained Markov Decision Process(CMDP). Then, the Chebyshev theory is used to transform the multi-objective into a single-objective optimization, and the Lagrange dual decomposition method is then used to convert the single-objective problem into unrestricted Markov decision process problem. Finally, To solve the " dimension disaster” explosion that generated when solving this unrestricted Markov Decision Process(MDP) problem, a dynamic resource allocation algorithms based on approximate dynamic programming is presented, and the access and resource allocation strategy is obtained during this process. The simulation results show that the algorithm can maximize the long-term average spectrum efficiency and energy efficiency, within the constraints of the average delay, backhaul rate and transmission power, under the scenario of integrated access and backhaul small base station.
Key words:Access and backhaul integrated small base station/
Approximate dynamic programming theory/
Constrained Markov Decision Process (CMDP)/
Tchebycheff theory
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=c7945eb7-2027-445d-ac9d-d95bc41d16a8