丁立新1,,,
马懋德2, 3,
唐菀2
1.武汉大学计算机学院 ??武汉 ??430072
2.中南民族大学计算机科学学院 ??武汉 ??430074
3.南洋理工大学电气电子工程学院 ??新加坡 ??639798
基金项目:国家自然科学基金(61379059),中南民族大学中央高校基本科研业务费专项资金(CZY18012)
详细信息
作者简介:周凌云:女,1979年生,讲师,研究方向为计算智能
丁立新:男,1967年生,教授,研究方向为计算智能与机器学习
马懋德:男,1957年生,教授,研究方向主要为无线网络
唐菀:女,1974年生,教授,研究方向主要为数据中心网络
通讯作者:丁立新 lxding@whu.edu.cn
中图分类号:TP301.6计量
文章访问数:982
HTML全文浏览量:358
PDF下载量:80
被引次数:0
出版历程
收稿日期:2018-02-10
修回日期:2018-08-23
网络出版日期:2018-08-29
刊出日期:2019-01-01
Orthogonal Opposition Based Firefly Algorithm
Lingyun ZHOU1, 2,Lixin DING1,,,
Maode MA2, 3,
Wan TANG2
1. Computer School, Wuhan University, Wuhan 430072, China
2. College of Computer Science, South-Central University for Nationalities, Wuhan 430074, China
3. School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
Funds:The National Natural Science Foundation of China (61379059), The Fundamental Research Funds for the Central Universities, South-Central University for Nationalities (CZY18012)
摘要
摘要:针对萤火虫算法求解复杂优化问题时收敛精度较低的问题,该文提出一种正交反向学习策略,嵌入萤火虫算法,得到一种正交反向学习萤火虫算法。正交反向学习策略中,采用重心反向计算,利用群体搜索经验的同时避免搜索依赖坐标;采用正交试验设计,构建部分维上取反向值的正交反向候选解,充分挖掘个体和反向个体在不同维度上的有利信息。在标准测试集上进行验证,实验结果说明了正交反向学习策略的有效性。与多种新近的改进萤火虫算法相比,该算法在大多数函数上获得更高的求解精度。
关键词:萤火虫算法/
反向学习/
优化/
正交试验设计/
收敛精度
Abstract:Firefly Algorithm (FA) may suffer from the defect of low convergence accuracy depending on the complexity of the optimization problem. To overcome the drawback, a novel learning strategy named Orthogonal Opposition Based Learning (OOBL) is proposed and integrated into FA. In OOBL, first, the opposite is calculated by the centroid opposition, making full use of the population search experience and avoiding depending on the system of coordinates. Second, the orthogonal opposite candidate solutions are constructed by orthogonal experiment design, combining the useful information from the individual and its opposite. The proposed algorithm is tested on the standard benchmark suite and compared with some recently introduced FA variants. The experimental results verify the effectiveness of OOBL and show the outstanding convergence accuracy of the proposed algorithm on most of the test functions.
Key words:Firefly algorithm/
Opposition-based learning/
Optimization/
Orthogonal experimental design/
Convergence accuracy
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=4743e086-6fb7-42c0-95ac-170d16bdbdff