删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

衍射光学系统的激光应用和稀疏成像分析

本站小编 Free考研考试/2022-01-03

李道京1,,,
朱宇2,
胡烜1,3,
于海锋2,
周凯1,3,
张润宁2,
刘磊2
1.中国科学院空天信息创新研究院微波成像技术重点实验室 北京 100190
2.中国空间技术研究院总体设计部 北京 100094
3.中国科学院大学 北京 100049
基金项目:国家高分辨率对地观测系统重大专项(GF0314)

详细信息
作者简介:李道京(1964–),男,1986年和1991年在南京理工大学分别获通信与电子系统专业工学学士和硕士学位。1986年至2006年在中国兵器工业第206研究所从事地面雷达的研制工作。2003年7月在西北工业大学电路与系统专业获工学博士学位,同年10月进入中科院电子所通信与信息工程专业做博士后,2006年3月出站正式进入中科院电子所工作。现任中国科学院空天信息创新研究院微波成像技术重点实验室研究员、博士生导师,主要研究方向为雷达系统和雷达信号处理。已经发表学术论文100余篇,出版专著3部,获得授权发明专利20余项。E-mail: lidj@mail.ie.ac.cn
通讯作者:李道京 lidj@mail.ie.ac.cn
中图分类号:TN958.98

计量

文章访问数:1472
HTML全文浏览量:501
PDF下载量:170
被引次数:0
出版历程

收稿日期:2019-09-09
修回日期:2020-02-03
网络出版日期:2020-02-24

Laser Application and Sparse Imaging Analysis of Diffractive Optical System

LI Daojing1,,,
ZHU Yu2,
HU Xuan1,3,
YU Haifeng2,
ZHOU Kai1,3,
ZHANG Running2,
LIU Lei2
1. Key Laboratory of Science and Technology on Microwave Imaging, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
2. General Design Department, China Academy of Space Technology, Beijing 100094, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
Funds:The Major Project of High-Resolution Earth Observation System of China (GF0314)

More Information
Corresponding author:LI Daojing, lidj@mail.ie.ac.cn

摘要
摘要:近年来衍射光学系统得到了快速发展,衍射器件(如二元光学器件和膜基透镜)相当于微波天线的固定移相器,微波相控阵天线成熟的理论和方法应可用于其性能分析。激光SAR和激光通信都具有单色且波长较长的特点,特别适合采用非成像衍射光学系统,通过衍射器件实现信号波前控制,减小焦距并有利于系统的轻量化。基于衍射光学系统,研究激光SAR和激光通信技术具有重要的理论意义和应用价值。该文给出了衍射光学系统的相控阵解释,介绍了基于衍射光学系统已开展的机载激光SAR和星载激光SAR研究工作。提出了艇载1 m衍射口径激光通信和干涉定位系统概念并分析了其性能,该系统在10 m短基线下,其作用距离将达到4×108 km,对应的定位精度在6 km量级,可用于深空探测。该文同时探讨了稀疏采样激光成像问题,在激光照射目标条件下,提出用傅里叶透镜将激光图像信号变换到频域,在低频区域利用小规模探测器实施稀疏采样,等效进行2维低通滤波处理,再用计算机重构目标图像的设想,给出了一些初步的仿真结果。
关键词:衍射光学系统/
激光雷达/
激光通信/
合成孔径成像/
干涉测角定位/
稀疏成像
Abstract:In recent years, the diffractive optical systems have developed rapidly. Diffractive devices such as binary optical device and membrane-based lens are equivalent to fixed phase shifters of microwave antennas. Thus, the mature theories and methods of a microwave phased-array antenna could be used for diffractive devices’ performance analysis. Both laser Synthetic Aperture Radar (SAR) and laser communication feature a single color and long wavelength, and they are specifically suitable for non-imaging diffractive optical systems. A signal wave front control realized by a diffraction device reduces the focal length and the weight of a system. Research on laser SAR and laser communication technology has important theoretical significance and application value for diffractive optical system. In this paper, we provide a phased-array interpretation of a diffractive optical system and introduce research that has been conducted on airborne and spaceborne laser SAR with respect to diffractive optical systems. We propose the concept of shipborne 1 m diffraction aperture laser communication and an interferometric positioning system and analyze its performance. The results indicated that, using a 10 m short baseline, this system can reach 400 million km with a corresponding positioning accuracy of 6 km that is suitable for use during deep space probes. We also discuss the sparse-sampling laser-imaging problem using a laser to illuminate the target, transforming the laser image signal into the frequency domain with Fourier lens, using the small-scale detector to perform sparse sampling in the low-frequency domain, and reconstructing the target image using a computer. Some preliminary simulation results are provided.
Key words:Diffractive optical system/
Lidar/
Laser communication/
Synthetic aperture imaging/
Interferometric angular positioning/
Sparse imaging



PDF全文下载地址:

https://plugin.sowise.cn/viewpdf/198_be734976-08c2-42b5-8394-b03dcfc23f49_R19081
相关话题/激光 通信 系统 微波 北京