仇晓兰1, 3, 4,,,
徐丰5,,
梁兴东1, 2, 4,,
焦泽坤1, 2,,
张福博1, 2, 4,
1.中国科学院空天信息创新研究院 北京 100190
2.微波成像技术国家级重点实验室 北京 100190
3.中国科学院空间信息与应用系统重点实验室 北京 100190
4.中国科学院大学 北京 100049
5.复旦大学 上海 200433
基金项目:国家自然科学基金重大项目“合成孔径雷达微波视觉三维成像理论与应用基础研究”(61991420, 61991421)
详细信息
作者简介:丁赤飚(1969–),男,研究员,博士生导师,现任中国科学院空天信息创新研究院副院长,主要从事合成孔径雷达、遥感信息处理和应用系统等领域的研究工作,先后主持多项国家863重点项目和国家级遥感卫星地面系统工程建设项目,曾获国家科技进步一等奖、二等奖各一项。E-mail: cbding@mail.ie.ac.cn
仇晓兰(1982–),女,中国科学院空天信息创新研究院研究员,博士生导师,主要研究领域为SAR成像处理、SAR图像理解,IEEE高级会员、IEEE地球科学与遥感快报副主编、雷达学报青年编委。E-mail: xlqiu@mail.ie.ac.cn
徐丰:徐 丰(1982–),男,复旦大学博士学位,教授,复旦大学电磁波信息科学教育部重点实验室副主任,研究方向为SAR图像解译、电磁散射建模、人工智能。IEEE地球科学与遥感快报副主编、IEEE地球科学与遥感学会上海分会主席。E-mail: fengxu@fudan.edu.cn
梁兴东(1973–),男,陕西人;北京理工大学博士;中国科学院空天信息创新研究院研究员;研究方向为高分辨率合成孔径雷达系统、干涉合成孔径雷达、成像处理及应用、实时数字信号处理等。E-mail: xdliang@mail.ie.ac.cn
焦泽坤(1991–),男,博士,现任职于中国科学院空天信息创新研究院,助理研究员,研究方向为SAR 3维成像技术。E-mail: zkjiao@mail.ie.ac.cn
张福博(1988–),男,副研究员,2015年获得工学博士学位,2016年入选中国科学院电子学研究所优秀人才计划,主要研究方向为微波3维成像技术,解决了超分辨和高相参信号处理难题,发表学术论文十余篇,获得2018年度国家技术发明奖。E-mail: zhangfubo8866@126.com
通讯作者:丁赤飚 cbding@mail.ie.ac.cn
仇晓兰 xlqiu@mail.ie.ac.cn
责任主编:张群 Corresponding Editor: ZHANG Qun中图分类号:TN957.52
计量
文章访问数:8254
HTML全文浏览量:4341
PDF下载量:1122
被引次数:0
出版历程
收稿日期:2019-09-30
修回日期:2019-11-04
网络出版日期:2019-11-25
Synthetic Aperture Radar Three-dimensional Imaging——From TomoSAR and Array InSAR to Microwave Vision (in English)
DING Chibiao1, 2, 4,,,QIU Xiaolan1, 3, 4,,,
XU Feng5,,
LIANG Xingdong1, 2, 4,,
JIAO Zekun1, 2,,
ZHANG Fubo1, 2, 4,
1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
2. National Key Lab of Microwave Imaging Technology, Beijing 100190, China
3. Key Laboratory of Technology in Geo-spatial Information Processing and Application System, Beijing 100190, China
4. University of Chinese Academy of Sciences, Beijing 100049, China
5. Fudan University, Shanghai 200433, China
Funds:The Major Program of National Natural Science Foundation of China “Research on SAR Microwave Vision Three-Dimensional Imaging Theory and Application Fundation”(61991420, 61991421)
More Information
Author Bio:DING Chibiao received a B.S. and Ph. D. degree in electronics engineering from Beihang University, Beijing, China, in 1997. Since 1997, he has been with the Institute of Electronics, Chinese Academy of Sciences, Beijing, where he is currently a Research Fellow and the Vice Director. His research interests include advanced synthetic aperture radar systems, signal processing technology, and information systems. E-mail: cbding@mail.ie.ac.cn
QIU Xiaolan received a B.S. degree in electronic engineering and information science from the University of Science and Technology of China, Hefei, China, in 2004, and a Doctoral degree in signal and information processing from the Graduate University of Chinese Academy of Sciences, Beijing, in 2009. Since 2009, she has been with the Institute ofElectronics, Chinese Academy of Sciences, Beijing. Her research interests include synthetic aperture radar (SAR) imaging and geo-correction, SAR simulation, and SAR image interpretation. She currently serves as an Associate Editor for the IEEE GEOSCIENCE AND REMOTE SENSING LETTERS. E-mail: xlqiu@mail.ie.ac.cn
XU Feng (S’06–M’08–SM’14) received a B.E. degree (Hons.) in information engineering from Southeast University, Nanjing, China, in 2003, and a Ph.D. degree (Hons.) in electronic engineering from Fudan University, Shanghai, China, in 2008. From 2008 to 2010, he was a Postdoctoral Fellow with the NOAA Center for Satellite Application and Research (STAR), Camp Springs, MD. From 2010 to 2013, he was with Intelligent Automation Inc., Rockville, while partly working for the NASA Goddard Space Flight Center, Greenbelt, as a Research Scientist. In 2013, he joined Fudan University, where he is currently a professor with the School of Information Science and Technology. E-mail: fengxu@fudan.edu.cn
LIANG Xingdong received a Ph.D. degree from the Beijing Institute of Technology, Beijing, China, in 2001. Since 2002, he has been with the Institute of Electronics, Chinese Academy of Science, Beijing, where he is currently a Professor of the Science and Technology on Microwave Imaging Laboratory. His research interests include real-time radar signal processing, coherent polarimetric and interferometric SAR systems. E-mail: xdliang@mail.ie.ac.cn
JIAO Zekun received a B.S. degree in electronic engineering and information science from the University of Science and Technology of China, Hefei, China, in 2014, and a Doctoral degree in signal and information processing from the University of Chinese Academy of Sciences, Beijing, in 2019. Since 2019, he has been with the Institute ofElectronics, Chinese Academy of Sciences, Beijing. His research interests include synthetic aperture radar (SAR) 3D imaging. E-mail: zkjiao@mail.ie.ac.cn
ZHANG Fubo received a Ph.D. degree from the Institute of Electronics, Chinese Academy of Science, Beijing, China, in 2015. Since 2015, he has been with the Institute of Electronics, Chinese Academy of Science. His research interests include synthetic aperture radar tomography. E-mail: zhangfubo8866@126.com
Corresponding author:DING Chibiao, cbding@mail.ie.ac.cn;QIU Xiaolan, xlqiu@mail.ie.ac.cn
摘要
摘要:合成孔径雷达3维成像技术可以消除目标和地形在2维图像上产生的严重混叠,显著提升目标识别和3维建模能力,已经成为当前SAR发展的重要趋势。合成孔径雷达3维成像技术经过了数十年的发展,已提出多种技术体制。该文系统性回顾了SAR 3维成像技术领域的发展过程,深入分析了现有SAR 3维成像技术的特点;指出了SAR回波及图像中蕴含的未被现有技术利用的3维信息,提出“合成孔径雷达微波视觉3维成像”的新概念和新思路,将SAR成像方法与微波散射机制和图像视觉语义有机融合,形成SAR微波视觉3维成像理论与方法,实现高效能、低成本的SAR 3维成像。该文重点阐述了SAR微波视觉3维成像的概念、目标和关键科学问题,并给出了初步的技术途径,为SAR 3维成像提供了新的技术思路。
关键词:合成孔径雷达3维成像/
阵列干涉/
层析SAR/
SAR微波视觉3维成像
Abstract:Synthetic Aperture Radar three-dimensional (SAR 3D) imaging technology can eliminate severe overlap in 2D images, and improve target recognition and 3D modeling capabilities, which have become an important trend in SAR development. After decades of development of SAR 3D imaging technology, many types of 3D imaging methods have been proposed. In this study, the history of SAR 3D imaging technology is systematically reviewed and the characteristics of existing SAR 3D imaging technology are analyzed. Given that the 3D information contained in SAR echo and images is not fully used by existing techniques, a new concept of SAR microwave vision 3D imaging has been proposed for the first time. This new concept is integrated with microwave scattering mechanism and image visual semantics to realize three-dimensional reconstruction, which form the theory and method of SAR microwave vision 3D imaging and can achieve high-efficiency and low-cost SAR 3D imaging. This study also analyzes the concept, goal and key scientific problems of SAR microwave vision 3D imaging and provides a preliminary solution, which will contribute in several ways to our understanding of SAR 3D imaging and provide the basis for further research.
Key words:SAR 3D imaging/
Array InSAR/
SAR Tomography/
SAR microwave vision 3D imaging
PDF全文下载地址:
https://plugin.sowise.cn/viewpdf/198_053569c6-be7d-4ce8-b4d6-1b645668651e_R19090