宽频带的偶极子声源是进行偶极子声波测井频散校正和近井壁成像的基础。由于偶极弯曲波在艾里相频率附近的激发能量较强,而高频和低频处都相对较弱。在远离艾里相的频率处很难测量到稳定可靠的相速度,从而影响甚至制约了频散校正的精度和近井壁成像的质量。
为获得完整的偶极子频散信息,声学所超声技术中心助理研究员曹雪砷等人提出了一种基于分段线性调频的宽带偶极子测井方法,为宽带偶极子测井提供了新的思路。相关成果发表于国际学术期刊Applied Geophysics第15卷第2期。
研究人员在非线性调频偶极子激励信号的基础上,提出了一种分段线性调频激励信号,对弯曲波激发强度曲线进行补偿,加强高、低频段的能量,相对抑制艾里相频点的能量,使得到的接收信号在较宽的范围内具备较高的信噪比,从而获取完整的频散信息。
通过使用传统脉冲激励信号以及分段线性调频激励信号,研究人员得到了均质硬地层以及横波速度径向变化地层中的数值模拟频散曲线(图1、2)。相对于雷克子波激励信号,分段线性调频激励信号扩展了弯曲波的有效频带范围,可以得到整个频带上的频散信息。
(a) (b)
图1. 均质硬地层频散曲线对比:(a)雷克子波激励信号(b)分段线性调频激励信号(图/曹雪砷)
(a) (b)
图2. 径向变化地层频散曲线对比:(a)雷克子波激励信号(b)分段线性调频激励信号(图/曹雪砷)
分段线性调频信号改变了传统偶极子单一固定的激发模式,可以根据地层特性进行调整,从而适应井下变化的地质环境,得到完整的地层频散信息,对于宽带偶极子声波测井具有重要意义。
关键词:偶极声波测井;频散;分段线性调频
参考文献:CAO Xueshen, CHEN Hao, LI Ping, HE Hongbin, ZHOU Yinqiu, WANG Xiuming. Wideband Dipole Logging Based on Segment Linear Frequency Modulation Excitation. Applied Geophysics, 2018, 15(2): 197-207. DOI: 10.1007/s11770-018-0674-9.
论文链接:https://rdcu.be/5WsB
http://www.appliedgeophysics.cn/EN/volumn/home.shtml#
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
一种基于分段线性调频的宽带偶极子测井方法
本站小编 Free考研/2020-05-27
相关话题/信号 信息
一种利用坐标旋转数字算法的基于特征空间的信号合成方法
声学所院水下航行器信息技术重点实验室助理研究员王雷欧及其同事提出了一种利用坐标旋转数字算法的基于特征空间的信号合成方法,该方法能够有效减少信号合成过程中的计算量。相关研究成果发表于第26届欧洲信号处理会议2018 26th European Signal Processing Conference ...中科院声学研究所 本站小编 Free考研 2020-05-27中科院水下航行器信息技术重点实验室参加2018日本海洋大会
2018日本海洋大会(OCEANS’18 MTS/IEEE Kobe /Techno-Ocean 2018)于5月28日至31日在日本神户举办,大会主题为“海洋星球——这是我们的家”。声学所院水下航行器信息技术重点实验室郝程鹏研究员、吴永清研究员、陈栋副研究员、徐立军副研究员、闫晟副研究员、徐达助理 ...中科院声学研究所 本站小编 Free考研 2020-05-27中国生物信息学学科发展暨地方生物信息学会创立和组织建设研讨会成功举办
2019年11月16日,主题为《共谋发展,引领未来》的中国生物信息学学科发展暨地方生物信息学学会创立和组织建设研讨会于中国科学院遗传与发育生物学研究所成功举办。会议由中科院遗传发育所王秀杰研究员主持,来自全国生物信息学领域的近70位代表参会。 研讨会由孙之荣教授致开幕词。孙之荣教授首先介绍了生物信 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26独脚金内酯和Karrikin信号转导分子机制取得新进展
独脚金内酯(Strigolactone, SL)是一种新型植物激素,调控分枝、株高、下胚轴和中胚轴伸长、叶片形状、花青素积累、根系形态等诸多生长发育过程,对其信号途径的研究具有重要的科学意义和应用价值。Karrikin(KAR)是一类存在于植物燃烧形成的烟雾中的信号分子,能调控种子萌发和幼苗发育,对 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26储成才研究员应邀在Current Opinion in Plant Biology撰写植物氮信号调控网络综述文章
氮是植物需求量最大的矿质营养元素,农业生产中以氮肥为主的化肥投入对提高粮食产量、保障粮食安全起到了至关重要的作用。但是,氮肥的超量施用导致植物氮肥利用效率低下,引起包括温室气体排放、水体富营养化在内的诸多环境问题。由于土壤中氮源的种类及含量高度可变,植物在长期进化过程中形成了响应外界氮素营养条件,且 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26傅向东研究组在赤霉素信号传导新机制提高水稻氮肥利用效率研究上取得重要进展
上世纪60年代,以矮化育种为标志的“绿色革命”使水稻和小麦具有耐高肥、抗倒伏和高产的优良特性,但同时也存在氮肥利用效率低的缺点,其产量增加对化肥的依赖性高。持续大量的氮肥投入不仅增加种植成本,还导致环境污染。农业农村部公布2019年我国三大粮食作物的化肥利用率为39.2%,远低于世界平均水平,更远低 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26储成才研究组在水稻油菜素内酯信号调控机制研究上取得新进展
油菜素内酯 (简称BR) 是一类重要的植物激素,调控着水稻株高、叶夹角、籽粒大小等诸多重要农艺性状。近年来,BR信号传导研究进展迅速,但其精细调控机制还不清楚。 中国科学院遗传与发育生物学研究所植物基因组学国家重点实验室储成才研究组和中国农业科学院作物科学研究所童红宁研究组长期合作致力于BR调控水 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26李传友研究组在茉莉酸信号转录调控机理研究中取得新进展
茉莉酸作为一种重要的植物激素不仅调控植物对于机械损伤、昆虫取食和腐生型病原菌侵害的防御反应,还参与调控诸多生长发育过程。basic Helix-Loop-Helix (bHLH)类型转录因子MYC2是茉莉酸信号通路的核心转录因子,其所指导的转录调控过程是整个茉莉酸信号通路的核心事件。目前人们对于MY ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26李传友研究组发现增强子调控茉莉酸信号途径的机理
增强子是真核细胞调控基因转录的重要元件。在模式动物中,增强子与相应的基因启动子通过形成染色质环在物理上相互靠近,从而精确调控基因的时空特异性表达。然而目前在植物中,如何界定特定基因的启动子和增强子元件尚未明确,特定生理途径中增强子的系统鉴定未见报道,增强子与启动子之间染色质环的形成及其作用机理也不清 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26朱立煌研究组在水稻抗病蛋白引发的防卫信号传导中的新发现
抗病蛋白是植物免疫的重要成员,以NLR类蛋白居多,以水稻为例,其基因组中就拥有超过400个编码NLR蛋白的基因,由此可见NLR蛋白对植物免疫的重要性。作为免疫受体,抗病蛋白能引发对多种病原微生物以及昆虫的防卫反应,从而赋予植物对病原小种的免疫性。目前已知的抗病蛋白数量不少,但从病原物被抗病蛋白所识别 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26