HTML
--> --> --> $ S_f^{-1}(k) = Z_2 ({\rm i}\gamma\cdot k + Z_m m_f) + \frac{4}{3} (Z_2)^2 \int^\Lambda_{{\rm d} q} \tilde{D}^f_{\mu\nu}(l)\gamma_\mu S_{f}(q)\gamma_\nu, $ | (1) |
A meson is qualified by the Bethe-Salpeter amplitude (BSA),
$ \Big{[} \Gamma^{fg}(k;P) \Big{]}^{\alpha}_{\beta} = - \int^\Lambda_{{\rm d} q} \frac{4}{3}(Z_{2})^{2} \tilde{D}^{fg}_{\mu\nu}(l) \Big[\gamma_{\mu}^{}\Big]^{\alpha}_\sigma \Big[\gamma_{\nu}\Big]^\delta_\beta \Big{[} \chi^{fg}(q;P) \Big{]}^{\sigma}_{\delta} , $ | (2) |
$ f_{0^-}P_{\mu} = Z_{2} N_{c} \;\text{tr} \int^{\Lambda}_{{\rm d} q} \gamma_{5}^{} \gamma_{\mu}^{} S_f(q_+)\Gamma^{fg}_{0^-}(q;P)S_g(q_-). $ | (3) |
$ f_{1^-}M_{1^-} = Z_{2} N_{c} \;\text{tr} \int^{\Lambda}_{{\rm d} q} \gamma_{\mu}^{} S_f(q_+)\Gamma^{fg,\mu}_{1^-}(q;P)S_g(q_-). $ | (4) |
$ {\cal{G}}^f(s) = {\cal{G}}^f_{IR}(s) + {\cal{G}}_{UV}(s), $ | (5) |
$ {\cal{G}}^f_{IR}(s) = 8\pi^2\frac{D_f^2}{\omega_f^4} {\rm e}^{-s/\omega_f^2}, $ | (6) |
$ {\cal{G}}^{fg}(s) = {\cal{G}}^{fg}_{IR}(s) + {\cal{G}}_{UV}(s), $ | (7) |
$ {\cal{G}}^{fg}_{IR}(s) = 8\pi^2\frac{D_f}{\omega_f^2}\frac{D_g}{\omega_g^2} {\rm e}^{-s/(\omega_f\omega_g)}, $ | (8) |
$ {\cal{G}}_{UV}(s) = \frac{8\pi^{2} \gamma_{m}^{} {\cal{F}}(s)}{\text{ln}\big[\tau+(1+s/\Lambda^{2}_{\rm QCD})^2\big]}, $ | (9) |
To mimic the interesting difference between the radial excited states and the ground states, Eq. (8) is changed into
$ {\cal{G}}^{fg}_{IR}(s) = 8\pi^2\frac{\eta_f D_f}{\omega_f^2}\frac{ \eta_ g D_g}{\omega_g^2} {\rm e}^{-s/(\alpha_f\omega_f \alpha_g\omega_g)}. $ | (10) |
$ \lambda^{fg}(P^2) \Big{[} \Gamma^{fg}(k;P) \Big{]}^{\alpha}_{\beta} = - \int^\Lambda_{{\rm d} q} \frac{4}{3}(Z_{2})^{2} \tilde{D}^{fg}_{\mu\nu}(l) \Big[\gamma_{\mu}^{}\Big]^{\alpha}_\sigma \Big[\gamma_{\nu}\Big]^\delta_\beta \Big{[} \chi^{fg}(q;P) \Big{]}^{\sigma}_{\delta}. $ | (11) |
As the masses of the radial excited mesons are beyond the contour border, i.e.
$ \frac{1}{\lambda^{fg}(P^2)} = \frac{1 + \displaystyle\sum^{N_{o}}_{n = 1}\, a_{n} (P^{2} + s_{0}^{})^n}{1 + \displaystyle\sum^{N_{o}}_{n = 1}\, b_{n} (P^{2} + s_{0}^{})^n} \, , $ | (12) |
$ f_{fg}(P^2) = \frac{f_0 + \displaystyle\sum^{N_o}_{n = 1}\, c_n (P^2+M^2)^n}{1 + \displaystyle\sum^{N_o}_{n = 1}\, d_n (P^2+M^2)^n}, $ | (13) |
Figure1. (color online) Extrapolation of the eigenvalue,
Three groups of
The masses and leptonic decay constants of
meson | ||||||||
3.618(25)(3) | 3.638 | ?0.158(8)(4) | ? | 0.170~0.172 | 0.197 | |||
3.686(21)(0) | 3.686 | ?0.208(5)(0) | ?0.208 | 0.207~0.216 | 0.182 | |||
meson | ||||||||
6.874(9)(6) | 6.872 | ?0.174(5)(4) | ? | 0.304(14) | 0.251 | |||
6.926(12)(6) | ? | ?0.216(9)(4) | ? | ? | 0.325(14) | 0.252 | ||
meson | ||||||||
9.989(13)(3) | 9.999 | ?0.345(6)(1) | ? | 0.291~0.299 | 0.367 | |||
10.023(11)(0) | 10.023 | -0.352(4)(0) | ?0.352 | 0.336~0.350 | 0.367 |
Table1.Masses and leptonic decay constants of the first radial excited heavy pseudoscalar and vector mesons (in GeV). The normalization convention
There are no experimental values for
Regardless, the reasonableness of my results can be justified with the following three facts:
1. The RL approximation is suffcient for the pseudoscalar and vector mesons;
2. The interaction patterns in Eq. (7), Eq. (10) and Eq. (9) contain the proper flavor dependence, so the
3. The interaction is refixed by the experimental value of the masses and leptonic decay constants of
Finally, let us discuss the effective interaction between a quark and an antiquark in radial excited mesons. This is characterized by the dressing function
Figure2. (color online) Effective interaction dressing functions of the ground states (Eqs. (7)-(9)) and the first radial excited states (Eq. (7), Eq.(10) and Eq. (9)). The region boundary is defined by Parameter-1 and Parameter-3 in Table A1 in the appendix.
flavor | Parameter-1 | ||||
c | 1.17 | 0.690 | 0.645 | 1.360 | 0.755 |
b | 4.97 | 0.722 | 0.258 | 1.323 | 0.671 |
flavor | Parameter-2 | ||||
c | 1.17 | 0.730 | 0.599 | 1.304 | 0.817 |
b | 4.97 | 0.766 | 0.241 | 1.265 | 0.730 |
flavor | Parameter-3 | ||||
c | 1.17 | 0.760 | 0.570 | 1.265 | 0.865 |
b | 4.97 | 0.792 | 0.231 | 1.225 | 0.766 |
TableA1.Three groups of parameters correspond to
$\tag{A1} \bar{m}_f^{\zeta} = \hat{m}_f\Big /\left[\frac{1}{2}{\rm{ln}}\frac{\zeta^2}{\Lambda^2_{\rm{QCD}}}\right]^{\gamma_m}, $ |
$\tag{A2} {\hat m_f} = \mathop {\lim }\limits_{{p^2} \to \infty } {\left[ {\frac{1}{2}{\rm{ln}}\frac{{{p^2}}}{{\Lambda _{{\rm{QCD}}}^2}}} \right]^{{\gamma _m}}}{M_f}({p^2}), $ |