R. Aaij 32 , ,
C. Abellán Beteta 50 , ,
T. Ackernley 60 , ,
B. Adeva 46 , ,
M. Adinolfi 54 , ,
H. Afsharnia 9 , ,
C.A. Aidala 85 , ,
S. Aiola 25 , ,
Z. Ajaltouni 9 , ,
S. Akar 65 , ,
J. Albrecht 15 , ,
F. Alessio 48 , ,
M. Alexander 59 , ,
A. Alfonso Albero 45 , ,
Z. Aliouche 62 , ,
G. Alkhazov 38 , ,
P. Alvarez Cartelle 55 , ,
S. Amato 2 , ,
Y. Amhis 11 , ,
L. An 48 , ,
L. Anderlini 22 , ,
A. Andreianov 38 , ,
M. Andreotti 21 , ,
F. Archilli 17 , ,
A. Artamonov 44 , ,
M. Artuso 68 , ,
K. Arzymatov 42 , ,
E. Aslanides 10 , ,
M. Atzeni 50 , ,
B. Audurier 12 , ,
S. Bachmann 17 , ,
M. Bachmayer 49 , ,
J.J. Back 56 , ,
P. Baladron Rodriguez 46 , ,
V. Balagura 12 , ,
W. Baldini 21 , ,
J. Baptista Leite 1 , ,
R.J. Barlow 62 , ,
S. Barsuk 11 , ,
W. Barter 61 , ,
M. Bartolini 24 , ,
F. Baryshnikov 82 , ,
J.M. Basels 14 , ,
G. Bassi 29 , ,
B. Batsukh 68 , ,
A. Battig 15 , ,
A. Bay 49 , ,
M. Becker 15 , ,
F. Bedeschi 29 , ,
I. Bediaga 1 , ,
A. Beiter 68 , ,
V. Belavin 42 , ,
S. Belin 27 , ,
V. Bellee 49 , ,
K. Belous 44 , ,
I. Belov 40 , ,
I. Belyaev 41 , ,
G. Bencivenni 23 , ,
E. Ben-Haim 13 , ,
A. Berezhnoy 40 , ,
R. Bernet 50 , ,
D. Berninghoff 17 , ,
H.C. Bernstein 68 , ,
C. Bertella 48 , ,
A. Bertolin 28 , ,
C. Betancourt 50 , ,
F. Betti 48 , ,
Ia. Bezshyiko 50 , ,
S. Bhasin 54 , ,
J. Bhom 35 , ,
L. Bian 73 , ,
M.S. Bieker 15 , ,
S. Bifani 53 , ,
P. Billoir 13 , ,
M. Birch 61 , ,
F.C.R. Bishop 55 , ,
A. Bitadze 62 , ,
A. Bizzeti 22,k , ,
M. Bj?rn 63 , ,
M.P. Blago 48 , ,
T. Blake 56 , ,
F. Blanc 49 , ,
S. Blusk 68 , ,
D. Bobulska 59 , ,
J.A. Boelhauve 15 , ,
O. Boente Garcia 46 , ,
T. Boettcher 64 , ,
A. Boldyrev 81 , ,
A. Bondar 43 , ,
N. Bondar 38,48 , ,
S. Borghi 62 , ,
M. Borisyak 42 , ,
M. Borsato 17 , ,
J.T. Borsuk 35 , ,
S.A. Bouchiba 49 , ,
T.J.V. Bowcock 60 , ,
A. Boyer 48 , ,
C. Bozzi 21 , ,
M.J. Bradley 61 , ,
S. Braun 66 , ,
A. Brea Rodriguez 46 , ,
M. Brodski 48 , ,
J. Brodzicka 35 , ,
A. Brossa Gonzalo 56 , ,
D. Brundu 27 , ,
A. Buonaura 50 , ,
C. Burr 48 , ,
A. Bursche 72 , ,
A. Butkevich 39 , ,
J.S. Butter 32 , ,
J. Buytaert 48 , ,
W. Byczynski 48 , ,
S. Cadeddu 27 , ,
H. Cai 73 , ,
R. Calabrese 21,f , ,
L. Calefice 15,13 , ,
L. Calero Diaz 23 , ,
S. Cali 23 , ,
R. Calladine 53 , ,
M. Calvi 26,j , ,
M. Calvo Gomez 84 , ,
P. Camargo Magalhaes 54 , ,
A. Camboni 45,84 , ,
P. Campana 23 , ,
A.F. Campoverde Quezada 6 , ,
S. Capelli 26,j , ,
L. Capriotti 20,d , ,
A. Carbone 20,d , ,
G. Carboni 31 , ,
R. Cardinale 24 , ,
A. Cardini 27 , ,
I. Carli 4 , ,
P. Carniti 26,j , ,
L. Carus 14 , ,
K. Carvalho Akiba 32 , ,
A. Casais Vidal 46 , ,
G. Casse 60 , ,
M. Cattaneo 48 , ,
G. Cavallero 48 , ,
S. Celani 49 , ,
J. Cerasoli 10 , ,
A.J. Chadwick 60 , ,
M.G. Chapman 54 , ,
M. Charles 13 , ,
Ph. Charpentier 48 , ,
G. Chatzikonstantinidis 53 , ,
C.A. Chavez Barajas 60 , ,
M. Chefdeville 8 , ,
C. Chen 3 , ,
S. Chen 4 , ,
A. Chernov 35 , ,
V. Chobanova 46 , ,
S. Cholak 49 , ,
M. Chrzaszcz 35 , ,
A. Chubykin 38 , ,
V. Chulikov 38 , ,
P. Ciambrone 23 , ,
M.F. Cicala 56 , ,
X. Cid Vidal 46 , ,
G. Ciezarek 48 , ,
P.E.L. Clarke 58 , ,
M. Clemencic 48 , ,
H.V. Cliff 55 , ,
J. Closier 48 , ,
J.L. Cobbledick 62 , ,
V. Coco 48 , ,
J.A.B. Coelho 11 , ,
J. Cogan 10 , ,
E. Cogneras 9 , ,
L. Cojocariu 37 , ,
P. Collins 48 , ,
T. Colombo 48 , ,
L. Congedo 19,c , ,
A. Contu 27 , ,
N. Cooke 53 , ,
G. Coombs 59 , ,
G. Corti 48 , ,
C.M. Costa Sobral 56 , ,
B. Couturier 48 , ,
D.C. Craik 64 , ,
J. Crkovská 67 , ,
M. Cruz Torres 1 , ,
R. Currie 58 , ,
C.L. Da Silva 67 , ,
E. Dall'Occo 15 , ,
J. Dalseno 46 , ,
C. D'Ambrosio 48 , ,
A. Danilina 41 , ,
P. d'Argent 48 , ,
A. Davis 62 , ,
O. De Aguiar Francisco 62 , ,
K. De Bruyn 78 , ,
S. De Capua 62 , ,
M. De Cian 49 , ,
J.M. De Miranda 1 , ,
L. De Paula 2 , ,
M. De Serio 19,c , ,
D. De Simone 50 , ,
P. De Simone 23 , ,
J.A. de Vries 79 , ,
C.T. Dean 67 , ,
D. Decamp 8 , ,
L. Del Buono 13 , ,
B. Delaney 55 , ,
H.-P. Dembinski 15 , ,
A. Dendek 34 , ,
V. Denysenko 50 , ,
D. Derkach 81 , ,
O. Deschamps 9 , ,
F. Desse 11 , ,
F. Dettori 27,e , ,
B. Dey 73 , ,
P. Di Nezza 23 , ,
S. Didenko 82 , ,
L. Dieste Maronas 46 , ,
H. Dijkstra 48 , ,
V. Dobishuk 52 , ,
A.M. Donohoe 18 , ,
F. Dordei 27 , ,
A.C. dos Reis 1 , ,
L. Douglas 59 , ,
A. Dovbnya 51 , ,
A.G. Downes 8 , ,
K. Dreimanis 60 , ,
M.W. Dudek 35 , ,
L. Dufour 48 , ,
V. Duk 77 , ,
P. Durante 48 , ,
J.M. Durham 67 , ,
D. Dutta 62 , ,
A. Dziurda 35 , ,
A. Dzyuba 38 , ,
S. Easo 57 , ,
U. Egede 69 , ,
V. Egorychev 41 , ,
S. Eidelman 43,v , ,
S. Eisenhardt 58 , ,
S. Ek-In 49 , ,
L. Eklund 59,w , ,
S. Ely 68 , ,
A. Ene 37 , ,
E. Epple 67 , ,
S. Escher 14 , ,
J. Eschle 50 , ,
S. Esen 13 , ,
T. Evans 48 , ,
A. Falabella 20 , ,
J. Fan 3 , ,
Y. Fan 6 , ,
B. Fang 73 , ,
S. Farry 60 , ,
D. Fazzini 26,j , ,
M. Féo 48 , ,
A. Fernandez Prieto 46 , ,
J.M. Fernandez-tenllado Arribas 45 , ,
F. Ferrari 20,d , ,
L. Ferreira Lopes 49 , ,
F. Ferreira Rodrigues 2 , ,
S. Ferreres Sole 32 , ,
M. Ferrillo 50 , ,
M. Ferro-Luzzi 48 , ,
S. Filippov 39 , ,
R.A. Fini 19 , ,
M. Fiorini 21,f , ,
M. Firlej 34 , ,
K.M. Fischer 63 , ,
C. Fitzpatrick 62 , ,
T. Fiutowski 34 , ,
F. Fleuret 12 , ,
M. Fontana 13 , ,
F. Fontanelli 24,h , ,
R. Forty 48 , ,
V. Franco Lima 60 , ,
M. Franco Sevilla 66 , ,
M. Frank 48 , ,
E. Franzoso 21 , ,
G. Frau 17 , ,
C. Frei 48 , ,
D.A. Friday 59 , ,
J. Fu 25 , ,
Q. Fuehring 15 , ,
W. Funk 48 , ,
E. Gabriel 32 , ,
T. Gaintseva 42 , ,
A. Gallas Torreira 46 , ,
D. Galli 20,d , ,
S. Gambetta 58,48 , ,
Y. Gan 3 , ,
M. Gandelman 2 , ,
P. Gandini 25 , ,
Y. Gao 5 , ,
M. Garau 27 , ,
L.M. Garcia Martin 56 , ,
P. Garcia Moreno 45 , ,
J. García Pardi?as 26,j , ,
B. Garcia Plana 46 , ,
F.A. Garcia Rosales 12 , ,
L. Garrido 45 , ,
C. Gaspar 48 , ,
R.E. Geertsema 32 , ,
D. Gerick 17 , ,
L.L. Gerken 15 , ,
E. Gersabeck 62 , ,
M. Gersabeck 62 , ,
T. Gershon 56 , ,
D. Gerstel 10 , ,
Ph. Ghez 8 , ,
V. Gibson 55 , ,
H.K. Giemza 36 , ,
M. Giovannetti 23,p , ,
A. Gioventù 46 , ,
P. Gironella Gironell 45 , ,
L. Giubega 37 , ,
C. Giugliano 21,f,48 , ,
K. Gizdov 58 , ,
E.L. Gkougkousis 48 , ,
V.V. Gligorov 13 , ,
C. G?bel 70 , ,
E. Golobardes 84 , ,
D. Golubkov 41 , ,
A. Golutvin 61,82 , ,
A. Gomes 1,a , ,
S. Gomez Fernandez 45 , ,
F. Goncalves Abrantes 63 , ,
M. Goncerz 35 , ,
G. Gong 3 , ,
P. Gorbounov 41 , ,
I.V. Gorelov 40 , ,
C. Gotti 26 , ,
E. Govorkova 48 , ,
J.P. Grabowski 17 , ,
T. Grammatico 13 , ,
L.A. Granado Cardoso 48 , ,
E. Graugés 45 , ,
E. Graverini 49 , ,
G. Graziani 22 , ,
A. Grecu 37 , ,
L.M. Greeven 32 , ,
P. Griffith 21,f , ,
L. Grillo 62 , ,
S. Gromov 82 , ,
B.R. Gruberg Cazon 63 , ,
C. Gu 3 , ,
M. Guarise 21 , ,
P. A. Günther 17 , ,
E. Gushchin 39 , ,
A. Guth 14 , ,
Y. Guz 44,48 , ,
T. Gys 48 , ,
T. Hadavizadeh 69 , ,
G. Haefeli 49 , ,
C. Haen 48 , ,
J. Haimberger 48 , ,
T. Halewood-leagas 60 , ,
P.M. Hamilton 66 , ,
Q. Han 7 , ,
X. Han 17 , ,
T.H. Hancock 63 , ,
S. Hansmann-Menzemer 17 , ,
N. Harnew 63 , ,
T. Harrison 60 , ,
C. Hasse 48 , ,
M. Hatch 48 , ,
J. He 6,b , ,
M. Hecker 61 , ,
K. Heijhoff 32 , ,
K. Heinicke 15 , ,
A.M. Hennequin 48 , ,
K. Hennessy 60 , ,
L. Henry 25,47 , ,
J. Heuel 14 , ,
A. Hicheur 2 , ,
D. Hill 49 , ,
M. Hilton 62 , ,
S.E. Hollitt 15 , ,
J. Hu 17 , ,
J. Hu 72 , ,
W. Hu 7 , ,
W. Huang 6 , ,
X. Huang 73 , ,
W. Hulsbergen 32 , ,
R.J. Hunter 56 , ,
M. Hushchyn 81 , ,
D. Hutchcroft 60 , ,
D. Hynds 32 , ,
P. Ibis 15 , ,
M. Idzik 34 , ,
D. Ilin 38 , ,
P. Ilten 65 , ,
A. Inglessi 38 , ,
A. Ishteev 82 , ,
K. Ivshin 38 , ,
R. Jacobsson 48 , ,
S. Jakobsen 48 , ,
E. Jans 32 , ,
B.K. Jashal 47 , ,
A. Jawahery 66 , ,
V. Jevtic 15 , ,
M. Jezabek 35 , ,
F. Jiang 3 , ,
M. John 63 , ,
D. Johnson 48 , ,
C.R. Jones 55 , ,
T.P. Jones 56 , ,
B. Jost 48 , ,
N. Jurik 48 , ,
S. Kandybei 51 , ,
Y. Kang 3 , ,
M. Karacson 48 , ,
M. Karpov 81 , ,
F. Keizer 48 , ,
M. Kenzie 56 , ,
T. Ketel 33 , ,
B. Khanji 15 , ,
A. Kharisova 83 , ,
S. Kholodenko 44 , ,
T. Kirn 14 , ,
V.S. Kirsebom 49 , ,
O. Kitouni 64 , ,
S. Klaver 32 , ,
K. Klimaszewski 36 , ,
S. Koliiev 52 , ,
A. Kondybayeva 82 , ,
A. Konoplyannikov 41 , ,
P. Kopciewicz 34 , ,
R. Kopecna 17 , ,
P. Koppenburg 32 , ,
M. Korolev 40 , ,
I. Kostiuk 32,52 , ,
O. Kot 52 , ,
S. Kotriakhova 21,38 , ,
P. Kravchenko 38 , ,
L. Kravchuk 39 , ,
R.D. Krawczyk 48 , ,
M. Kreps 56 , ,
F. Kress 61 , ,
S. Kretzschmar 14 , ,
P. Krokovny 43,v , ,
W. Krupa 34 , ,
W. Krzemien 36 , ,
W. Kucewicz 35,t , ,
M. Kucharczyk 35 , ,
V. Kudryavtsev 43,v , ,
H.S. Kuindersma 32 , ,
G.J. Kunde 67 , ,
T. Kvaratskheliya 41 , ,
D. Lacarrere 48 , ,
G. Lafferty 62 , ,
A. Lai 27 , ,
A. Lampis 27 , ,
D. Lancierini 50 , ,
J.J. Lane 62 , ,
R. Lane 54 , ,
G. Lanfranchi 23 , ,
C. Langenbruch 14 , ,
J. Langer 15 , ,
O. Lantwin 50 , ,
T. Latham 56 , ,
F. Lazzari 29,q , ,
R. Le Gac 10 , ,
S.H. Lee 85 , ,
R. Lefèvre 9 , ,
A. Leflat 40 , ,
S. Legotin 82 , ,
O. Leroy 10 , ,
T. Lesiak 35 , ,
B. Leverington 17 , ,
H. Li 72 , ,
L. Li 63 , ,
P. Li 17 , ,
S. Li 7 , ,
Y. Li 4 , ,
Y. Li 4 , ,
Z. Li 68 , ,
X. Liang 68 , ,
T. Lin 61 , ,
R. Lindner 48 , ,
V. Lisovskyi 15 , ,
R. Litvinov 27 , ,
G. Liu 72 , ,
H. Liu 6 , ,
S. Liu 4 , ,
X. Liu 3 , ,
A. Loi 27 , ,
J. Lomba Castro 46 , ,
I. Longstaff 59 , ,
J.H. Lopes 2 , ,
G.H. Lovell 55 , ,
Y. Lu 4 , ,
D. Lucchesi 28,l , ,
S. Luchuk 39 , ,
M. Lucio Martinez 32 , ,
V. Lukashenko 32 , ,
Y. Luo 3 , ,
A. Lupato 62 , ,
E. Luppi 21,f , ,
O. Lupton 56 , ,
A. Lusiani 29,m , ,
X. Lyu 6 , ,
L. Ma 4 , ,
R. Ma 6 , ,
S. Maccolini 20,d , ,
F. Machefert 11 , ,
F. Maciuc 37 , ,
V. Macko 49 , ,
P. Mackowiak 15 , ,
S. Maddrell-Mander 54 , ,
O. Madejczyk 34 , ,
L.R. Madhan Mohan 54 , ,
O. Maev 38 , ,
A. Maevskiy 81 , ,
D. Maisuzenko 38 , ,
M.W. Majewski 34 , ,
J.J. Malczewski 35 , ,
S. Malde 63 , ,
B. Malecki 48 , ,
A. Malinin 80 , ,
T. Maltsev 43,v , ,
H. Malygina 17 , ,
G. Manca 27,e , ,
G. Mancinelli 10 , ,
D. Manuzzi 20,d , ,
D. Marangotto 25,i , ,
J. Maratas 9,s , ,
J.F. Marchand 8 , ,
U. Marconi 20 , ,
S. Mariani 22,g , ,
C. Marin Benito 11 , ,
M. Marinangeli 49 , ,
P. Marino 49,m , ,
J. Marks 17 , ,
A.M. Marshall 54 , ,
P.J. Marshall 60 , ,
G. Martellotti 30 , ,
L. Martinazzoli 48,j , ,
M. Martinelli 26,j , ,
D. Martinez Santos 46 , ,
F. Martinez Vidal 47 , ,
A. Massafferri 1 , ,
M. Materok 14 , ,
R. Matev 48 , ,
A. Mathad 50 , ,
Z. Mathe 48 , ,
V. Matiunin 41 , ,
C. Matteuzzi 26 , ,
K.R. Mattioli 85 , ,
A. Mauri 32 , ,
E. Maurice 12 , ,
J. Mauricio 45 , ,
M. Mazurek 48 , ,
M. McCann 61 , ,
L. Mcconnell 18 , ,
T.H. Mcgrath 62 , ,
A. McNab 62 , ,
R. McNulty 18 , ,
J.V. Mead 60 , ,
B. Meadows 65 , ,
C. Meaux 10 , ,
G. Meier 15 , ,
N. Meinert 76 , ,
D. Melnychuk 36 , ,
S. Meloni 26,j , ,
M. Merk 32,79 , ,
A. Merli 25 , ,
L. Meyer Garcia 2 , ,
M. Mikhasenko 48 , ,
D.A. Milanes 74 , ,
E. Millard 56 , ,
M. Milovanovic 48 , ,
M.-N. Minard 8 , ,
A. Minotti 21 , ,
L. Minzoni 21,f , ,
S.E. Mitchell 58 , ,
B. Mitreska 62 , ,
D.S. Mitzel 48 , ,
A. M?dden 15 , ,
R.A. Mohammed 63 , ,
R.D. Moise 61 , ,
T. Momb?cher 15 , ,
I.A. Monroy 74 , ,
S. Monteil 9 , ,
M. Morandin 28 , ,
G. Morello 23 , ,
M.J. Morello 29,m , ,
J. Moron 34 , ,
A.B. Morris 75 , ,
A.G. Morris 56 , ,
R. Mountain 68 , ,
H. Mu 3 , ,
F. Muheim 58,48 , ,
M. Mukherjee 7 , ,
M. Mulder 48 , ,
D. Müller 48 , ,
K. Müller 50 , ,
C.H. Murphy 63 , ,
D. Murray 62 , ,
P. Muzzetto 27,48 , ,
P. Naik 54 , ,
T. Nakada 49 , ,
R. Nandakumar 57 , ,
T. Nanut 49 , ,
I. Nasteva 2 , ,
M. Needham 58 , ,
I. Neri 21 , ,
N. Neri 25,i , ,
S. Neubert 75 , ,
N. Neufeld 48 , ,
R. Newcombe 61 , ,
T.D. Nguyen 49 , ,
C. Nguyen-Mau 49,x , ,
E.M. Niel 11 , ,
S. Nieswand 14 , ,
N. Nikitin 40 , ,
N.S. Nolte 48 , ,
C. Nunez 85 , ,
A. Oblakowska-Mucha 34 , ,
V. Obraztsov 44 , ,
D.P. O'Hanlon 54 , ,
R. Oldeman 27,e , ,
M.E. Olivares 68 , ,
C.J.G. Onderwater 78 , ,
A. Ossowska 35 , ,
J.M. Otalora Goicochea 2 , ,
T. Ovsiannikova 41 , ,
P. Owen 50 , ,
A. Oyanguren 47 , ,
B. Pagare 56 , ,
P.R. Pais 48 , ,
T. Pajero 63 , ,
A. Palano 19 , ,
M. Palutan 23 , ,
Y. Pan 62 , ,
G. Panshin 83 , ,
A. Papanestis 57 , ,
M. Pappagallo 19,c , ,
L.L. Pappalardo 21,f , ,
C. Pappenheimer 65 , ,
W. Parker 66 , ,
C. Parkes 62 , ,
C.J. Parkinson 46 , ,
B. Passalacqua 21 , ,
G. Passaleva 22 , ,
A. Pastore 19 , ,
M. Patel 61 , ,
C. Patrignani 20,d , ,
C.J. Pawley 79 , ,
A. Pearce 48 , ,
A. Pellegrino 32 , ,
M. Pepe Altarelli 48 , ,
S. Perazzini 20 , ,
D. Pereima 41 , ,
P. Perret 9 , ,
M. Petric 59,48 , ,
K. Petridis 54 , ,
A. Petrolini 24,h , ,
A. Petrov 80 , ,
S. Petrucci 58 , ,
M. Petruzzo 25 , ,
T.T.H. Pham 68 , ,
A. Philippov 42 , ,
L. Pica 29,n , ,
M. Piccini 77 , ,
B. Pietrzyk 8 , ,
G. Pietrzyk 49 , ,
M. Pili 63 , ,
D. Pinci 30 , ,
F. Pisani 48 , ,
P.K Resmi 10 , ,
V. Placinta 37 , ,
J. Plews 53 , ,
M. Plo Casasus 46 , ,
F. Polci 13 , ,
M. Poli Lener 23 , ,
M. Poliakova 68 , ,
A. Poluektov 10 , ,
N. Polukhina 82,u , ,
I. Polyakov 68 , ,
E. Polycarpo 2 , ,
G.J. Pomery 54 , ,
S. Ponce 48 , ,
D. Popov 6,48 , ,
S. Popov 42 , ,
S. Poslavskii 44 , ,
K. Prasanth 35 , ,
L. Promberger 48 , ,
C. Prouve 46 , ,
V. Pugatch 52 , ,
H. Pullen 63 , ,
G. Punzi 29,n , ,
W. Qian 6 , ,
J. Qin 6 , ,
R. Quagliani 13 , ,
B. Quintana 8 , ,
N.V. Raab 18 , ,
R.I. Rabadan Trejo 10 , ,
B. Rachwal 34 , ,
J.H. Rademacker 54 , ,
M. Rama 29 , ,
M. Ramos Pernas 56 , ,
M.S. Rangel 2 , ,
F. Ratnikov 42,81 , ,
G. Raven 33 , ,
M. Reboud 8 , ,
F. Redi 49 , ,
F. Reiss 62 , ,
C. Remon Alepuz 47 , ,
Z. Ren 3 , ,
V. Renaudin 63 , ,
R. Ribatti 29 , ,
S. Ricciardi 57 , ,
K. Rinnert 60 , ,
P. Robbe 11 , ,
A. Robert 13 , ,
G. Robertson 58 , ,
A.B. Rodrigues 49 , ,
E. Rodrigues 60 , ,
J.A. Rodriguez Lopez 74 , ,
A. Rollings 63 , ,
P. Roloff 48 , ,
V. Romanovskiy 44 , ,
M. Romero Lamas 46 , ,
A. Romero Vidal 46 , ,
J.D. Roth 85 , ,
M. Rotondo 23 , ,
M.S. Rudolph 68 , ,
T. Ruf 48 , ,
J. Ruiz Vidal 47 , ,
A. Ryzhikov 81 , ,
J. Ryzka 34 , ,
J.J. Saborido Silva 46 , ,
N. Sagidova 38 , ,
N. Sahoo 56 , ,
B. Saitta 27,e , ,
D. Sanchez Gonzalo 45 , ,
C. Sanchez Gras 32 , ,
R. Santacesaria 30 , ,
C. Santamarina Rios 46 , ,
M. Santimaria 23 , ,
E. Santovetti 31,p , ,
D. Saranin 82 , ,
G. Sarpis 59 , ,
M. Sarpis 75 , ,
A. Sarti 30 , ,
C. Satriano 30,o , ,
A. Satta 31 , ,
M. Saur 15 , ,
D. Savrina 41,40 , ,
H. Sazak 9 , ,
L.G. Scantlebury Smead 63 , ,
S. Schael 14 , ,
M. Schellenberg 15 , ,
M. Schiller 59 , ,
H. Schindler 48 , ,
M. Schmelling 16 , ,
B. Schmidt 48 , ,
O. Schneider 49 , ,
A. Schopper 48 , ,
M. Schubiger 32 , ,
S. Schulte 49 , ,
M.H. Schune 11 , ,
R. Schwemmer 48 , ,
B. Sciascia 23 , ,
S. Sellam 46 , ,
A. Semennikov 41 , ,
M. Senghi Soares 33 , ,
A. Sergi 24,48 , ,
N. Serra 50 , ,
L. Sestini 28 , ,
A. Seuthe 15 , ,
P. Seyfert 48 , ,
Y. Shang 5 , ,
D.M. Shangase 85 , ,
M. Shapkin 44 , ,
I. Shchemerov 82 , ,
L. Shchutska 49 , ,
T. Shears 60 , ,
L. Shekhtman 43,v , ,
Z. Shen 5 , ,
V. Shevchenko 80 , ,
E.B. Shields 26,j , ,
E. Shmanin 82 , ,
J.D. Shupperd 68 , ,
B.G. Siddi 21 , ,
R. Silva Coutinho 50 , ,
G. Simi 28 , ,
S. Simone 19,c , ,
N. Skidmore 62 , ,
T. Skwarnicki 68 , ,
M.W. Slater 53 , ,
I. Slazyk 21,f , ,
J.C. Smallwood 63 , ,
J.G. Smeaton 55 , ,
A. Smetkina 41 , ,
E. Smith 14 , ,
M. Smith 61 , ,
A. Snoch 32 , ,
M. Soares 20 , ,
L. Soares Lavra 9 , ,
M.D. Sokoloff 65 , ,
F.J.P. Soler 59 , ,
A. Solovev 38 , ,
I. Solovyev 38 , ,
F.L. Souza De Almeida 2 , ,
B. Souza De Paula 2 , ,
B. Spaan 15 , ,
E. Spadaro Norella 25,i , ,
P. Spradlin 59 , ,
F. Stagni 48 , ,
M. Stahl 65 , ,
S. Stahl 48 , ,
P. Stefko 49 , ,
O. Steinkamp 50,82 , ,
O. Stenyakin 44 , ,
H. Stevens 15 , ,
S. Stone 68 , ,
M.E. Stramaglia 49 , ,
M. Straticiuc 37 , ,
D. Strekalina 82 , ,
F. Suljik 63 , ,
J. Sun 27 , ,
L. Sun 73 , ,
Y. Sun 66 , ,
P. Svihra 62 , ,
P.N. Swallow 53 , ,
K. Swientek 34 , ,
A. Szabelski 36 , ,
T. Szumlak 34 , ,
M. Szymanski 48 , ,
S. Taneja 62 , ,
F. Teubert 48 , ,
E. Thomas 48 , ,
K.A. Thomson 60 , ,
V. Tisserand 9 , ,
S. T'Jampens 8 , ,
M. Tobin 4 , ,
L. Tomassetti 21,f , ,
D. Torres Machado 1 , ,
D.Y. Tou 13 , ,
M.T. Tran 49 , ,
E. Trifonova 82 , ,
C. Trippl 49 , ,
G. Tuci 29,n , ,
A. Tully 49 , ,
N. Tuning 32,48 , ,
A. Ukleja 36 , ,
D.J. Unverzagt 17 , ,
E. Ursov 82 , ,
A. Usachov 32 , ,
A. Ustyuzhanin 42,81 , ,
U. Uwer 17 , ,
A. Vagner 83 , ,
V. Vagnoni 20 , ,
A. Valassi 48 , ,
G. Valenti 20 , ,
N. Valls Canudas 84 , ,
M. van Beuzekom 32 , ,
M. Van Dijk 49 , ,
E. van Herwijnen 82 , ,
C.B. Van Hulse 18 , ,
M. van Veghel 78 , ,
R. Vazquez Gomez 46 , ,
P. Vazquez Regueiro 46 , ,
C. Vázquez Sierra 48 , ,
S. Vecchi 21 , ,
J.J. Velthuis 54 , ,
M. Veltri 22,r , ,
A. Venkateswaran 68 , ,
M. Veronesi 32 , ,
M. Vesterinen 56 , ,
D. Vieira 65 , ,
M. Vieites Diaz 49 , ,
H. Viemann 76 , ,
X. Vilasis-Cardona 84 , ,
E. Vilella Figueras 60 , ,
P. Vincent 13 , ,
G. Vitali 29 , ,
D. Vom Bruch 10 , ,
A. Vorobyev 38 , ,
V. Vorobyev 43,v , ,
N. Voropaev 38 , ,
R. Waldi 76 , ,
J. Walsh 29 , ,
C. Wang 17 , ,
J. Wang 5 , ,
J. Wang 4 , ,
J. Wang 3 , ,
J. Wang 73 , ,
M. Wang 3 , ,
R. Wang 54 , ,
Y. Wang 7 , ,
Z. Wang 50 , ,
Z. Wang 3 , ,
H.M. Wark 60 , ,
N.K. Watson 53 , ,
S.G. Weber 13 , ,
D. Websdale 61 , ,
C. Weisser 64 , ,
B.D.C. Westhenry 54 , ,
D.J. White 62 , ,
M. Whitehead 54 , ,
D. Wiedner 15 , ,
G. Wilkinson 63 , ,
M. Wilkinson 68 , ,
I. Williams 55 , ,
M. Williams 64 , ,
M.R.J. Williams 58 , ,
F.F. Wilson 57 , ,
W. Wislicki 36 , ,
M. Witek 35 , ,
L. Witola 17 , ,
G. Wormser 11 , ,
S.A. Wotton 55 , ,
H. Wu 68 , ,
K. Wyllie 48 , ,
Z. Xiang 6 , ,
D. Xiao 7 , ,
Y. Xie 7 , ,
A. Xu 5 , ,
J. Xu 6 , ,
L. Xu 3 , ,
M. Xu 7 , ,
Q. Xu 6 , ,
Z. Xu 5 , ,
Z. Xu 6 , ,
D. Yang 3 , ,
S. Yang 6 , ,
Y. Yang 6 , ,
Z. Yang 3 , ,
Z. Yang 66 , ,
Y. Yao 68 , ,
L.E. Yeomans 60 , ,
H. Yin 7 , ,
J. Yu 71 , ,
X. Yuan 68 , ,
O. Yushchenko 44 , ,
E. Zaffaroni 49 , ,
M. Zavertyaev 16,u , ,
M. Zdybal 35 , ,
O. Zenaiev 48 , ,
M. Zeng 3 , ,
D. Zhang 7 , ,
L. Zhang 3 , ,
S. Zhang 5 , ,
Y. Zhang 5 , ,
Y. Zhang 63 , ,
A. Zhelezov 17 , ,
Y. Zheng 6 , ,
X. Zhou 6 , ,
Y. Zhou 6 , ,
X. Zhu 3 , ,
V. Zhukov 14,40 , ,
J.B. Zonneveld 58 , ,
Q. Zou 4 , ,
S. Zucchelli 20,d , ,
D. Zuliani 28 , ,
G. Zunica 62 , ,
(LHCb Collaboration) , 1.Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2.Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3.Center for High Energy Physics, Tsinghua University, Beijing, China
4.Institute Of High Energy Physics (IHEP), Beijing, China
5.School of Physics State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
6.University of Chinese Academy of Sciences, Beijing, China
7.Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China
8.Univ. Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France
9.Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
10.Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
11.Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
12.Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
13.LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
14.I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
15.Fakult?t Physik, Technische Universit?t Dortmund, Dortmund, Germany
16.Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
17.Physikalisches Institut, Ruprecht-Karls-Universit?t Heidelberg, Heidelberg, Germany
18.School of Physics, University College Dublin, Dublin, Ireland
19.INFN Sezione di Bari, Bari, Italy
20.INFN Sezione di Bologna, Bologna, Italy
21.INFN Sezione di Ferrara, Ferrara, Italy
22.INFN Sezione di Firenze, Firenze, Italy
23.INFN Laboratori Nazionali di Frascati, Frascati, Italy
24.INFN Sezione di Genova, Genova, Italy
25.INFN Sezione di Milano, Milano, Italy
26.INFN Sezione di Milano-Bicocca, Milano, Italy
27.INFN Sezione di Cagliari, Monserrato, Italy
28.Universita degli Studi di Padova, Universita e INFN, Padova, Padova, Italy
29.INFN Sezione di Pisa, Pisa, Italy
30.INFN Sezione di Roma La Sapienza, Roma, Italy
31.INFN Sezione di Roma Tor Vergata, Roma, Italy
32.Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
33.Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands
34.AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
35.Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
36.National Center for Nuclear Research (NCBJ), Warsaw, Poland
37.Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
38.Petersburg Nuclear Physics Institute NRC Kurchatov Institute (PNPI NRC KI), Gatchina, Russia
39.Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia
40.Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
41.Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia
42.Yandex School of Data Analysis, Moscow, Russia
43.Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
44.Institute for High Energy Physics NRC Kurchatov Institute (IHEP NRC KI), Protvino, Russia, Protvino, Russia
45.ICCUB, Universitat de Barcelona, Barcelona, Spain
46.Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
47.Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain
48.European Organization for Nuclear Research (CERN), Geneva, Switzerland
49.Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
50.Physik-Institut, Universit?t Zürich, Zürich, Switzerland
51.NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
52.Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
53.University of Birmingham, Birmingham, United Kingdom
54.H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
55.Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
56.Department of Physics, University of Warwick, Coventry, United Kingdom
57.STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
58.School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
59.School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
60.Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
61.Imperial College London, London, United Kingdom
62.Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
63.Department of Physics, University of Oxford, Oxford, United Kingdom
64.Massachusetts Institute of Technology, Cambridge, MA, United States
65.University of Cincinnati, Cincinnati, OH, United States
66.University of Maryland, College Park, MD, United States
67.Los Alamos National Laboratory (LANL), Los Alamos, United States
68.Syracuse University, Syracuse, NY, United States
69.School of Physics and Astronomy, Monash University, Melbourne, Australia, associated to
56 70.Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to
2 71.Physics and Micro Electronic College, Hunan University, Changsha City, China, associated to
7 72.Guangdong Provencial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou, China, associated to
3 73.School of Physics and Technology, Wuhan University, Wuhan, China, associated to
3 74.Departamento de Fisica, Universidad Nacional de Colombia, Bogota, Colombia, associated to
13 75.Universit?t Bonn - Helmholtz-Institut für Strahlen und Kernphysik, Bonn, Germany, associated to
17 76.Institut für Physik, Universit?t Rostock, Rostock, Germany, associated to
17 77.INFN Sezione di Perugia, Perugia, Italy, associated to
21 78.Van Swinderen Institute, University of Groningen, Groningen, Netherlands, associated to
32 79.Universiteit Maastricht, Maastricht, Netherlands, associated to
32 80.National Research Centre Kurchatov Institute, Moscow, Russia, associated to
41 81.National Research University Higher School of Economics, Moscow, Russia, associated to
42 82.National University of Science and Technology “MISIS”, Moscow, Russia, associated to
41 83.National Research Tomsk Polytechnic University, Tomsk, Russia, associated to
41 84.DS4DS, La Salle, Universitat Ramon Llull, Barcelona, Spain, associated to
45 85.University of Michigan, Ann Arbor, United States, associated to
68 a.Universidade Federal do Triangulo Mineiro (UFTM), Uberaba-MG, Brazil
b.Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
c.Università di Bari, Bari, Italy
d.Università di Bologna, Bologna, Italy
e.Università di Cagliari, Cagliari, Italy
f.Università di Ferrara, Ferrara, Italy
g.Università di Firenze, Firenze, Italy
h.Università di Genova, Genova, Italy
i.Università degli Studi di Milano, Milano, Italy
j.Università di Milano Bicocca, Milano, Italy
k.Università di Modena e Reggio Emilia, Modena, Italy
l.Università di Padova, Padova, Italy
m.Scuola Normale Superiore, Pisa, Italy
n.Università di Pisa, Pisa, Italy
o.Università della Basilicata, Potenza, Italy
p.Università di Roma Tor Vergata, Roma, Italy
q.Università di Siena, Siena, Italy
r.Università di Urbino, Urbino, Italy
s.MSU - Iligan Institute of Technology (MSU-IIT), Iligan, Philippines
t.AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland
u.P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
v.Novosibirsk State University, Novosibirsk, Russia
w.Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
x.Hanoi University of Science, Hanoi, Vietnam
Received Date: 2021-05-27
Available Online: 2021-09-15
Abstract: The first search for the doubly heavy
$ {{{{\varOmega}_{bc}^{0}}}} $ baryon and a search for the
$ {{{{\varXi}_{bc}^{0}}}} $ baryon are performed using
$ pp $ collision data collected via the
$ {\rm{LHCb}} $ experiment from 2016 to 2018 at a centre-of-mass energy of
$ 13 \;{\rm{TeV}} $ , corresponding to an integrated luminosity of 5.2
$ \;{\rm{f}}{{\rm{b}}^{ - 1}} $ . The baryons are reconstructed via their decays to
$ {{{{\varLambda}^+_c}}} {{{{\pi}^-}}} $ and
$ {{{{\varXi}^+_c}}} {{{{\pi}^-}}} $ . No significant excess is found for invariant masses between 6700 and 7300
$ \;{\rm{MeV}}/{c^2} $ , in a rapidity range from 2.0 to 4.5 and a transverse momentum range from 2 to 20
$ \;{\rm{MeV}}/{c} $ . Upper limits are set on the ratio of the
$ {{{{\varOmega}_{bc}^{0}}}} $ and
$ {{{{\varXi}_{bc}^{0}}}} $ production cross-section times the branching fraction to
$ {{{{\varLambda}^+_c}}}{{{{\pi}^-}}} $ (
$ {{{{\varXi}^+_c}}}{{{{\pi}^-}}} $ ) relative to that of the
$ {{{{\varLambda}^0_b}}} $ (
$ {{{{\varXi}_{b}^{0}}}} $ ) baryon, for different lifetime hypotheses, at 95% confidence level. The upper limits range from
$ 0.5\times10^{-4} $ to
$ 2.5\times10^{-4} $ for the
$ {{{{{{{{\varOmega}_{bc}^{0}}}}{{\rightarrow }}{{{{\varLambda}^+_c}}}{{{{\pi}^-}}}}}}} $ (
$ {{{{{{{{\varXi}_{bc}^{0}}}}{{\rightarrow }}{{{{\varLambda}^+_c}}}{{{{\pi}^-}}}}}}} $ ) decay, and from
$ 1.4\times10^{-3} $ to
$ 6.9\times10^{-3} $ for the
$ {{{{{{{{\varOmega}_{bc}^{0}}}}{{\rightarrow }}{{{{\varXi}^+_c}}}{{{{\pi}^-}}}}}}} $ (
$ {{{{{{{{\varXi}_{bc}^{0}}}}{{\rightarrow }}{{{{\varXi}^+_c}}}{{{{\pi}^-}}}}}}} $ ) decay, depending on the considered mass and lifetime of the
$ {{{{\varOmega}_{bc}^{0}}}} $ (
$ {{{{\varXi}_{bc}^{0}}}} $ ) baryon.
HTML --> --> --> I.INTRODUCTION The constituent quark model was initially proposed by Murray Gell-Mann [1 ] and George Zweig [2 ] for classification of hadrons formed from light quarks (u , d , s ) and understanding their quantum numbers. It was later extended to hadrons containing heavy c or b quarks [3 ]. In addition to baryons containing a single heavy quark, the theory also predicts baryons comprising two heavy quarks. Such doubly heavy baryons provide a unique probe for quantum chromodynamics, the gauge theory of strong interactions. In 2017, the $ {\rm{LHCb}} $![]()
![]()
collaboration reported the first observation of the $ {{{{\varXi}^{++}_{cc}}}} $![]()
![]()
baryon containing two charm quarks through the decay $ {{{{\varXi}^{++}_{cc}}}}{{\rightarrow }} {{{{\varLambda}^+_c}}}{{{K^-}}}{{{{\pi}^+}}}{{{{\pi}^+}}} $![]()
![]()
[4 ].① The $ {{{{\varXi}^{++}_{cc}}}} $![]()
![]()
state was later confirmed in the decay to $ {{{{\varXi}^+_c}}}{{{{\pi}^+}}} $![]()
![]()
[5 ]. Its lifetime, mass and production cross-section were subsequently measured [6 -8 ]. To date, no baryons containing one b and one c quark, or two b quarks, have been observed experimentally. An observation would enrich our knowledge of baryon spectroscopy and improve our understanding of the quark structure inside baryons. The ground-state baryons containing one b and one c quark, the $ {{{{\varOmega}_{bc}^{0}}}} $![]()
![]()
($ b cs $![]()
![]()
), $ {{{{\varXi}_{bc}^{0}}}} $![]()
![]()
($ bcd $![]()
![]()
) and $ {{{{\varXi}_{bc}^{+}}}} $![]()
![]()
($ b c u $![]()
![]()
) states, have been considered within various theoretical models. Most studies predict the masses of the $ {{{{\varOmega}_{bc}^{0}}}} $![]()
![]()
and $ {{{{\varXi}_{bc}^{0}}}} $![]()
![]()
baryons to be between 6700 and 7200$ \;{\rm{MeV}}/{c^2} $![]()
![]()
[9 -25 ]. The lifetime of the $ {{{{\varOmega}_{bc}^{0}}}} $![]()
![]()
baryon is predicted to be $ 0.22\pm0.04\;{\rm{ps}} $![]()
![]()
[14 ], while the lifetime of $ {{{{\varXi}_{bc}^{0}}}} $![]()
![]()
is predicted to be in the range of 0.09 to 0.28$ \;{\rm{ps}} $![]()
![]()
[14 , 23 , 26 , 27 ]. The production cross-section of the $ {{{{\varXi}_{bc}^{0}}}} $![]()
![]()
baryon in proton-proton ($ pp $![]()
![]()
) collisions at a centre-of-mass energy $ \sqrt{s} = $![]()
![]()
14 TeV is expected to lie in the range between 19 to 39$\;{\rm{nb}} $![]()
![]()
, derived from Ref. [28 ], in the $ {{{{\varXi}_{bc}^{0}}}} $![]()
![]()
pseudorapidity ($ \eta $![]()
![]()
) range of $ 1.9 <\eta< 4.9 $![]()
![]()
, depending on the required minimum value of the momentum component transverse to the beam direction ($ {{p_{\rm{T}}}} $![]()
![]()
) of the $ {{{{\varXi}_{bc}^{0}}}} $![]()
![]()
particle. Recently, the $ {\rm{LHCb}} $![]()
![]()
experiment found no significant $ {{{{\varXi}_{bc}^{0}}}} $![]()
![]()
baryon signal in the predicted mass range using the $ {{{{\varXi}_{bc}^{0}}}}{{\rightarrow }} D^0 p{{{K^-}}} $![]()
![]()
decay mode [29 ]. This article reports the first search for the $ {{{{\varOmega}_{bc}^{0}}}} $![]()
![]()
baryon and a new search for the $ {{{{\varXi}_{bc}^{0}}}} $![]()
![]()
baryon, both via decay chains $ {{{{\varLambda}^+_c}}}{{{{\pi}^-}}} $![]()
![]()
with $ {{{{\varLambda}^+_c}}}{{\rightarrow }}p{{{K^-}}}{{{{\pi}^+}}} $![]()
![]()
or $ {{{{\varXi}^+_c}}}{{{{\pi}^-}}} $![]()
![]()
with $ {{{{\varXi}^+_c}}}{{\rightarrow }}p{{{K^-}}}{{{{\pi}^+}}} $![]()
![]()
in the $ {\rm{LHCb}} $![]()
![]()
experiment. Examples of Feynman diagrams of the four signal decay modes are shown in Fig. 1 . There are few theoretical predictions on the branching fractions of these decay modes. Ref. [30 ] predicts the branching fractions of the $ {{{{{{{{\varOmega}_{bc}^{0}}}}{{\rightarrow }}{{{{\varXi}^+_c}}}{{{{\pi}^-}}}}}}} $![]()
![]()
and $ {{{{{{{{\varXi}_{bc}^{0}}}}{{\rightarrow }}{{{{\varLambda}^+_c}}}{{{{\pi}^-}}}}}}} $![]()
![]()
decays to be $ 1.6\times10^{-7} $![]()
![]()
and $ 3.0\times10^{-7} $![]()
![]()
, respectively. However, uncertainties are not quoted. Inputs from experimental studies are necessary to deepen our understanding of the properties of $ {{{{\varOmega}_{bc}^{0}}}} $![]()
![]()
and $ {{{{\varXi}_{bc}^{0}}}} $![]()
![]()
baryons, and can provide valuable reference for future searches. Besides, the distinct experimental signatures of these decays make it promising to search for them in the $ {\rm{LHCb}} $![]()
![]()
experiment considering the high detection efficiency of the $ {\rm{LHCb}} $![]()
![]()
detector. Figure1. Examples of Feynman diagrams for the $ {{{{{{{\varOmega}_{bc}^{0}}}}{{\rightarrow }}{{{{\varLambda}^+_c}}}{{{{\pi}^-}}}}}} $![]()
![]()
, $ {{{{{{{\varOmega}_{bc}^{0}}}}{{\rightarrow }}{{{{\varXi}^+_c}}}{{{{\pi}^-}}}}}} $![]()
![]()
, $ {{{{{{{\varXi}_{bc}^{0}}}}{{\rightarrow }}{{{{\varLambda}^+_c}}}{{{{\pi}^-}}}}}} $![]()
![]()
and $ {{{{{{{\varXi}_{bc}^{0}}}}{{\rightarrow }}{{{{\varXi}^+_c}}}{{{{\pi}^-}}}}}} $![]()
![]()
decays. The $ {{{{\varOmega}_{bc}^{0}}}} $![]()
![]()
and $ {{{{\varXi}_{bc}^{0}}}} $![]()
![]()
baryons are not differentiated and are collectively denoted as $ {{{H_{bc}^{0}}}} $![]()
![]()
hereafter, unless otherwise stated. The production cross-section times branching fraction of $H_{bc}^{0} \rightarrow \varLambda^+_c \pi^- $![]()
![]()
$ { ({{{{{{H_{bc}^{0}}}} {{\rightarrow }}{{{{\varXi}^+_c}}}{{{{\pi}^-}}}}}})} $![]()
![]()
decay is measured relative to that of the control channel $ {{{{{{{{\varLambda}^0_b}}}{{\rightarrow }}{{{{\varLambda}^+_c}}}{{{{\pi}^-}}}}}} ({{{{{{{\varXi}_{b}^{0}}}}{{\rightarrow }}{{{{\varXi}^+_c}}}{{{{\pi}^-}}}}}})} $![]()
![]()
. This takes advantage of identical final-state particles and similar topology. The search is performed in the mass range between $ 6700 $![]()
![]()
and $ 7300 \;{\rm{MeV}}/{c^2} $![]()
![]()
using the $ pp $![]()
![]()
collision data collected with the $ {\rm{LHCb}} $![]()
![]()
experiment at $ {{\sqrt{s}}} = 13 \;{\rm{TeV}} $![]()
![]()
, corresponding to an integrated luminosity of $ 5.2\;{\rm{f}}{{\rm{b}}^{ - 1}} $![]()
![]()
. The $ {{{H_{bc}^{0}}}} $![]()
![]()
baryons are reconstructed in the fiducial region of rapidity (y ) between $ 2.0 $![]()
![]()
and $ 4.5 $![]()
![]()
and with $ {{p_{\rm{T}}}} $![]()
![]()
between $ 2 $![]()
![]()
and $ 20 \;{\rm{MeV}}/{c} $![]()
![]()
.II.DETECTOR AND SIMULATION The $ {\rm{LHCb}} $![]()
![]()
detector [31 , 32 ] is a single-arm forward spectrometer covering the $ {\rm{pseudorapidity}} $![]()
![]()
range $ 2<\eta <5 $![]()
![]()
, designed for the study of particles containing b or c quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the $ pp $![]()
![]()
interaction region [33 ], a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of approximately $ 4\;{\rm{Tm}} $![]()
![]()
, and three stations of silicon-strip detectors and straw drift tubes [34 ] placed downstream of the magnet. The tracking system provides a measurement of the momentum, p , of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200$ \;{\rm{MeV}}/{c} $![]()
![]()
. The minimum distance of a track to a primary $ pp $![]()
![]()
collision vertex (PV), the impact parameter (IP), is measured with a resolution of $(15+29/{{p_{\rm{T}}}})\;\mu {\rm{m}}$![]()
![]()
, where $ {{p_{\rm{T}}}} $![]()
![]()
is in $ {\rm{MeV}}/{c} $![]()
![]()
. Different types of charged hadrons are distinguished using information from two ring-imaging Cherenkov detectors [35 ]. Photons, electrons, and hadrons are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, and an electromagnetic and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers [36 ]. The online event selection is performed by a trigger [37 ], which consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction. At the hardware trigger stage, events are required to have at least one hadron with $ {{E_{\rm{T}}}} $![]()
![]()
larger than 3.5$ \;{\rm{GeV}} $![]()
![]()
. The software trigger requires a two-, three-, or four-track secondary vertex with a significant displacement from any PV. At least one charged particle must have $ {{p_{\rm{T}}}} > 1.6 \;{\rm{MeV}}/{c} $![]()
![]()
and be inconsistent with originating from any PV. A multivariate algorithm [38 , 39 ] is used for the identification of secondary vertices consistent with the decay of a b hadron. Simulated samples are produced to model the effects of the detector acceptance and the imposed selection requirements. In the simulation, $ pp $![]()
![]()
collisions are generated using $ {\mathsf{PYTHIA}} $![]()
![]()
[40 , 41 ] with a specific $ {\rm{LHCb}} $![]()
![]()
configuration [42 ]. A dedicated generator, $ {\mathsf{GENXICC2.0}} $![]()
![]()
, is used to simulate the $ {{{H_{bc}^{0}}}} $![]()
![]()
baryon production [43 ], with the mass and lifetime of the $ {{{H_{bc}^{0}}}} $![]()
![]()
baryon set to $m({{{H_{bc}^{0}}}}) = 6900 $![]()
![]()
$ \;{\rm{MeV}}/{c^2}$![]()
![]()
and $ \tau({{{H_{bc}^{0}}}}) = 0.4\;{\rm{ps}} $![]()
![]()
. Simulation samples with different mass (6700–7300$ \;{\rm{MeV}}/{c^2} $![]()
![]()
) and lifetime (0.2–0.4$ \;{\rm{ps}} $![]()
![]()
) hypotheses are obtained using a weighting technique with the generator level information on signal. Decays of unstable particles are described by $ {{\mathsf{EVTGEN}}} $![]()
![]()
[44 ], in which final-state radiation is generated using $ {{\mathsf{PHOTOS}}} $![]()
![]()
[45 ]. The interaction of the generated particles with the detector, and its response, is implemented using the $ {{\mathsf{GEANT4}}} $![]()
![]()
toolkit [46 , 47 ] as described in Ref. [48 ]. For the two control channels, $ {{{{{{{{\varLambda}^0_b}}}{{\rightarrow }}{{{{\varLambda}^+_c}}}{{{{\pi}^-}}}}}}} $![]()
![]()
and $ {{{{{{{{\varXi}_{b}^{0}}}}{{\rightarrow }}{{{{\varXi}^+_c}}}{{{{\pi}^-}}}}}}} $![]()
![]()
, $ {\mathsf{PYTHIA}} $![]()
![]()
is used to simulate the $ pp $![]()
![]()
collisions and the production of the $ {{{{\varLambda}^0_b}}} $![]()
![]()
and $ {{{{\varXi}_{b}^{0}}}} $![]()
![]()
baryons.III.RECONSTRUCTION AND SELECTION For both the $ {{{H_{bc}^{0}}}} $![]()
![]()
signal and the control channels, the $ {{{{\varLambda}^+_c}}}, {{{{\varXi}^+_c}}}{{\rightarrow }} p{{{K^-}}} {{{{\pi}^+}}} $![]()
![]()
candidates are reconstructed from three charged particles identified as a proton, kaon and pion, respectively. The tracks are required to have good quality, and to be inconsistent with originating from any PV in the event. The tracks must also form a common vertex of good fit quality. The $ {{{{\varLambda}^+_c}}} $![]()
![]()
($ {{{{\varXi}^+_c}}} $![]()
![]()
) candidate is required to have an invariant mass in the range 2271–2301$ \;{\rm{MeV}}/{c^2} $![]()
![]()
(2450–2488$ \;{\rm{MeV}}/{c^2} $![]()
![]()
), corresponding to approximately six times the $ {{{{\varLambda}^+_c}}} $![]()
![]()
($ {{{{\varXi}^+_c}}} $![]()
![]()
) mass resolution, and to be inconsistent with originating from any PV. In the sample of selected $ {{{{\varLambda}^+_c}}} $![]()
![]()
($ {{{{\varXi}^+_c}}} $![]()
![]()
) candidates, there is a sizable background contamination from decays of other particles, such as $ {{{D^+}}} $![]()
![]()
($ {{{D^+_s}}} $![]()
![]()
) decays to $ {{{K^-}}}{{{{\pi}^+}}}{{{{\pi}^+}}} $![]()
![]()
($ {{{K^-}}}{{{K^+}}}{{{{\pi}^+}}} $![]()
![]()
) with a charged pion (kaon) misidentified as a proton, and background from $ \phi{{{{\pi}^+}}} $![]()
![]()
combinations where in $ \phi{{\rightarrow }}{{{K^-}}}{{{K^+}}} $![]()
![]()
decays a kaon is misidentified as a proton. Such background candidates are rejected if the $ {{{K^-}}}{{{{\pi}^+}}}{{{{\pi}^+}}} $![]()
![]()
, $ {{{K^-}}}{{{K^+}}}{{{{\pi}^+}}} $![]()
![]()
or $ {{{K^-}}}{{{K^+}}} $![]()
![]()
invariant mass is consistent with the known $ {{{D^+}}} $![]()
![]()
, $ {{{D^+_s}}} $![]()
![]()
or $ \phi $![]()
![]()
mass [49 ], respectively, when a charged pion (kaon) hypothesis is assigned to the proton candidate. An additional charged particle identified as a pion and, with $ {{p_{\rm{T}}}} $![]()
![]()
greater than 0.2$ \;{\rm{MeV}}/{c} $![]()
![]()
, is combined with the $ {{{{\varLambda}^+_c}}} $![]()
![]()
($ {{{{\varXi}^+_c}}} $![]()
![]()
) candidate to form an $ {{{H_{bc}^{0}}}} $![]()
![]()
candidate. The $ {{{H_{bc}^{0}}}} $![]()
![]()
candidates must have a vertex with good fit quality, a decay time larger than 0.05$ \;{\rm{ps}} $![]()
![]()
, a $ {{p_{\rm{T}}}} $![]()
![]()
greater than 2$ \;{\rm{MeV}}/{c} $![]()
![]()
and a scalar sum of the $ {{p_{\rm{T}}}} $![]()
![]()
of the final-state particles greater than 5$ \;{\rm{MeV}}/{c} $![]()
![]()
. Furthermore, the $ {{{H_{bc}^{0}}}} $![]()
![]()
candidates are required to be consistent with originating from a PV. To avoid contributions from duplicate tracks, the selected candidates are rejected if the angle between any pair of the final-state particle tracks with same charge is smaller than 0.5$ {{\rm{\,{mrad}}}} $![]()
![]()
. A boosted decision tree (BDT) classifier [50 , 51 ] implemented in the TMVA toolkit [52 , 53 ] is used to further suppress combinatorial background. A simulated signal sample in the mass range 6846–6954$ \;{\rm{MeV}}/{c^2} $![]()
![]()
and a background sample formed by candidates in an upper mass sideband region (7500–9000$ \;{\rm{MeV}}/{c^2} $![]()
![]()
) are used to train the BDT classifier. Four different categories of variable are used as the BDT input. The first category exploits the non-zero lifetime of $ {{{H_{bc}^{0}}}} $![]()
![]()
baryons and a displacement of their vertices from any PV in the event. The variables comprise the $ {\chi^2_{\rm{IP}}} $![]()
![]()
of all final-state particles forming the $ {{{{\varLambda}^+_c}}} $![]()
![]()
($ {{{{\varXi}^+_c}}} $![]()
![]()
) and $ {{{H_{bc}^{0}}}} $![]()
![]()
candidates with respect to their associated PV, where $ {\chi^2_{\rm{IP}}} $![]()
![]()
is defined as the difference in the vertex-fit $ {\chi^2} $![]()
![]()
of a given PV reconstructed with and without the particle under consideration, and the associated PV is the one with respect to which the $ {{{H_{bc}^{0}}}} $![]()
![]()
candidate has the smallest $ {\chi^2_{\rm{IP}}} $![]()
![]()
; the sum of $ {\chi^2_{\rm{IP}}} $![]()
![]()
of the four final-state particles; and $ {\chi^2} $![]()
![]()
of the flight distance of the $ {{{{\varLambda}^+_c}}} $![]()
![]()
($ {{{{\varXi}^+_c}}} $![]()
![]()
) and $ {{{H_{bc}^{0}}}} $![]()
![]()
candidates. The second category consists of kinematic variables, including $ {{p_{\rm{T}}}} $![]()
![]()
of the final-state particles and the $ {{{{\varLambda}^+_c}}} $![]()
![]()
($ {{{{\varXi}^+_c}}} $![]()
![]()
) and $ {{{H_{bc}^{0}}}} $![]()
![]()
candidates, and the angle between the $ {{{H_{bc}^{0}}}} $![]()
![]()
momentum vector and the displacement vector pointing from the associated PV to the $ {{{H_{bc}^{0}}}} $![]()
![]()
decay vertex. The third category comprises the vertex-fit $ {\chi^2} $![]()
![]()
of the $ {{{{\varLambda}^+_c}}} $![]()
![]()
($ {{{{\varXi}^+_c}}} $![]()
![]()
) and $ {{{H_{bc}^{0}}}} $![]()
![]()
candidates, and $ {\chi^2} $![]()
![]()
of a kinematic fit [54 ] of the signal decay chain constraining the $ {{{H_{bc}^{0}}}} $![]()
![]()
candidate to originate from the associated PV. The fourth category consists of identification variables of the final-state particles. The BDT threshold is chosen to maximize the figure of merit, $ \varepsilon/(\dfrac{\alpha}{2} + \sqrt{B}) $![]()
![]()
[55 ]. Here, $ \varepsilon $![]()
![]()
is the selection efficiency of signal candidates determined from simulation, B is the expected background number in the signal mass region, and $ \alpha = 5 $![]()
![]()
is the signal significance. This threshold is estimated using the signal sample simulated with the default mass and lifetime values. The same selection is applied to the control modes.IV.YIELD DETERMINATION To improve the resolution of the mass of the $ {{{H_{bc}^{0}}}} $![]()
![]()
candidates, the $ {{{{\varLambda}^+_c}}}{{{{\pi}^-}}} $![]()
![]()
($ {{{{\varXi}^+_c}}}{{{{\pi}^-}}} $![]()
![]()
) invariant mass is calculated after constraining the $ {{{{\varLambda}^+_c}}} $![]()
![]()
($ {{{{\varXi}^+_c}}} $![]()
![]()
) mass to its known value [49 ] and requiring the $ {{{H_{bc}^{0}}}} $![]()
![]()
candidate to be consistent with originating from its associated PV. The obtained invariant mass distributions of $ {{{H_{bc}^{0}}}} $![]()
![]()
candidates, $ m({{{{\varLambda}^+_c}}}{{{{\pi}^-}}}) $![]()
![]()
and $ m({{{{\varXi}^+_c}}}{{{{\pi}^-}}}) $![]()
![]()
, are shown in Fig. 2 . To search for the $ {{{H_{bc}^{0}}}} $![]()
![]()
signals, the mass distributions are fitted using an unbinned maximum-likelihood fit. A double-sided Crystal Ball function [56 ] is used to model the signal, with tail parameters fixed from simulation, and the peak position and width allowed to vary in the fit. The background shape is interpolated from a double-exponential fit to a lower (6100–6650$ \;{\rm{MeV}}/{c^2} $![]()
![]()
) and an upper (7500–9000$ \;{\rm{MeV}}/{c^2} $![]()
![]()
) sideband region of the $ {{{{\varLambda}^+_c}}}{{{{\pi}^-}}} $![]()
![]()
($ {{{{\varXi}^+_c}}}{{{{\pi}^-}}} $![]()
![]()
) mass distribution. No significant excess is observed across the searched mass range. Figure2. (color online) Invariant mass distributions of selected (left) $ {{{{{{H_{bc}^{0}}}} {{\rightarrow }}{{{{\varLambda}^+_c}}}{{{{\pi}^-}}}}}} $![]()
![]()
and (right) $ {{{{{{H_{bc}^{0}}}} {{\rightarrow }}{{{{\varXi}^+_c}}}{{{{\pi}^-}}}}}} $![]()
![]()
candidates (black points), together with results of the background only fit (brown dashed line). The $ {{{{\varLambda}^+_c}}}{{{{\pi}^-}}} $![]()
![]()
and $ {{{{\varXi}^+_c}}}{{{{\pi}^-}}} $![]()
![]()
invariant mass distributions of the selected $ {{{{{{{{\varLambda}^0_b}}}{{\rightarrow }}{{{{\varLambda}^+_c}}}({{\rightarrow }}\ p {{{K^-}}} {{{{\pi}^+}}}){{{{\pi}^-}}}}}}} $![]()
![]()
and $ {{{{{{{{\varXi}_{b}^{0}}}}{{\rightarrow }} {{{{\varXi}^+_c}}}({{\rightarrow }} $![]()
![]()
$ \ p {{{K^-}}} {{{{\pi}^+}}}){{{{\pi}^-}}}}}}} $![]()
![]()
candidates are shown in Fig. 3 . The yields are obtained from unbinned maximum-likelihood fits to the invariant mass distributions, using the fit model described above. The yields are determined to be $ 191\,000\pm 500 $![]()
![]()
and $ 5\,490\pm 80 $![]()
![]()
for $ {{{{{{{{\varLambda}^0_b}}}{{\rightarrow }}{{{{\varLambda}^+_c}}}({{\rightarrow }}\ p {{{K^-}}} {{{{\pi}^+}}}){{{{\pi}^-}}}}}}} $![]()
![]()
and $ {{{{{{{{\varXi}_{b}^{0}}}}{{\rightarrow }}{{{{\varXi}^+_c}}}({{\rightarrow }}\ p {{{K^-}}} {{{{\pi}^+}}}){{{{\pi}^-}}}}}}} $![]()
![]()
, respectively. Figure3. (color online) Invariant mass distributions of (left) $ {{{{{{{\varLambda}^0_b}}}{{\rightarrow }}{{{{\varLambda}^+_c}}}({{\rightarrow }}\ p {{{K^-}}} {{{{\pi}^+}}}){{{{\pi}^-}}}}}} $![]()
![]()
and (right) $ {{{{{{{\varXi}_{b}^{0}}}}{{\rightarrow }}{{{{\varXi}^+_c}}}({{\rightarrow }}\ p {{{K^-}}} {{{{\pi}^+}}}){{{{\pi}^-}}}}}} $![]()
![]()
candidates with the fit results overlaid (blue solid line). The black points represent the data, the red dashed line represents the signal contribution, and the gray dashed line represents the combinatorial background. V.RATIO OF PRODUCTION CROSS-SECTIONS The ratio $ \cal{R} $![]()
![]()
of the $ {{{H_{bc}^{0}}}} $![]()
![]()
baryon production cross-section multiplied by the branching fraction of the $ {{{{{{H_{bc}^{0}}}} {{\rightarrow }}{{{{\varLambda}^+_c}}}{{{{\pi}^-}}}}}} ({{{{{{H_{bc}^{0}}}} {{\rightarrow }}{{{{\varXi}^+_c}}}{{{{\pi}^-}}}}}})$![]()
![]()
decay relative to that of the $ {{{{\varLambda}^0_b}}} $![]()
![]()
($ {{{{\varXi}_{b}^{0}}}} $![]()
![]()
) baryon can be written as where N and $ \varepsilon $![]()
![]()
are the signal yield and the efficiency for the corresponding decay modes, respectively. The efficiency accounts for the geometrical acceptance, trigger, reconstruction, and event selection. The $ \cal{R} $![]()
![]()
is determined in the fiducial region $ 2<y<4.5 $![]()
![]()
and $ 2<{{p_{\rm{T}}}}<20 \;{\rm{MeV}}/{c} $![]()
![]()
. Efficiencies are determined from the simulated samples. The $ {{p_{\rm{T}}}} $![]()
![]()
distributions of $ {{{{\varLambda}^0_b}}} $![]()
![]()
and $ {{{{\varXi}_{b}^{0}}}} $![]()
![]()
baryons are not well modeled in simulation. To improve the description, a gradient boosted weighting method [57 ] is used to apply a kinematic correction on the $ {{p_{\rm{T}}}} $![]()
![]()
distributions of the $ {{{{\varLambda}^0_b}}} $![]()
![]()
and $ {{{{\varXi}_{b}^{0}}}} $![]()
![]()
decay products of the simulated control samples. With this correction, a good agreement on the $ {{{{\varLambda}^0_b}}} $![]()
![]()
and $ {{{{\varXi}_{b}^{0}}}} $![]()
![]()
$ {{p_{\rm{T}}}} $![]()
![]()
distribution is seen between the data and simulation. The track detection and particle identification efficiencies are calibrated with the data [58 -60 ]. The imperfect modeling of input variables used in the BDT training can bias the efficiency estimation. To suppress such effects, ratios between the BDT response distribution of the background-subtracted data sample and that of the simulated sample are calculated using the control channel. The background subtraction is performed using the $ {sPlot} $![]()
![]()
method [61 ] with $ m({{{{\varLambda}^+_c}}}{{{{\pi}^-}}}) $![]()
![]()
and $ m({{{{\varXi}^+_c}}}{{{{\pi}^-}}}) $![]()
![]()
as discriminating variables. These ratios are applied as correction weights to the simulated samples for all reconstructed decay modes. The total efficiency ratio $ \varepsilon({{{{\varLambda}^0_b}}})/\varepsilon({{{H_{bc}^{0}}}}) $![]()
![]()
is determined to be $ 3.18\pm0.05 $![]()
![]()
, and $ \varepsilon({{{{\varXi}_{b}^{0}}}})/\varepsilon({{{H_{bc}^{0}}}}) $![]()
![]()
is calculated to be $ 3.00\pm0.02 $![]()
![]()
for $ m({{{H_{bc}^{0}}}}) = 6900 \;{\rm{MeV}}/{c^2} $![]()
![]()
and $ \tau({{{H_{bc}^{0}}}}) = 0.4\;{\rm{ps}} $![]()
![]()
. The efficiency is larger for the control mode, mainly due to the longer lifetime of the $ {{{{\varLambda}^0_b}}} $![]()
![]()
and $ {{{{\varXi}_{b}^{0}}}} $![]()
![]()
baryons. The efficiency depends on the mass and lifetime hypotheses of the $ {{{H_{bc}^{0}}}} $![]()
![]()
state, and is evaluated from simulation. The kinematic properties of the fully simulated samples are weighted to match those of the generator-level sample to calculate the efficiency for different $ {{{H_{bc}^{0}}}} $![]()
![]()
mass and lifetime assumptions.VI.SYSTEMATIC UNCERTAINTIES Various sources of systematic uncertainties on $ {\cal{R}} $![]()
![]()
are estimated and combined in quadrature. The effect of imperfect description of the mass distributions on the yield estimates is studied using alternative signal and background models. For the signal model, the Hypatia [62 ] function is used instead of the nominal double-sided Crystal Ball function. For the background model of the control modes, the nominal double-exponential function is replaced by a first-order polynomial function. As the background model for the $ {{{H_{bc}^{0}}}} $![]()
![]()
decay modes is interpolated from the sidebands, its uncertainty is evaluated by both replacing the nominal function with an exponential function and varying the sideband regions. The largest deviation with respect to the nominal result is taken as the corresponding uncertainty. In total, the associated systematic uncertainty is estimated to be 0.1% and 0.9% for $ {{{{{{{H_{bc}^{0}}}} {{\rightarrow }}{{{{\varLambda}^+_c}}}{{{{\pi}^-}}}}}}} $![]()
![]()
and $ {{{{{{{H_{bc}^{0}}}} {{\rightarrow }}{{{{\varXi}^+_c}}}{{{{\pi}^-}}}}}}} $![]()
![]()
decays, respectively. In the $ {\cal{R}} $![]()
![]()
ratios, systematic uncertainties arising from the track detection efficiency largely cancel, and the uncertainty due to limited size of simulation samples is determined to be 1.6% (0.7%) on $ {\cal{R}} ({{{{\varLambda}^+_c}}}{{{{\pi}^-}}}) $![]()
![]()
($ {\cal{R}} ({{{{\varXi}^+_c}}}{{{{\pi}^-}}}) $![]()
![]()
). The particle identification efficiency is determined in bins of particle momentum, pseudorapidity, and track multiplicity using control channels in the data [60 ]. As the particle identification variables have large dependencies on the momentum of the final-state particles, there are sizeable differences in these efficiencies between the control and signal channels, which do not cancel in the ratio measurement. Systematic effects arising from the choice of binning scheme are evaluated by varying the bin sizes and reevaluating the efficiency. The largest deviations from the nominal result, 1.7% and 2.1%, are assigned as the systematic uncertainty for the $ {{{{{{{H_{bc}^{0}}}} {{\rightarrow }}{{{{\varLambda}^+_c}}}{{{{\pi}^-}}}}}}} $![]()
![]()
and $ {{{{{{{H_{bc}^{0}}}} {{\rightarrow }}{{{{\varXi}^+_c}}}{{{{\pi}^-}}}}}}} $![]()
![]()
decays, respectively. The $ {{{{\varLambda}^+_c}}} $![]()
![]()
($ {{{{\varXi}^+_c}}} $![]()
![]()
) mass resolution shows a difference between data and simulation, which affects the selection efficiency. It results in a 0.2% systematic uncertainty contribution for the $ {{{{{{{H_{bc}^{0}}}} {{\rightarrow }}{{{{\varXi}^+_c}}}{{{{\pi}^-}}}}}}} $![]()
![]()
decay, while the contribution for the $ {{{{{{{H_{bc}^{0}}}} {{\rightarrow }}{{{{\varLambda}^+_c}}}{{{{\pi}^-}}}}}}} $![]()
![]()
decay is below 0.1%. This systematic uncertainty is negligible compared to other sources. The imperfect simulation of the signal and control modes are considered by applying corrections to the BDT response and kinematic properties of the simulated control mode samples. To assess the systematic uncertainty in these corrections, the correcting weights are varied within their uncertainties. The largest deviation from the nominal result is taken as the systematic uncertainty. Combining the uncertainties from the BDT response correction and the kinematic modeling of the simulated control samples gives an uncertainty of 1.6% for the $ {{{{{{{H_{bc}^{0}}}} {{\rightarrow }}{{{{\varLambda}^+_c}}}{{{{\pi}^-}}}}}}} $![]()
![]()
channel, and 3.0% for the $ {{{{{{{H_{bc}^{0}}}} {{\rightarrow }}{{{{\varXi}^+_c}}}{{{{\pi}^-}}}}}}} $![]()
![]()
channel. The analysis relies on the $ {{{{\varXi}_{bc}^{0}}}} $![]()
![]()
$ {{p_{\rm{T}}}} $![]()
![]()
model implemented in simulation. No systematic uncertainty is assigned to this model. The algorithm used to compute the $ {\chi^2_{\rm{IP}}} $![]()
![]()
was updated during data collection, which causes a mismatch between data and simulation and introduces systematic effects in the efficiency estimation. The corresponding uncertainty was found to be 5% in the previous $ {{{{\varXi}_{bc}^{0}}}} $![]()
![]()
search [29 ]. Checks by varying the $ {\chi^2_{\rm{IP}}} $![]()
![]()
-related requirements show that the uncertainty well covers the change of result. Therefore, a 5% systematic uncertainty is assigned. The systematic uncertainties are summarized in Table 1 . The total systematic uncertainty is 5.7% for $ {{{{{{{H_{bc}^{0}}}} {{\rightarrow }}{{{{\varLambda}^+_c}}}{{{{\pi}^-}}}}}}} $![]()
![]()
and 6.3% for $ {{{{{{{H_{bc}^{0}}}} {{\rightarrow }}{{{{\varXi}^+_c}}}{{{{\pi}^-}}}}}}} $![]()
![]()
, for a $ {{{H_{bc}^{0}}}} $![]()
![]()
mass of 6900$ \;{\rm{MeV}}/{c^2} $![]()
![]()
and lifetime of 0.4$ \;{\rm{ps}} $![]()
![]()
. These values of systematic uncertainties are also used for other assumed lifetime and mass hypotheses. ${{{{{{H_{bc}^{0}}}} {{\rightarrow }}{{{{\varLambda}^+_c}}}{{{{\pi}^-}}}}}}$ ${{{{{{H_{bc}^{0}}}} {{\rightarrow }}{{{{\varXi}^+_c}}}{{{{\pi}^-}}}}}}$ Fit model 0.1% 0.9% Size of simulated samples 1.6% 0.7% Particle identification efficiency 1.7% 2.1% Mass resolution <0.1% 0.2% Simulation model 1.6% 3.0% $ {\chi^2_{\rm{IP}}} $ simulation 5.0% 5.0% Total 5.7% 6.3%
Table1. Sources of systematic uncertainty obtained for an $ {{{H_{bc}^{0}}}} $![]()
![]()
mass of 6900$ \;{\rm{MeV}}/{c^2} $![]()
![]()
and lifetime of 0.4$ \;{\rm{ps}} $![]()
![]()
. The total is the quadratic sum of the individual systematic uncertainties. VII.RESULTS No evidence for a $ {{{{\varOmega}_{bc}^{0}}}} $![]()
![]()
or a $ {{{{\varXi}_{bc}^{0}}}} $![]()
![]()
baryon is observed in the inspected mass range. Upper limits are set at 95% confidence level on the ratios $ {\cal{R}}({{{{\varLambda}^+_c}}}{{{{\pi}^-}}}) $![]()
![]()
and $ {\cal{R}}({{{{\varXi}^+_c}}}{{{{\pi}^-}}}) $![]()
![]()
under different mass and lifetime hypotheses for the $ {{{{\varOmega}_{bc}^{0}}}} $![]()
![]()
and $ {{{{\varXi}_{bc}^{0}}}} $![]()
![]()
baryons, using the asymptotic $ {{\rm{CL }}_{s}} $![]()
![]()
method implemented in the $ {{\mathsf{ROOSTATS}}} $![]()
![]()
framework [63 , 64 ] considering the systematic uncertainties. The assumed masses of the $ {{{{\varOmega}_{bc}^{0}}}} $![]()
![]()
and $ {{{{\varXi}_{bc}^{0}}}} $![]()
![]()
baryons are varied from 6700 to 7300$ \;{\rm{MeV}}/{c^2} $![]()
![]()
with a step size of 4$ \;{\rm{MeV}}/{c^2} $![]()
![]()
, and the lifetime values of 0.2$ \;{\rm{ps}} $![]()
![]()
, 0.3$ \;{\rm{ps}} $![]()
![]()
, and 0.4$ \;{\rm{ps}} $![]()
![]()
are considered. The calculated upper limits are shown in Fig. 4 , as a function of the $ {{{H_{bc}^{0}}}} $![]()
![]()
mass. These results are obtained for the sum of the $ {{{{\varOmega}_{bc}^{0}}}} $![]()
![]()
and $ {{{{\varXi}_{bc}^{0}}}} $![]()
![]()
production and as such hold for the two individually. Figure4. (color online) Upper limits (dotted lines) on the ratio of production cross-section for $ {{{{\varOmega}_{bc}^{0}}}} $![]()
![]()
and $ {{{{\varXi}_{bc}^{0}}}} $![]()
![]()
via decays to (left) $ {{{{\varLambda}^+_c}}}{{{{\pi}^-}}} $![]()
![]()
and (right) $ {{{{\varXi}^+_c}}}{{{{\pi}^-}}} $![]()
![]()
to that of control channels $ {{{{{{{\varLambda}^0_b}}}{{\rightarrow }}{{{{\varLambda}^+_c}}}{{{{\pi}^-}}}}}} $![]()
![]()
and $ {{{{{{{\varXi}_{b}^{0}}}}{{\rightarrow }}{{{{\varXi}^+_c}}}{{{{\pi}^-}}}}}} $![]()
![]()
. The dotted (dashed) colored lines represent the observed (expected) upper limits. The assumed lifetime hypotheses for the $ {{{{\varOmega}_{bc}^{0}}}} ({{{{\varXi}_{bc}^{0}}}}) $![]()
![]()
are 0.2 ps (red filled circles), 0.3 ps (blue triangles), and 0.4 ps (magenta open circles). VIII.CONCLUSIONS The first search for the doubly heavy baryon $ {{{{\varOmega}_{bc}^{0}}}} $![]()
![]()
and a new search for the $ {{{{\varXi}_{bc}^{0}}}} $![]()
![]()
baryon in the mass range from 6700 to 7300$ \;{\rm{MeV}}/{c^2} $![]()
![]()
are presented, using $ pp $![]()
![]()
collision data collected at a centre-of-mass energy $ {{\sqrt{s}}} = 13 \;{\rm{TeV}} $![]()
![]()
with the $ {\rm{LHCb}} $![]()
![]()
experiment. The data set corresponds to an integrated luminosity of 5.2$ \;{\rm{f}}{{\rm{b}}^{ - 1}} $![]()
![]()
. The $ {{{{\varOmega}_{bc}^{0}}}} $![]()
![]()
($ {{{{\varXi}_{bc}^{0}}}} $![]()
![]()
) baryon is reconstructed in the $ {{{{\varLambda}^+_c}}}{{{{\pi}^-}}} $![]()
![]()
and $ {{{{\varXi}^+_c}}}{{{{\pi}^-}}} $![]()
![]()
decay modes. No evidence of a signal is found. Upper limits at 95% confidence level on the ratio of the $ {{{{\varOmega}_{bc}^{0}}}} $![]()
![]()
($ {{{{\varXi}_{bc}^{0}}}} $![]()
![]()
) production cross-section times its branching fraction relative to that of the $ {{{{\varLambda}^0_b}}} $![]()
![]()
($ {{{{\varXi}_{b}^{0}}}} $![]()
![]()
) baryon are calculated in the rapidity range $ 2.0 < y < 4.5 $![]()
![]()
and transverse momentum range $ 2<{{p_{\rm{T}}}} < 20 \;{\rm{MeV}}/{c} $![]()
![]()
under different $ {{{{\varOmega}_{bc}^{0}}}} $![]()
![]()
($ {{{{\varXi}_{bc}^{0}}}} $![]()
![]()
) mass and lifetime hypotheses. The upper limits range from $ 0.5\times10^{-4} $![]()
![]()
to $ 2.5\times10^{-4} $![]()
![]()
for the $ {{{{{{{{\varOmega}_{bc}^{0}}}}{{\rightarrow }}{{{{\varLambda}^+_c}}}{{{{\pi}^-}}}}}} ({{{{{{{\varXi}_{bc}^{0}}}}{{\rightarrow }}{{{{\varLambda}^+_c}}}{{{{\pi}^-}}}}}})} $![]()
![]()
decay, and from $ 1.4\times10^{-3} $![]()
![]()
to $ 6.9\times10^{-3} $![]()
![]()
for the $ {{{{{{{{\varOmega}_{bc}^{0}}}}{{\rightarrow }}{{{{\varXi}^+_c}}}{{{{\pi}^-}}}}}} ({{{{{{{\varXi}_{bc}^{0}}}}{{\rightarrow }}{{{{\varXi}^+_c}}}{{{{\pi}^-}}}}}})} $![]()
![]()
decay, for the considered lifetime and mass hypotheses. These results constitute the first limit on the production of the $ {{{{\varOmega}_{bc}^{0}}}} $![]()
![]()
baryon. Further measurements will be possible with the larger data samples expected at the upgraded $ {\rm{LHCb}} $![]()
![]()
experiments [65 ] and with additional decay modes.ACKNOWLEDGEMENTS We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC.