删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Search for the rare decay B0 → J/ψ?

本站小编 Free考研考试/2022-01-01

R. Aaij 31,
, C. Abellán Beteta 49,
, T. Ackernley 59,
, B. Adeva 45,
, M. Adinolfi 53,
, H. Afsharnia 9,
, C.A. Aidala 84,
, S. Aiola 25,
, Z. Ajaltouni 9,
, S. Akar 64,
, J. Albrecht 14,
, F. Alessio 47,
, M. Alexander 58,
, A. Alfonso Albero 44,
, Z. Aliouche 61,
, G. Alkhazov 37,
, P. Alvarez Cartelle 47,
, S. Amato 2,
, Y. Amhis 11,
, L. An 21,
, L. Anderlini 21,
, A. Andreianov 37,
, M. Andreotti 20,
, F. Archilli 16,
, A. Artamonov 43,
, M. Artuso 67,
, K. Arzymatov 41,
, E. Aslanides 10,
, M. Atzeni 49,
, B. Audurier 11,
, S. Bachmann 16,
, M. Bachmayer 48,
, J.J. Back 55,
, S. Baker 60,
, P. Baladron Rodriguez 45,
, V. Balagura 11,
, W. Baldini 20,
, J. Baptista Leite 1,
, R.J. Barlow 61,
, S. Barsuk 11,
, W. Barter 60,
, M. Bartolini 23,i,
, F. Baryshnikov 80,
, J.M. Basels 13,
, G. Bassi 28,
, B. Batsukh 67,
, A. Battig 14,
, A. Bay 48,
, M. Becker 14,
, F. Bedeschi 28,
, I. Bediaga 1,
, A. Beiter 67,
, V. Belavin 41,
, S. Belin 26,
, V. Bellee 48,
, K. Belous 43,
, I. Belov 39,
, I. Belyaev 38,
, G. Bencivenni 22,
, E. Ben-Haim 12,
, A. Berezhnoy 39,
, R. Bernet 49,
, D. Berninghoff 16,
, H.C. Bernstein 67,
, C. Bertella 47,
, E. Bertholet 12,
, A. Bertolin 27,
, C. Betancourt 49,
, F. Betti 19,e,
, M.O. Bettler 54,
, Ia. Bezshyiko 49,
, S. Bhasin 53,
, J. Bhom 33,
, L. Bian 72,
, M.S. Bieker 14,
, S. Bifani 52,
, P. Billoir 12,
, M. Birch 60,
, F.C.R. Bishop 54,
, A. Bizzeti 21,s,
, M. Bj?rn 62,
, M.P. Blago 47,
, T. Blake 55,
, F. Blanc 48,
, S. Blusk 67,
, D. Bobulska 58,
, J.A. Boelhauve 14,
, O. Boente Garcia 45,
, T. Boettcher 63,
, A. Boldyrev 81,
, A. Bondar 42,
, N. Bondar 37,
, S. Borghi 61,
, M. Borisyak 41,
, M. Borsato 16,
, J.T. Borsuk 33,
, S.A. Bouchiba 48,
, T.J.V. Bowcock 59,
, A. Boyer 47,
, C. Bozzi 20,
, M.J. Bradley 60,
, S. Braun 65,
, A. Brea Rodriguez 45,
, M. Brodski 47,
, J. Brodzicka 33,
, A. Brossa Gonzalo 55,
, D. Brundu 26,
, A. Buonaura 49,
, C. Burr 47,
, A. Bursche 26,
, A. Butkevich 40,
, J.S. Butter 31,
, J. Buytaert 47,
, W. Byczynski 47,
, S. Cadeddu 26,
, H. Cai 72,
, R. Calabrese 20,g,
, L. Calefice 14,12,
, L. Calero Diaz 22,
, S. Cali 22,
, R. Calladine 52,
, M. Calvi 24,j,
, M. Calvo Gomez 83,
, P. Camargo Magalhaes 53,
, A. Camboni 44,
, P. Campana 22,
, D.H. Campora Perez 47,
, A.F. Campoverde Quezada 5,
, S. Capelli 24,j,
, L. Capriotti 19,e,
, A. Carbone 19,e,
, G. Carboni 29,
, R. Cardinale 23,i,
, A. Cardini 26,
, I. Carli 6,
, P. Carniti 24,j,
, L. Carus 13,
, K. Carvalho Akiba 31,
, A. Casais Vidal 45,
, G. Casse 59,
, M. Cattaneo 47,
, G. Cavallero 47,
, S. Celani 48,
, J. Cerasoli 10,
, A.J. Chadwick 59,
, M.G. Chapman 53,
, M. Charles 12,
, Ph. Charpentier 47,
, G. Chatzikonstantinidis 52,
, C.A. Chavez Barajas 59,
, M. Chefdeville 8,
, C. Chen 3,
, S. Chen 26,
, A. Chernov 33,
, S.-G. Chitic 47,
, V. Chobanova 45,
, S. Cholak 48,
, M. Chrzaszcz 33,
, A. Chubykin 37,
, V. Chulikov 37,
, P. Ciambrone 22,
, M.F. Cicala 55,
, X. Cid Vidal 45,
, G. Ciezarek 47,
, P.E.L. Clarke 57,
, M. Clemencic 47,
, H.V. Cliff 54,
, J. Closier 47,
, J.L. Cobbledick 61,
, V. Coco 47,
, J.A.B. Coelho 11,
, J. Cogan 10,
, E. Cogneras 9,
, L. Cojocariu 36,
, P. Collins 47,
, T. Colombo 47,
, L. Congedo 18,d,
, A. Contu 26,
, N. Cooke 52,
, G. Coombs 58,
, G. Corti 47,
, C.M. Costa Sobral 55,
, B. Couturier 47,
, D.C. Craik 63,
, J. Crkovská 66,
, M. Cruz Torres 1,
, R. Currie 57,
, C.L. Da Silva 66,
, E. Dall’Occo 14,
, J. Dalseno 45,
, C. D’Ambrosio 47,
, A. Danilina 38,
, P. d’Argent 47,
, A. Davis 61,
, O. De Aguiar Francisco 61,
, K. De Bruyn 77,
, S. De Capua 61,
, M. De Cian 48,
, J.M. De Miranda 1,
, L. De Paula 2,
, M. De Serio 18,d,
, D. De Simone 49,
, P. De Simone 22,
, J.A. de Vries 78,
, C.T. Dean 66,
, W. Dean 84,
, D. Decamp 8,
, L. Del Buono 12,
, B. Delaney 54,
, H.-P. Dembinski 14,
, A. Dendek 34,
, V. Denysenko 49,
, D. Derkach 81,
, O. Deschamps 9,
, F. Desse 11,
, F. Dettori 26,f,
, B. Dey 72,
, P. Di Nezza 22,
, S. Didenko 80,
, L. Dieste Maronas 45,
, H. Dijkstra 47,
, V. Dobishuk 51,
, A.M. Donohoe 17,
, F. Dordei 26,
, A.C. dos Reis 1,
, L. Douglas 58,
, A. Dovbnya 50,
, A.G. Downes 8,
, K. Dreimanis 59,
, M.W. Dudek 33,
, L. Dufour 47,
, V. Duk 76,
, P. Durante 47,
, J.M. Durham 66,
, D. Dutta 61,
, M. Dziewiecki 16,
, A. Dziurda 33,
, A. Dzyuba 37,
, S. Easo 56,
, U. Egede 68,
, V. Egorychev 38,
, S. Eidelman 42,v,
, S. Eisenhardt 57,
, S. Ek-In 48,
, L. Eklund 58,
, S. Ely 67,
, A. Ene 36,
, E. Epple 66,
, S. Escher 13,
, J. Eschle 49,
, S. Esen 31,
, T. Evans 47,
, A. Falabella 19,
, J. Fan 3,
, Y. Fan 5,
, B. Fang 72,
, N. Farley 52,
, S. Farry 59,
, D. Fazzini 24,j,
, P. Fedin 38,
, M. Féo 47,
, P. Fernandez Declara 47,
, A. Fernandez Prieto 45,
, J.M. Fernandez-tenllado Arribas 44,
, F. Ferrari 19,e,
, L. Ferreira Lopes 48,
, F. Ferreira Rodrigues 2,
, S. Ferreres Sole 31,
, M. Ferrillo 49,
, M. Ferro-Luzzi 47,
, S. Filippov 40,
, R.A. Fini 18,
, M. Fiorini 20,g,
, M. Firlej 34,
, K.M. Fischer 62,
, C. Fitzpatrick 61,
, T. Fiutowski 34,
, F. Fleuret 11,b,
, M. Fontana 12,
, F. Fontanelli 23,i,
, R. Forty 47,
, V. Franco Lima 59,
, M. Franco Sevilla 65,
, M. Frank 47,
, E. Franzoso 20,
, G. Frau 16,
, C. Frei 47,
, D.A. Friday 58,
, J. Fu 25,
, Q. Fuehring 14,
, W. Funk 47,
, E. Gabriel 31,
, T. Gaintseva 41,
, A. Gallas Torreira 45,
, D. Galli 19,e,
, S. Gambetta 57,47,
, Y. Gan 3,
, M. Gandelman 2,
, P. Gandini 25,
, Y. Gao 4,
, M. Garau 26,
, L.M. Garcia Martin 55,
, P. Garcia Moreno 44,
, J. García Pardi?as 49,
, B. Garcia Plana 45,
, F.A. Garcia Rosales 11,
, L. Garrido 44,
, C. Gaspar 47,
, R.E. Geertsema 31,
, D. Gerick 16,
, L.L. Gerken 14,
, E. Gersabeck 61,
, M. Gersabeck 61,
, T. Gershon 55,
, D. Gerstel 10,
, Ph. Ghez 8,
, V. Gibson 54,
, M. Giovannetti 22,k,
, A. Gioventù 45,
, P. Gironella Gironell 44,
, L. Giubega 36,
, C. Giugliano 20,47,g,
, K. Gizdov 57,
, E.L. Gkougkousis 47,
, V.V. Gligorov 12,
, C. G?bel 69,
, E. Golobardes 83,
, D. Golubkov 38,
, A. Golutvin 60,80,
, A. Gomes 1,a,
, S. Gomez Fernandez 44,
, F. Goncalves Abrantes 69,
, M. Goncerz 33,
, G. Gong 3,
, P. Gorbounov 38,
, I.V. Gorelov 39,
, C. Gotti 24,j,
, E. Govorkova 47,
, J.P. Grabowski 16,
, R. Graciani Diaz 44,
, T. Grammatico 12,
, L.A. Granado Cardoso 47,
, E. Graugés 44,
, E. Graverini 48,
, G. Graziani 21,
, A. Grecu 36,
, L.M. Greeven 31,
, P. Griffith 20,
, L. Grillo 61,
, S. Gromov 80,
, B.R. Gruberg Cazon 62,
, C. Gu 3,
, M. Guarise 20,
, P. A. Günther 16,
, E. Gushchin 40,
, A. Guth 13,
, Y. Guz 43,47,
, T. Gys 47,
, T. Hadavizadeh 68,
, G. Haefeli 48,
, C. Haen 47,
, J. Haimberger 47,
, S.C. Haines 54,
, T. Halewood-leagas 59,
, P.M. Hamilton 65,
, Q. Han 7,
, X. Han 16,
, T.H. Hancock 62,
, S. Hansmann-Menzemer 16,
, N. Harnew 62,
, T. Harrison 59,
, C. Hasse 47,
, M. Hatch 47,
, J. He 5,
, M. Hecker 60,
, K. Heijhoff 31,
, K. Heinicke 14,
, A.M. Hennequin 47,
, K. Hennessy 59,
, L. Henry 25,46,
, J. Heuel 13,
, A. Hicheur 2,
, D. Hill 62,
, M. Hilton 61,
, S.E. Hollitt 14,
, J. Hu 16,
, J. Hu 71,
, W. Hu 7,
, W. Huang 5,
, X. Huang 72,
, W. Hulsbergen 31,
, R.J. Hunter 55,
, M. Hushchyn 81,
, D. Hutchcroft 59,
, D. Hynds 31,
, P. Ibis 14,
, M. Idzik 34,
, D. Ilin 37,
, P. Ilten 64,
, A. Inglessi 37,
, A. Ishteev 80,
, K. Ivshin 37,
, R. Jacobsson 47,
, S. Jakobsen 47,
, E. Jans 31,
, B.K. Jashal 46,
, A. Jawahery 65,
, V. Jevtic 14,
, M. Jezabek 33,
, F. Jiang 3,
, M. John 62,
, D. Johnson 47,
, C.R. Jones 54,
, T.P. Jones 55,
, B. Jost 47,
, N. Jurik 47,
, S. Kandybei 50,
, Y. Kang 3,
, M. Karacson 47,
, M. Karpov 81,
, N. Kazeev 81,
, F. Keizer 54,47,
, M. Kenzie 55,
, T. Ketel 32,
, B. Khanji 14,
, A. Kharisova 82,
, S. Kholodenko 43,
, K.E. Kim 67,
, T. Kirn 13,
, V.S. Kirsebom 48,
, O. Kitouni 63,
, S. Klaver 31,
, K. Klimaszewski 35,
, S. Koliiev 51,
, A. Kondybayeva 80,
, A. Konoplyannikov 38,
, P. Kopciewicz 34,
, R. Kopecna 16,
, P. Koppenburg 31,
, M. Korolev 39,
, I. Kostiuk 31,51,
, O. Kot 51,
, S. Kotriakhova 37,30,
, P. Kravchenko 37,
, L. Kravchuk 40,
, R.D. Krawczyk 47,
, M. Kreps 55,
, F. Kress 60,
, S. Kretzschmar 13,
, P. Krokovny 42,v,
, W. Krupa 34,
, W. Krzemien 35,
, W. Kucewicz 33,l,
, M. Kucharczyk 33,
, V. Kudryavtsev 42,v,
, H.S. Kuindersma 31,
, G.J. Kunde 66,
, T. Kvaratskheliya 38,
, D. Lacarrere 47,
, G. Lafferty 61,
, A. Lai 26,
, A. Lampis 26,
, D. Lancierini 49,
, J.J. Lane 61,
, R. Lane 53,
, G. Lanfranchi 22,
, C. Langenbruch 13,
, J. Langer 14,
, O. Lantwin 49,80,
, T. Latham 55,
, F. Lazzari 28,t,
, R. Le Gac 10,
, S.H. Lee 84,
, R. Lefèvre 9,
, A. Leflat 39,
, S. Legotin 80,
, O. Leroy 10,
, T. Lesiak 33,
, B. Leverington 16,
, H. Li 71,
, L. Li 62,
, P. Li 16,
, X. Li 66,
, Y. Li 6,
, Y. Li 6,
, Z. Li 67,
, X. Liang 67,
, T. Lin 60,
, R. Lindner 47,
, V. Lisovskyi 14,
, R. Litvinov 26,
, G. Liu 71,
, H. Liu 5,
, S. Liu 6,
, X. Liu 3,
, A. Loi 26,
, J. Lomba Castro 45,
, I. Longstaff 58,
, J.H. Lopes 2,
, G. Loustau 49,
, G.H. Lovell 54,
, Y. Lu 6,
, D. Lucchesi 27,m,
, S. Luchuk 40,
, M. Lucio Martinez 31,
, V. Lukashenko 31,
, Y. Luo 3,
, A. Lupato 61,
, E. Luppi 20,g,
, O. Lupton 55,
, A. Lusiani 28,r,
, X. Lyu 5,
, L. Ma 6,
, S. Maccolini 19,e,
, F. Machefert 11,
, F. Maciuc 36,
, V. Macko 48,
, P. Mackowiak 14,
, S. Maddrell-Mander 53,
, O. Madejczyk 34,
, L.R. Madhan Mohan 53,
, O. Maev 37,
, A. Maevskiy 81,
, D. Maisuzenko 37,
, M.W. Majewski 34,
, S. Malde 62,
, B. Malecki 47,
, A. Malinin 79,
, T. Maltsev 42,v,
, H. Malygina 16,
, G. Manca 26,f,
, G. Mancinelli 10,
, R. Manera Escalero 44,
, D. Manuzzi 19,e,
, D. Marangotto 25,o,
, J. Maratas 9,u,
, J.F. Marchand 8,
, U. Marconi 19,
, S. Mariani 21,47,h,
, C. Marin Benito 11,
, M. Marinangeli 48,
, P. Marino 48,
, J. Marks 16,
, P.J. Marshall 59,
, G. Martellotti 30,
, L. Martinazzoli 47,j,
, M. Martinelli 24,j,
, D. Martinez Santos 45,
, F. Martinez Vidal 46,
, A. Massafferri 1,
, M. Materok 13,
, R. Matev 47,
, A. Mathad 49,
, Z. Mathe 47,
, V. Matiunin 38,
, C. Matteuzzi 24,
, K.R. Mattioli 84,
, A. Mauri 31,
, E. Maurice 11,b,
, J. Mauricio 44,
, M. Mazurek 35,
, M. McCann 60,
, L. Mcconnell 17,
, T.H. Mcgrath 61,
, A. McNab 61,
, R. McNulty 17,
, J.V. Mead 59,
, B. Meadows 64,
, C. Meaux 10,
, G. Meier 14,
, N. Meinert 75,
, D. Melnychuk 35,
, S. Meloni 24,j,
, M. Merk 31,78,
, A. Merli 25,
, L. Meyer Garcia 2,
, M. Mikhasenko 47,
, D.A. Milanes 73,
, E. Millard 55,
, M. Milovanovic 47,
, M.-N. Minard 8,
, L. Minzoni 20,g,
, S.E. Mitchell 57,
, B. Mitreska 61,
, D.S. Mitzel 47,
, A. M?dden 14,
, R.A. Mohammed 62,
, R.D. Moise 60,
, T. Momb?cher 14,
, I.A. Monroy 73,
, S. Monteil 9,
, M. Morandin 27,
, G. Morello 22,
, M.J. Morello 28,r,
, J. Moron 34,
, A.B. Morris 74,
, A.G. Morris 55,
, R. Mountain 67,
, H. Mu 3,
, F. Muheim 57,
, M. Mukherjee 7,
, M. Mulder 47,
, D. Müller 47,
, K. Müller 49,
, C.H. Murphy 62,
, D. Murray 61,
, P. Muzzetto 26,47,
, P. Naik 53,
, T. Nakada 48,
, R. Nandakumar 56,
, T. Nanut 48,
, I. Nasteva 2,
, M. Needham 57,
, I. Neri 20,g,
, N. Neri 25,o,
, S. Neubert 74,
, N. Neufeld 47,
, R. Newcombe 60,
, T.D. Nguyen 48,
, C. Nguyen-Mau 48,
, E.M. Niel 11,
, S. Nieswand 13,
, N. Nikitin 39,
, N.S. Nolte 47,
, C. Nunez 84,
, A. Oblakowska-Mucha 34,
, V. Obraztsov 43,
, D.P. O’Hanlon 53,
, R. Oldeman 26,f,
, M.E. Olivares 67,
, C.J.G. Onderwater 77,
, A. Ossowska 33,
, J.M. Otalora Goicochea 2,
, T. Ovsiannikova 38,
, P. Owen 49,
, A. Oyanguren 46,47,
, B. Pagare 55,
, P.R. Pais 47,
, T. Pajero 28,47,r,
, A. Palano 18,
, M. Palutan 22,
, Y. Pan 61,
, G. Panshin 82,
, A. Papanestis 56,
, M. Pappagallo 18,d,
, L.L. Pappalardo 20,g,
, C. Pappenheimer 64,
, W. Parker 65,
, C. Parkes 61,
, C.J. Parkinson 45,
, B. Passalacqua 20,
, G. Passaleva 21,
, A. Pastore 18,
, M. Patel 60,
, C. Patrignani 19,e,
, C.J. Pawley 78,
, A. Pearce 47,
, A. Pellegrino 31,
, M. Pepe Altarelli 47,
, S. Perazzini 19,
, D. Pereima 38,
, P. Perret 9,
, K. Petridis 53,
, A. Petrolini 23,i,
, A. Petrov 79,
, S. Petrucci 57,
, M. Petruzzo 25,
, T.T.H. Pham 67,
, A. Philippov 41,
, L. Pica 28,
, M. Piccini 76,
, B. Pietrzyk 8,
, G. Pietrzyk 48,
, M. Pili 62,
, D. Pinci 30,
, F. Pisani 47,
, A. Piucci 16,
, P.K Resmi 10,
, V. Placinta 36,
, J. Plews 52,
, M. Plo Casasus 45,
, F. Polci 12,
, M. Poli Lener 22,
, M. Poliakova 67,
, A. Poluektov 10,
, N. Polukhina 80,c,
, I. Polyakov 67,
, E. Polycarpo 2,
, G.J. Pomery 53,
, S. Ponce 47,
, D. Popov 5,47,
, S. Popov 41,
, S. Poslavskii 43,
, K. Prasanth 33,
, L. Promberger 47,
, C. Prouve 45,
, V. Pugatch 51,
, H. Pullen 62,
, G. Punzi 28,n,
, W. Qian 5,
, J. Qin 5,
, R. Quagliani 12,
, B. Quintana 8,
, N.V. Raab 17,
, R.I. Rabadan Trejo 10,
, B. Rachwal 34,
, J.H. Rademacker 53,
, M. Rama 28,
, M. Ramos Pernas 55,
, M.S. Rangel 2,
, F. Ratnikov 41,81,
, G. Raven 32,
, M. Reboud 8,
, F. Redi 48,
, F. Reiss 12,
, C. Remon Alepuz 46,
, Z. Ren 3,
, V. Renaudin 62,
, R. Ribatti 28,
, S. Ricciardi 56,
, D.S. Richards 56,
, K. Rinnert 59,
, P. Robbe 11,
, A. Robert 12,
, G. Robertson 57,
, A.B. Rodrigues 48,
, E. Rodrigues 59,
, J.A. Rodriguez Lopez 73,
, A. Rollings 62,
, P. Roloff 47,
, V. Romanovskiy 43,
, M. Romero Lamas 45,
, A. Romero Vidal 45,
, J.D. Roth 84,
, M. Rotondo 22,
, M.S. Rudolph 67,
, T. Ruf 47,
, J. Ruiz Vidal 46,
, A. Ryzhikov 81,
, J. Ryzka 34,
, J.J. Saborido Silva 45,
, N. Sagidova 37,
, N. Sahoo 55,
, B. Saitta 26,f,
, D. Sanchez Gonzalo 44,
, C. Sanchez Gras 31,
, R. Santacesaria 30,
, C. Santamarina Rios 45,
, M. Santimaria 22,
, E. Santovetti 29,k,
, D. Saranin 80,
, G. Sarpis 58,
, M. Sarpis 74,
, A. Sarti 30,
, C. Satriano 30,q,
, A. Satta 29,
, M. Saur 5,
, D. Savrina 38,39,
, H. Sazak 9,
, L.G. Scantlebury Smead 62,
, S. Schael 13,
, M. Schellenberg 14,
, M. Schiller 58,
, H. Schindler 47,
, M. Schmelling 15,
, T. Schmelzer 14,
, B. Schmidt 47,
, O. Schneider 48,
, A. Schopper 47,
, M. Schubiger 31,
, S. Schulte 48,
, M.H. Schune 11,
, R. Schwemmer 47,
, B. Sciascia 22,
, A. Sciubba 30,
, S. Sellam 45,
, A. Semennikov 38,
, M. Senghi Soares 32,
, A. Sergi 52,47,
, N. Serra 49,
, L. Sestini 27,
, A. Seuthe 14,
, P. Seyfert 47,
, D.M. Shangase 84,
, M. Shapkin 43,
, I. Shchemerov 80,
, L. Shchutska 48,
, T. Shears 59,
, L. Shekhtman 42,v,
, Z. Shen 4,
, V. Shevchenko 79,
, E.B. Shields 24,j,
, E. Shmanin 80,
, J.D. Shupperd 67,
, B.G. Siddi 20,
, R. Silva Coutinho 49,
, G. Simi 27,
, S. Simone 18,d,
, I. Skiba 20,g,
, N. Skidmore 74,
, T. Skwarnicki 67,
, M.W. Slater 52,
, J.C. Smallwood 62,
, J.G. Smeaton 54,
, A. Smetkina 38,
, E. Smith 13,
, M. Smith 60,
, A. Snoch 31,
, M. Soares 19,
, L. Soares Lavra 9,
, M.D. Sokoloff 64,
, F.J.P. Soler 58,
, A. Solovev 37,
, I. Solovyev 37,
, F.L. Souza De Almeida 2,
, B. Souza De Paula 2,
, B. Spaan 14,
, E. Spadaro Norella 25,o,
, P. Spradlin 58,
, F. Stagni 47,
, M. Stahl 64,
, S. Stahl 47,
, P. Stefko 48,
, O. Steinkamp 49,80,
, S. Stemmle 16,
, O. Stenyakin 43,
, H. Stevens 14,
, S. Stone 67,
, M.E. Stramaglia 48,
, M. Straticiuc 36,
, D. Strekalina 80,
, S. Strokov 82,
, F. Suljik 62,
, J. Sun 26,
, L. Sun 72,
, Y. Sun 65,
, P. Svihra 61,
, P.N. Swallow 52,
, K. Swientek 34,
, A. Szabelski 35,
, T. Szumlak 34,
, M. Szymanski 47,
, S. Taneja 61,
, F. Teubert 47,
, E. Thomas 47,
, K.A. Thomson 59,
, M.J. Tilley 60,
, V. Tisserand 9,
, S. T’Jampens 8,
, M. Tobin 6,
, S. Tolk 47,
, L. Tomassetti 20,g,
, D. Torres Machado 1,
, D.Y. Tou 12,
, M. Traill 58,
, M.T. Tran 48,
, E. Trifonova 80,
, C. Trippl 48,
, G. Tuci 28,n,
, A. Tully 48,
, N. Tuning 31,
, A. Ukleja 35,
, D.J. Unverzagt 16,
, A. Usachov 31,
, A. Ustyuzhanin 41,81,
, U. Uwer 16,
, A. Vagner 82,
, V. Vagnoni 19,
, A. Valassi 47,
, G. Valenti 19,
, N. Valls Canudas 44,
, M. van Beuzekom 31,
, M. Van Dijk 48,
, H. Van Hecke 66,
, E. van Herwijnen 80,
, C.B. Van Hulse 17,
, M. van Veghel 77,
, R. Vazquez Gomez 45,
, P. Vazquez Regueiro 45,
, C. Vázquez Sierra 31,
, S. Vecchi 20,
, J.J. Velthuis 53,
, M. Veltri 21,p,
, A. Venkateswaran 67,
, M. Veronesi 31,
, M. Vesterinen 55,
, D. Vieira 64,
, M. Vieites Diaz 48,
, H. Viemann 75,
, X. Vilasis-Cardona 83,
, E. Vilella Figueras 59,
, P. Vincent 12,
, G. Vitali 28,
, A. Vollhardt 49,
, D. Vom Bruch 12,
, A. Vorobyev 37,
, V. Vorobyev 42,v,
, N. Voropaev 37,
, R. Waldi 75,
, J. Walsh 28,
, C. Wang 16,
, J. Wang 3,
, J. Wang 72,
, J. Wang 4,
, J. Wang 6,
, M. Wang 3,
, R. Wang 53,
, Y. Wang 7,
, Z. Wang 49,
, H.M. Wark 59,
, N.K. Watson 52,
, S.G. Weber 12,
, D. Websdale 60,
, C. Weisser 63,
, B.D.C. Westhenry 53,
, D.J. White 61,
, M. Whitehead 53,
, D. Wiedner 14,
, G. Wilkinson 62,
, M. Wilkinson 67,
, I. Williams 54,
, M. Williams 63,68,
, M.R.J. Williams 57,
, F.F. Wilson 56,
, W. Wislicki 35,
, M. Witek 33,
, L. Witola 16,
, G. Wormser 11,
, S.A. Wotton 54,
, H. Wu 67,
, K. Wyllie 47,
, Z. Xiang 5,
, D. Xiao 7,
, Y. Xie 7,
, A. Xu 4,
, J. Xu 5,
, L. Xu 3,
, M. Xu 7,
, Q. Xu 5,
, Z. Xu 5,
, Z. Xu 4,
, D. Yang 3,
, Y. Yang 5,
, Z. Yang 3,
, Z. Yang 65,
, Y. Yao 67,
, L.E. Yeomans 59,
, H. Yin 7,
, J. Yu 70,
, X. Yuan 67,
, O. Yushchenko 43,
, E. Zaffaroni 48,
, K.A. Zarebski 52,
, M. Zavertyaev 15,c,
, M. Zdybal 33,
, O. Zenaiev 47,
, M. Zeng 3,
, D. Zhang 7,
, L. Zhang 3,
, S. Zhang 4,
, Y. Zhang 4,
, Y. Zhang 62,
, A. Zhelezov 16,
, Y. Zheng 5,
, X. Zhou 5,
, Y. Zhou 5,
, X. Zhu 3,
, V. Zhukov 13,39,
, J.B. Zonneveld 57,
, S. Zucchelli 19,e,
, D. Zuliani 27,
, G. Zunica 61,
, (LHCb Collaboration)
, 1.Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2.Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3.Center for High Energy Physics, Tsinghua University, Beijing, China
4.School of Physics State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
5.University of Chinese Academy of Sciences, Beijing, China
6.Institute Of High Energy Physics (IHEP), Beijing, China
7.Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China
8.Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France
9.Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
10.Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
11.Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
12.LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
13.I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
14.Fakult?t Physik, Technische Universit?t Dortmund, Dortmund, Germany
15.Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
16.Physikalisches Institut, Ruprecht-Karls-Universit?t Heidelberg, Heidelberg, Germany
17.School of Physics, University College Dublin, Dublin, Ireland
18.INFN Sezione di Bari, Bari, Italy
19.INFN Sezione di Bologna, Bologna, Italy
20.INFN Sezione di Ferrara, Ferrara, Italy
21.INFN Sezione di Firenze, Firenze, Italy
22.INFN Laboratori Nazionali di Frascati, Frascati, Italy
23.INFN Sezione di Genova, Genova, Italy
24.INFN Sezione di Milano-Bicocca, Milano, Italy
25.INFN Sezione di Milano, Milano, Italy
26.INFN Sezione di Cagliari, Monserrato, Italy
27.Universita degli Studi di Padova, Universita e INFN, Padova, Padova, Italy
28.INFN Sezione di Pisa, Pisa, Italy
29.INFN Sezione di Roma Tor Vergata, Roma, Italy
30.INFN Sezione di Roma La Sapienza, Roma, Italy
31.Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
32.Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands
33.Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
34.AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
35.National Center for Nuclear Research (NCBJ), Warsaw, Poland
36.Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
37.Petersburg Nuclear Physics Institute NRC Kurchatov Institute (PNPI NRC KI), Gatchina, Russia
38.Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia
39.Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
40.Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia
41.Yandex School of Data Analysis, Moscow, Russia
42.Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
43.Institute for High Energy Physics NRC Kurchatov Institute (IHEP NRC KI), Protvino, Russia, Protvino, Russia
44.ICCUB, Universitat de Barcelona, Barcelona, Spain
45.Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
46.Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain
47.European Organization for Nuclear Research (CERN), Geneva, Switzerland
48.Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
49.Physik-Institut, Universit?t Zürich, Zürich, Switzerland
50.NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
51.Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
52.University of Birmingham, Birmingham, United Kingdom
53.H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
54.Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
55.Department of Physics, University of Warwick, Coventry, United Kingdom
56.STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
57.School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
58.School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
59.Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
60.Imperial College London, London, United Kingdom
61.Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
62.Department of Physics, University of Oxford, Oxford, United Kingdom
63.Massachusetts Institute of Technology, Cambridge, MA, United States
64.University of Cincinnati, Cincinnati, OH, United States
65.University of Maryland, College Park, MD, United States
66.Los Alamos National Laboratory (LANL), Los Alamos, United States
67.Syracuse University, Syracuse, NY, United States
68.School of Physics and Astronomy, Monash University, Melbourne, Australia, associated to 55
69.Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to 2
70.Physics and Micro Electronic College, Hunan University, Changsha City, China, associated to 7
71.Guangdong Provencial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou, China, associated to 3
72.School of Physics and Technology, Wuhan University, Wuhan, China, associated to 3
73.Departamento de Fisica, Universidad Nacional de Colombia, Bogota, Colombia, associated to 12
74.Universit?t Bonn - Helmholtz-Institut für Strahlen und Kernphysik, Bonn, Germany, associated to 16
75.Institut für Physik, Universit?t Rostock, Rostock, Germany, associated to 16
76.INFN Sezione di Perugia, Perugia, Italy, associated to 20
77.Van Swinderen Institute, University of Groningen, Groningen, Netherlands, associated to 31
78.Universiteit Maastricht, Maastricht, Netherlands, associated to 31
79.National Research Centre Kurchatov Institute, Moscow, Russia, associated to 38
80.National University of Science and Technology “MISIS”, Moscow, Russia, associated to 38
81.National Research University Higher School of Economics, Moscow, Russia, associated to 41
82.National Research Tomsk Polytechnic University, Tomsk, Russia, associated to 38
83.DS4DS, La Salle, Universitat Ramon Llull, Barcelona, Spain, associated to 44
84.University of Michigan, Ann Arbor, United States, associated to 67
a.Universidade Federal do Triangulo Mineiro (UFTM), Uberaba-MG, Brazil
b.Laboratoire Leprince-Ringuet, Palaiseau, France
c.P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
d.Università di Bari, Bari, Italy
e.Università di Bologna, Bologna, Italy
f.Università di Cagliari, Cagliari, Italy
g.Università di Ferrara, Ferrara, Italy
h.Università di Firenze, Firenze, Italy
i.Università di Genova, Genova, Italy
j.Università di Milano Bicocca, Milano, Italy
k.Università di Roma Tor Vergata, Roma, Italy
l.AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland
m.Università di Padova, Padova, Italy
n.Università di Pisa, Pisa, Italy
o.Università degli Studi di Milano, Milano, Italy
p.Università di Urbino, Urbino, Italy
q.Università della Basilicata, Potenza, Italy
r.Scuola Normale Superiore, Pisa, Italy
s.Università di Modena e Reggio Emilia, Modena, Italy
t.Università di Siena, Siena, Italy
u.MSU - Iligan Institute of Technology (MSU-IIT), Iligan, Philippines
v.Novosibirsk State University, Novosibirsk, Russia
Received Date:2020-11-16
Available Online:2021-04-15
Abstract:A search for the rare decay $ B^0\to J/ \psi\phi$ is performed using $ pp$ collision data collected with the LHCb dete-ctor at centre-of-mass energies of 7, 8 and 13 TeV, corresponding to an integrated luminosity of 9 fb?1. No significant signal of the decay is observed and an upper limit of $ 1.1 \times 10^{-7}$ at 90% confidence level is set on the branching fraction.

HTML

--> --> -->
I.INTRODUCTION
The $ {{B^0}} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ decay was first observed by the LHCb experiment with a branching fraction of $ (2.51\pm 0.35\pm0.19)\times10^{-6} $ [1]. It proceeds primarily through the Cabibbo-suppressed $ \bar{b}{\rightarrow}\bar{c}c\bar{d} $ transition. The $ {{K^+}} {{K^-}} $ pair can come either directly from the $ {{B^0}}$ decay via an $ s\bar{s} $ pair created in the vacuum, or from the decay of intermediate states that contain both $ d\bar{d} $ and $ s\bar{s} $ components, such as the $ a_0(980) $ resonance. There is a potential contribution from the $ \phi $ meson as an intermediate state. The decay $ {{B^0}} {\rightarrow} {{{J/\psi}}} \phi $ is suppressed by the Okubo-Zweig-Iizuka (OZI) rule that forbids disconnected quark diagrams [2-4]. The size of this contribution and the exact mechanism to produce the $ \phi $ meson in this process are of particular theoretical interest [5-7]. Under the assumption that the dominant contribution is via a small $ d\bar{d} $ component in the $ \phi $ wave-function, arising from $ \omega-\phi $ mixing (Fig. 1(a)), the branching fraction of the $ {{B^0}} {\rightarrow} {{{J/\psi}}} \phi $ decay is predicted to be of the order of $ 10^{-7} $ [5]. Contributions to $ {{B^0}} {\rightarrow} {{{J/\psi}}} \phi $ decays from the OZI-suppressed tri-gluon fusion (Fig. 1(b)), photoproduction and final-state rescattering are estimated to be at least one order of magnitude lower [7]. Experimental studies of the decay $ {{B^0}} {\rightarrow} {{{J/\psi}}} \phi $ could provide important information about the dynamics of OZI-suppressed decays.
Figure1. Feynman diagrams for the decay $ B^0 \to J/ \psi\phi$ via (a) $\omega-\phi$ mixing and (b) tri-gluon fusion.

No significant signal of $ {{B^0}} {\rightarrow} {{{J/\psi}}} \phi $ decay has been observed in previous searches by several experiments. Upper limits on the branching fraction of the decay have been set by BaBar [8], Belle [9] and LHCb [1]. The LHCb limit was obtained using a data sample corresponding to an integrated luminosity of 1 $ {{\rm{fb}}^{-1}} $ of $ pp$ collision data, collected at a centre-of-mass energy of 7 $ {\rm{TeV}}$. This paper presents an update on the search for $ {{B^0}} {\rightarrow} {{{J/\psi}}} \phi $ decays using a data sample corresponding to an integrated luminosity of 9 $ {{\rm{fb}}^{-1}} $, including 3 $ {{\rm{fb}}^{-1}} $ collected at 7 and 8 $ {\rm{TeV}}$, denoted as Run 1, and 6 $ {{\rm{fb}}^{-1}} $ collected at 13 $ {\rm{TeV}}$, denoted as Run 2.
The LHCb measurement in Ref. [1] is obtained from an amplitude analysis of $ {{B^0}} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ decays over a wide $ m({{K^+}} {{K^-}} ) $ range from the $ {{K^+}} {{K^-}} $ mass threshold to 2200 $ {\rm{MeV}}/c^2$. This paper focuses on the $ \phi(1020) $ region, with the $ {{K^+}} K^+ $ mass in the range 1000–1050 $ {\rm{MeV}}/c^2$, and on studies of the $ {{{J/\psi}}} {{K^+}} {{K^-}} $ and $ {{K^+}} {{K^-}} $ mass distributions, to distinguish the $ {{B^0}} {\rightarrow} {{{J/\psi}}} \phi $ signal from the non-resonant decay $ {{B^0}} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ and background contaminations. The abundant decay $ {B^0_s} {\rightarrow} {{{J/\psi}}} \phi $ is used as the normalisation channel. The choice of mass fits over a full amplitude analysis is motivated by several considerations. The sharp $ \phi $ mass peak provides a clear signal characteristic and the lineshape can be very well determined using the copious $ {B^0_s} {\rightarrow} {{{J/\psi}}} \phi $ decays. On the other hand, interference of the S-wave (either $ a_0(980)/f_0 $(980) or non-resonant) and P-wave amplitudes vanishes in the $ m({{K^+}} {{K^-}} ) $ spectrum, up to negligible angular acceptance effects, after integrating over the angular variables. Furthermore, significant correlations observed between $ m({{{J/\psi}}} {{K^+}} {{K^-}} ) $, $ m({{K^+}} {{K^-}} ) $ and angular variables make it challenging to describe the mass-dependent angular distributions of both signal and background, which are required for an amplitude analysis. Finally, the power of the amplitude analysis in discriminating the signal from the non-$ \phi $ contribution and background is reduced by the large number of parameters that need to be determined in the fit. In addition, a good understanding of the contamination from $ {{{B^0_s} }{\rightarrow} {{{{J/\psi}}} {{K^+}} {{K^-}} }} $ decays in the $ {{B^0}} $ mass-region is essential in the search for $ {{B^0}} {\rightarrow} {{{J/\psi}}} \phi $.
II.DETECTOR AND SIMULATION
The LHCb detector [10, 11] is a single-arm forward spectrometer covering the pseudorapidity range $ 2<\eta <5 $, designed for the study of particles containing b or c quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the $ pp $ interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about $ 4\,{\rm{Tm}} $, and three stations of silicon-strip detectors and straw drift tubes placed downstream of the magnet. The tracking system provides a measurement of the momentum, p, of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 $ {\rm{GeV}}/c$. The minimum distance of a track to a primary vertex (PV), the impact parameter (IP), is measured with a resolution of $(15+ 29/{p_{\rm{T}}} )\;{\rm{\mu m}}$, where $ {p_{\rm{T}}}$ is the component of the momentum transverse to the beam, in $ {\rm{GeV}}/c$. Different types of charged hadrons are distinguished using information from two ring-imaging Cherenkov detectors. Photons, electrons and hadrons are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers.
Samples of simulated decays are used to optimise the signal candidate selection and derive the efficiency of selection. In the simulation, $ pp$ collisions are generated using PYTHIA [12, 13] with a specific LHCb configuration [14]. Decays of unstable particles are described by EVTGEN [15], in which final-state radiation is generated using PHOTOS [16]. The interaction of the generated particles with the detector, and its response, are implemented using the GEANT4 toolkit [17, 18] as described in Ref. [19].
III.CANDIDATE SELECTION
The online event selection is performed by a trigger, which consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction. An inclusive approach for the hardware trigger is used to maximise the available data sample, as described in Ref. [20]. Since the centre-of-mass energies and trigger thresholds are different for the Run 1 and Run 2 data-taking, the offline selection is performed separately for the two periods, following the procedure described below. The resulting data samples for the two periods are treated separately in the subsequent analysis procedure.
The offline selection comprises two stages. First, a loose selection is used to reconstruct both $ {{B^0}} {\rightarrow} {{{J/\psi}}} \phi $ and $ {B^0_s} {\rightarrow} {{{J/\psi}}} \phi $ candidates in the same way, given their similar kinematics. Two oppositely charged muon candidates with $ {p_{\rm{T}}} > 500 \;{{\rm{MeV}}/c} $ are combined to form a $ {{{J/\psi}}} $ candidate. The muon pair is required to have a common vertex and an invariant mass, $ m(\mu^+\mu^-) $, in the range 3020–3170 $ {\rm{MeV}}/c^2$. A pair of oppositely charged kaon candidates identified by the Cherenkov detectors is combined to form a $ \phi $ candidate. The $ {{K^+}} {{K^-}} $ pair is required to have an invariant mass, $ m({{K^+}} {{K^-}} ) $, in the range 1000–1050 $ {\rm{MeV}}/c^2$. The $ {{{J/\psi}}} $ and $ \phi $ candidates are combined to form a $ B^{0}_{(s)} $ candidate, which is required to have good vertex quality and invariant mass, $ m({{{J/\psi}}} {{K^+}} {{K^-}} ) $, in the range 5200–5550 $ {\rm{MeV}}/c^2$. The resulting $ B^{0}_{(s)} $ candidate is assigned to the PV with which it has the smallest $ {\chi^2_{\rm{IP}}} $, where $ {\chi^2_{\rm{IP}}} $ is defined as the difference in the vertex-fit $ {\chi^2} $ of a given PV reconstructed with and without the particle being considered. The invariant mass of the $ B^{0}_{(s)} $ candidate is calculated from a kinematic fit for which the momentum vector of the $ B^{0}_{(s)} $ candidates is aligned with the vector connecting the PV to the $ B^{0}_{(s)} $ decay vertex and $ m({{{\mu^+}{\mu^-}}} ) $ is constrained to the known $ {{{J/\psi}}} $ meson mass [21]. In order to suppress the background due to the random combination of a prompt $ {{{J/\psi}}} $ meson and a pair of charged kaons, the decay time of the $ B^{0}_{(s)} $ candidate is required to be greater than 0.3 $ {\rm{ps}}$.
In a second selection stage, a boosted decision tree (BDT) classifier [22, 23] is used to further suppress combinatorial background. The BDT classifier is trained using simulated $ {B^0_s} {\rightarrow} {{{J/\psi}}} \phi $ decays representing the signal, and candidates with $ m({{{J/\psi}}} {{K^+}} {{K^-}} ) $ in the range 5480–5550 $ {\rm{MeV}}/c^2$ as background. Candidates in both samples are required to have passed the trigger and the loose selection described above. Using a multivariate technique [24], the $ {B^0_s} {\rightarrow} {{{J/\psi}}} \phi $ simulation sample is corrected to match the observed distributions in background-subtracted data, including that of the $ {p_{\rm{T}}}$ and pseudorapidity of the $ {B^0_s}$, the $ {\chi^2_{\rm{IP}}} $ of the $ {B^0_s}$ decay vertex, the $ {\chi^2} $ of the decay chain of the $ {B^0_s}$ candidate [25], the particle identification variables, the track-fit $ {\chi^2} $ of the muon and kaon candidates, and the numbers of tracks measured simultaneously in both the vertex detector and tracking stations.
The input variables of the BDT classifier are the minimum track–fit $ {\chi^2} $ of the muons and the kaons, the $ {p_{\rm{T}}} $ of the $ B^{0}_{(s)} $ candidate and the $ {{K^+}} {{K^-}} $ combination, the $ {\chi^2} $ of the $ B^{0}_{(s)} $ decay vertex, particle identification probabilities for muons and kaons, the minimum $ {\chi^2_{\rm{IP}}} $ of the muons and kaons, the $ {\chi^2} $ of the $ {{{J/\psi}}} $ decay vertex, the $ {\chi^2_{\rm{IP}}} $ of the $ B^{0}_{(s)} $ candidate, and the $ {\chi^2} $ of the $ B^{0}_{(s)} $ decay chain fit. The optimal requirement on the BDT response for the $ B^{0}_{(s)} $ candidates is obtained by maximising the quantity $ \varepsilon/\sqrt{N} $, where $ \varepsilon $ is the signal efficiency determined in simulation and N is the number of candidates found in the $ \pm15 \;{\rm{MeV}}/c^2$ region around the known $ {{B^0}}$ mass [21].
In addition to combinatorial background, the data also contain fake candidates from $ {\varLambda _b^0} {\rightarrow} {{{J/\psi}}} {p}{{K^-}} $ ($ {{B^0}} {\rightarrow} {{{J/\psi}}} {{K^+}} {{{\pi^-}}} $) decays, where the proton (pion) is misidentified as a kaon. To suppress these background sources, a $ B^{0}_{(s)} $ candidate is rejected if its invariant mass, computed with one kaon interpreted as a proton (pion), lies within $ \pm 15 \;{\rm{MeV}}/c^2$ of the known $ {\varLambda _b^0} $ ($ {{B^0}} $) mass [21] and if the kaon candidate also satisfies proton (pion) identification requirements.
A previous study of $ {B^0_s} {\rightarrow} {J/\psi} \phi $ decays found that the yield of the background from $ {{B^0}} {\rightarrow} {J/\psi} {{K^+}} {{{\pi^-}}} $ decays is only 0.1% of the $ {B^0_s} {\rightarrow} {{{J/\psi}}} \phi $ signal yield [20]. Furthermore, only 1.2% of these decays, corresponding to about one candidate (three candidates) in the Run 1 (Run 2) data sample, fall in the $ {{B^0}}$ mass region 5265–5295 $ {\rm{MeV}}/c^2$, according to simulation. Thus this background is neglected. The fraction of events containing more than one candidate is 0.11% in Run 1 data and 0.70% in Run 2 data and these events are removed from the total data sample. The acceptance, trigger, reconstruction and selection efficiencies of the signal and normalization channels are determined using simulation, which is corrected for the efficiency differences with respect to the data. The ratio of the total efficiencies of $ {{B^0}} {\rightarrow} {J/\psi} \phi $ and $ {B^0_s} {\rightarrow} {J/\psi} \phi $ is estimated to be $ 0.99\pm0.03\pm0.03 $ for Run 1 and $ 0.99\pm 0.01\pm0.02 $ for Run 2, where the first uncertainties are statistical and the second ones are associated with corrections to the simulation. The polarisation amplitudes are assumed to be the same in $ {{B^0}} {\rightarrow} {J/\psi} \phi $ and $ {B^0_s} {\rightarrow} {J/\psi} \phi $ decays. The systematic uncertainty associated with this assumption is found to be small and is neglected.
IV.MASS FITS
There is a significant correlation between $ m(J/ {{{\psi}}} {{K^+}} {{K^-}} ) $ and $ m({{K^+}} {{K^-}} ) $ in $ B^0_{(s)}{\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ decays, as illustrated in Fig. 2. Hence, the search for $ {{B^0}} {\rightarrow} {{{J/\psi}}} \phi $ decays is carried out by performing sequential fits to the distributions of $ m({{{J/\psi}}} {{K^+}} {{K^-}} ) $ and $ m({{K^+}} {{K^-}} ) $. A fit to the $ m(J/ {{{\psi}}} {{K^+}} {{K^-}} ) $ distribution is used to estimate the yields of the background components in the $ \pm15 \;{\rm{MeV}}/c^2$ regions around the $ {B^0_s}$ and $ {{B^0}}$ nominal masses. A subsequent simultaneous fit to the $ m({{K^+}} {{K^-}} ) $ distributions of candidates falling in the two $ {{{J/\psi}}} {{K^+}} {{K^-}} $ mass windows, with the background yields fixed to their values from the first step, is performed to estimate the yield of $ {{B^0}} {\rightarrow} {{{J/\psi}}} \phi $ decays.
Figure2. (color online) Distributions of the invariant mass $m( K^+ K^- )$ in different $m( J/ \psi K^+ K^- )$ intervals with boundaries at 5220, 5265, 5295, 5330, 5400 and 5550 $ {\rm{MeV}}/c^2$. They are obtained using simulated $ B^0_s \to J/ \psi\phi$ decays and normalised to unity.

The probability density function (PDF) for the $ m({{{J/\psi}}} {{K^+}} {{K^-}} ) $ distribution of both the $ {{B^0}} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ and $ {B^0_s} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ decays is modelled by the sum of a Hypatia [26] and a Gaussian function sharing the same mean. The fraction, the width ratio between the Hypatia and Gaussian functions and the Hypatia tail parameters are determined from simulation. The $ m({{{J/\psi}}} {{K^+}} {{K^-}} ) $ shape of the $ {\varLambda _b^0} {\rightarrow} {{{J/\psi}}} {p}{{K^-}} $ background is described by a template obtained from simulation, while the combinatorial background is described by an exponential function with the slope left to vary. The PDFs of $ {{B^0}} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ and $ {B^0_s} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ decays share the same shape parameters, and the difference between the $ {B^0_s}$ and $ {{B^0}}$ masses is constrained to the known mass difference of $ 87.23\pm0.16 $ $ {\rm{MeV}}/c^2$ [21].
An unbinned maximum-likelihood fit is performed in the $ m({{{J/\psi}}} {{K^+}} {{K^-}} ) $ range 5220–5480 $ {\rm{MeV}}/c^2$ for Run 1 and Run 2 data samples separately. The yield of $ {\varLambda _b^0} {\rightarrow} {{{J/\psi}}} {p}{{K^-}} $ is estimated from a fit to the $ {{{J/\psi}}} {p}{{K^-}} $ mass distribution with one kaon interpreted as a proton. This yield is then constrained to the resulting estimate of $ 399\pm26 $ ($ 1914\pm47 $) in the $ {{{J/\psi}}} {{K^+}} {{K^-}} $ mass fit for the Run 1 (Run 2). The $ m({{{J/\psi}}} {{K^+}} {{K^-}} ) $ distributions, superimposed by the fit results, are shown in Fig. 3. Table 1 lists the obtained yields of the $ {{B^0}} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ and $ {B^0_s} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ decays, the $ {\varLambda _b^0}$ background and the combinatorial background in the full range as well as in the $ \pm15 $ $ {\rm{MeV}}/c^2$ regions around the known $ {B^0_s}$ and $ {{B^0}}$ masses.
Figure3. (color online) The distributions of $m( J/ \psi K^+ K^- )$, superimposed by the fit results, for (left) Run 1 and (right) Run 2 data samples. The top row shows the full $ B^0_s $ signals in logarithmic scale while the bottom row is presented in a reduced vertical range to make the B0 peaks visible. The violet (red) solid lines represent the $B^{0}_{(s)}\to J/ \psi K^+ K^- $ decays, the orange dotted lines show the $ \varLambda _b^0$ background and the green dotted lines show the combinatorial background.

DataCategoryFull$ B^0_s$ region$ B^0$ region
Run 1$ B^0_s \to J/ \psi K^+ K^- $55498 ± 23851859 ± 22035 ± 6
$ B^0 \to J/ \psi K^+ K^- $127 ± 190119 ± 18
$ \varLambda _b^0 \to J/ \psi{p} K^- $407 ± 2655 ± 861 ± 8
Combinatorial background758 ± 5585 ± 1194 ± 11

Run 2$ B^0_s \to J/ \psi K^+ K^- $249670 ± 504233663 ± 472153 ± 12
$ B^0 \to J/ \psi K^+ K^- $637 ± 390596 ± 38
$ \varLambda _b^0 \to J/ \psi{p} K^- $1943 ± 47261 ± 16290 ± 17
Combinatorial background2677 ± 109303 ± 20331 ± 21


Table1.Measured yields of all contributions from the fit to $ J/ \psi K^+ K^- $ mass distribution, showing the results for the full mass range and for the $ B^0_s$ and $ B^0$ regions.

Assuming the efficiency is independent of $ m({{K^+}} {{K^-}} ) $, the $ \phi $ meson lineshape from $ {{B^0}} {\rightarrow} {{{J/\psi}}} \phi $ ($ {B^0_s} {\rightarrow} {{{J/\psi}}} \phi $) decays in the $ {{B^0}}$ ($ {B^0_s}$) region is given by
$ \begin{aligned}[b]{\rm{S}}_{\phi}(m) \equiv &P_{B}P_{R}F_{R}^{2}(P_{R},P_0,d)\left(\frac{P_{R}}{m^{\prime}}\right)^{2L_{R}} {\left|A_{\phi}(m^{\prime};m_0,\Gamma_0)\right|}^2\\ &\otimes{G(m-m^{\prime};0,\sigma)}, \end{aligned} $
(1)
where $ {A}_{\phi} $ is a relativistic Breit-Wigner amplitude function [27] defined as
$ \begin{aligned}[b]{A_{\phi}}(m;m_0,\Gamma_0) =&\, \frac{1}{m_0^{2}-m^2-{\rm i}m_0\Gamma(m)}, \; \\{\Gamma(m)} = &\, \Gamma_0\left(\frac{P_{R}}{P_0}\right)^{2L_{R}+1}\frac{m_0}{m}F_{R}^{2}(P_{R},P_0,d) \;. \end{aligned} $
(2)
The parameter m ($ m^{\prime} $) denotes the reconstructed (true) $ {{K^+}} {{K^-}} $ invariant mass, $ m_0 $ and $ \Gamma_0 $ are the mass and decay width of the $ \phi(1020) $ meson, $ P_{B} $ is the $ {{{J/\psi}}} $ momentum in the $ {B^0_s}$ ($ {{B^0}}$) rest frame, $ P_{R} $ ($ P_0 $) is the momentum of the kaons in the $ {{K^+}} {{K^-}} $ ($ \phi(1020) $) rest frame, $ L_{R} $ is the orbital angular momentum between the $ {{K^+}} $ and $ {{K^-}} $, $ F_{R} $ is the Blatt-Weisskopf function, and d is the size of the decaying particle, which is set to be 1.5 $ ({\rm{GeV/c}})^{-1}\sim $ 0.3 fm [28]. The amplitude squared is folded with a Gaussian resolution function G. For $ L_{R} = 1 $, $ F_R $ has the form
$ F_{R}(P_{R},P_0,d) = \sqrt{\frac{1+(P_{0}\,d)^2}{1+(P_{R\,}d)^2}}\;, $
(3)
and depends on the momentum of the decay products $ P_{R} $ [27].
As is shown in Fig. 2, due to the correlation between the reconstructed masses of $ {{K^+}} {{K^-}} $ and $ {{{J/\psi}}} {{K^+}} {{K^-}} $, the shape of the $ m({{K^+}} {{K^-}} ) $ distribution strongly depends on the chosen $ m({{{J/\psi}}} {{K^+}} {{K^-}} ) $ range. The top two plots in Fig. 3 show the $ m({{{J/\psi}}} {{K^+}} {{K^-}} ) $ distributions for Run 1 and Run 2 separately, where a small $ {{B^0}}$ signal can be seen on the tail of a large $ {B^0_s}$ signal. Therefore, it is necessary to estimate the lineshape of the $ K^+K^- $ mass spectrum from $ {B^0_s} {\rightarrow} {{{J/\psi}}} \phi $ decays in the $ B^0 $ region. The $ m({{K^+}} {{K^-}} ) $ distribution of the $ {B^0_s} {\rightarrow} {{{J/\psi}}} \phi $ tail leaking into the $ {{B^0}}$ mass window can be effectively described by Eq. (1) with modified values of $ m_0 $ and $ \Gamma_0 $, which are extracted from an unbinned maximum-likelihood fit to the $ {B^0_s} {\rightarrow} {{{J/\psi}}} \phi $ simulation sample.
The non-$ \phi $ $ {{K^+}} {{K^-}} $ contributions to $ {{B^0}} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ ($ {B^0_s} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $) decays include that from $ a_0 $(980) [1] ($ f_0 $(980) [29]) and nonresonant $ {{K^+}} {{K^-}} $ in an S-wave configuration. The PDF for this contribution is given by
$ {\rm{S}}_{\rm non}(m) \equiv P_{B}P_{R}{F_B}^2\left(\frac{P_B}{m_B}\right)^{2} {\left|A_{R}(m)\times{{\rm e}^{{\rm i}\delta}}+A_{NR}\right|}^2\;, $
(4)
where m is the $ {{K^+}} {{K^-}} $ invariant mass, $ m_B $ is the known $ B^{0}_{(s)} $ mass [21], $ F_B $ is the Blatt-Weisskopf barrier factor of the $ B^{0}_{(s)} $ meson, $ A_{R} $ and $ A_{NR} $ represent the resonant ($ a_0 $(980) or $ f_0 $(980)) and nonresonant amplitudes, and $ \delta $ is a relative phase between them. The nonresonant amplitude $ A_{NR} $ is modelled as a constant function. The lineshape of the $ a_0 $(980) ($ f_0 $(980)) resonance can be described by a Flatté function [30] considering the coupled channels $ \eta{{{\pi}^0}} $ ($ \pi\pi $) and $ K {K} $. The Flatté functions are given by
$ A_{a_0}(m) = \dfrac{1}{m_{R}^{2}-m^2-{\rm i}(g_{\eta\pi}^2\rho_{\eta\pi}+g_{KK}^2\rho_{KK})} $
(5)
for the $ a_0 $(980) resonance and
$ A_{f_0}(m) = \dfrac{1}{m_{R}^{2}-m^2-{\rm i}m_{R}(g_{\pi\pi}\rho_{\pi\pi}+g_{KK}\rho_{KK})} $
(6)
for the $ f_0 $(980) resonance. The parameter $ m_{R} $ denotes the pole mass of the resonance for both cases. The constants $ g_{\eta\pi} $ ($ g_{\pi\pi} $) and $ g_{KK} $ are the coupling strengths of $ a_0 $(980) ($ f_0 $(980)) to the $ \eta{{{\pi}^0}} $ ($ \pi\pi $) and $ K {K} $ final states, respectively. The $ \rho $ factors are given by the Lorentz-invariant phase space:
$ \rho_{\pi\pi} = \frac{2}{3}\sqrt{1-\frac{4m_{{{{\pi}^\pm}} }^2}{m^2}}+\frac{1}{3}\sqrt{1-\frac{4m_{{{{\pi}^0}} }^2}{m^2}}\;, $
(7)
$ \rho_{KK} = \frac{1}{2}\sqrt{1-\frac{4m_{{{{K}^\pm}} }^2}{m^2}}+\frac{1}{2}\sqrt{1-\frac{4m_{{{{K}^0}} }^2}{m^2}}\;, $
(8)
$ \rho_{\eta\pi} = \sqrt{\left(1-\frac{(m_{\eta}-m_{{{{\pi}^0}} })^2}{m^2}\right)\left(1-\frac{(m_{\eta}+m_{{{{\pi}^0}} })^2}{m^2}\right)}\;. $
(9)
The parameters for the $ a_0 $(980) lineshape are $ m_{R} = 0.999\pm0.002 \;\; {\rm{GeV}}/c^2$, $ g_{\eta\pi} = 0.324\pm0.015\;\;{{{\rm{GeV}}}/c^2} $, and $ g_{KK}^2/g_{\eta\pi}^2 = 1.03\pm0.14 $, determined by the Crystal Barrel experiment [31]; the parameters for the $ f_0 $(980) lineshape are $ m_{R} = 0.9399\pm0.0063\; {\rm{GeV}}/c^2$, $ g_{\pi\pi} = 0.199\pm 0.030\; {\rm{GeV}}/c^2$, and $ g_{KK}/g_{\pi\pi} = 3.0\pm0.3 $, according to the previous analysis of $ {B^0_s} {\rightarrow} {{{J/\psi}}} {{{\pi}^+}} {{{\pi^-}}} $ decays [32].
For the $ {\varLambda _b^0} {\rightarrow} {{{J/\psi}}} {p}{{K^-}} $ background, no dependency of the $ m({{K^+}} {{K^-}} ) $ shape on $ m({{{J/\psi}}} {{K^+}} {{K^-}} ) $ is observed in simulation. Therefore, a common PDF is used to describe the $ m({{K^+}} {{K^-}} ) $ distributions in both the $ {B^0_s}$ and $ {{B^0}}$ regions. The PDF is modelled by a third-order Chebyshev polynomial function, obtained from the unbinned maximum-likelihood fit to the simulation shown in Fig. 4.
Figure4. Distribution of $m( K^+ K^- )$ in a $ \varLambda _b^0 \to J/ \psi{p} K^- $ simulation sample superimposed with a fit to a polynomial function.

In order to study the $ m({{K^+}} {{K^-}} ) $ shape of the combinatorial background in the $ {{B^0}}$ region, a BDT requirement that strongly favours background is applied to form a background-dominated sample. Simulated $ {\varLambda _b^0} {\rightarrow} {{{J/\psi}}} {p}{{K^-}} $ and $ {B^0_s} {\rightarrow} {{{J/\psi}}} \phi $ events are then injected into this sample with negative weights to subtract these contributions. The resulting $ m({{K^+}} {{K^-}} ) $ distribution is shown in Fig. 5, which comprises a $ \phi $ resonance contribution and random $ {{K^+}} {{K^-}} $ combinations, where the shape of the former is described by Eq. (1) and the latter by a second-order Chebyshev polynomial function. To validate the underlying assumptions of this procedure, the $ m({{K^+}} {{K^-}} ) $ shape has been checked to be compatible in different $ {{{J/\psi}}} {{K^+}} {{K^-}} $ mass regions and with different BDT requirements.
Figure5. (color online) $m( K^+ K^- )$ distributions of the enhanced combinatorial background in the (left) Run 1 and (right) Run 2 data samples. The $ B^0_s \to J/ \psi\phi$ and $ \varLambda _b^0 \to J/ \psi{p} K^- $ backgrounds are subtracted by injecting simulated events with negative weights.

A simultaneous unbinned maximum-likelihood fit to the four $ m({{K^+}} {{K^-}} ) $ distributions in both $ {B^0_s}$ and $ {{B^0}}$ regions of Run 1 and Run 2 data samples is performed. The $ \phi $ resonance in $ B^0_{(s)}{\rightarrow} {{{J/\psi}}} \phi $ decays is modelled by Eq. (1). The non-$ \phi $ $ {{K^+}} {{K^-}} $ contribution to $ B^0_{(s)}{\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ decays is described by Eq. (4). The tail of $ {B^0_s} {\rightarrow} {{{J/\psi}}} \phi $ decays in the $ {{B^0}}$ region is described by the extracted shape from simulation. The $ {\varLambda _b^0} $ background and the combinatorial background are described by the shapes shown in Figs. 4 and 5, respectively. All $ m({{K^+}} {{K^-}} ) $ shapes are common to the $ {{B^0}}$ and $ {B^0_s}$ regions, except that of the $ {B^0_s}$ tail, which is only needed for the $ {{B^0}}$ region. The mass and decay width of $ \phi(1020) $ meson are constrained to their PDG values [21] while the width of the $ m({{K^+}} {{K^-}} ) $ resolution function is allowed to vary in the fit. The pole mass of $ f_0 $(980) ($ a_0 $(980)) and the coupling factors, including $ g_{\pi\pi} $, $ g_{KK}/g_{\pi\pi} $, $ g_{\eta\pi}^2 $ and $ g_{KK}^2/g_{\eta\pi}^2 $, are fixed to their central values in the reference fit. The amplitude $ A_{NR} $ is allowed to vary freely, while the relative phase $ \delta $ between the $ f_0 $(980) ($ a_0 $(980)) and nonresonance amplitudes is constrained to $ -255\pm35 $ ($ -60\pm26 $) degrees, which was determined in the amplitude analysis of $ {B^0_s} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ ($ {{B^0}} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $) decays [1, 29]. The yields of the $ {\varLambda _b^0}$ background, the $ {B^0_s} {\rightarrow} {{{J/\psi}}} \phi $ tail leaking into the $ {{B^0}}$ region and the combinatorial background are fixed to the corresponding values in Table 1, while the yields of non-$ \phi $ $ {{K^+}} {{K^-}} $ for $ {B^0_s}$ and $ {{B^0}}$ decays as well as the yield of $ {B^0_s} {\rightarrow} {{{J/\psi}}} \phi $ decays take different values for Run 1 and Run 2 data samples and are left to vary in the fit.
The branching fraction $ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $, the parameter of interest to be determined by the fit, is common for Run 1 and Run 2. The yield of $ {{B^0}} {\rightarrow} {{{J/\psi}}} \phi $ decays is internally expressed according to
$ N_{{{B^0}} {\rightarrow} {{{J/\psi}}} \phi} = N_{{B^0_s} {\rightarrow} {{{J/\psi}}} \phi}\times\frac{{\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi)}{{\cal{B}}({B^0_s} {\rightarrow} {{{J/\psi}}} \phi)} \times\frac{\varepsilon_{{{B^0}} }}{\varepsilon_{{B^0_s} }}\times\frac{1}{f_s/f_d} \;, $
(10)
where the branching fraction $ {\cal{B}}({B^0_s} {\rightarrow} {{{J/\psi}}} \phi) $ has been measured by the LHCb collaboration [29], $ {\varepsilon_{{{B^0}} }}/{\varepsilon_{{B^0_s} }} $ is the efficiency ratio given in Sec. III, $ f_s/f_d $ is the ratio of the production fractions of $ B_s^0 $ and $ B^0 $ mesons in $ pp$ collisions, which has been measured at 7 $ {\rm{TeV}}$ to be $ 0.256\pm0.020 $ in the LHCb detector acceptance [33]. The effect of increasing collision energy on $ f_s/f_d $ is found to be negligible for 8 $ {\rm{TeV}}$ and a scaling factor of $ 1.068\pm0.046 $ is needed for 13$ {\rm{TeV}}$ [34]. The parameters $ {\cal{B}}({B^0_s} {\rightarrow} {{{J/\psi}}} \phi) $, $ {\varepsilon_{{{B^0}} }}/{\varepsilon_{{B^0_s} }} $ and $ f_s/f_d $ are fixed to their central values in the baseline fit and their uncertainties are propagated to $ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $ in the evaluation of systematic uncertainties.
The $ m({{K^+}} {{K^-}} ) $ distributions in the $ {B^0_s}$ and $ {{B^0}}$ regions are shown in Fig. 6 for both Run 1 and Run 2 data samples. The branching fraction $ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $ is found to be $ (6.8 \pm 3.0({\rm{stat.}}))\times10^{-8} $. The significance of the decay $ {{B^0}} {\rightarrow} {{{J/\psi}}} \phi $, over the background-only hypothesis, is estimated to be 2.3 standard deviations using Wilks' theorem [35].
Figure6. (color online) Distributions in the (top) $ B^0_s$ and (bottom) $ B^{0}$ $m( K^+ K^- )$ regions, superimposed by the fit results. The left and right columns show the results for the Run 1 and Run 2 data samples, respectively. The violet (red) solid lines are $B^{0}_{(s)}\to J/ \psi\phi$ decays, violet (red) dashed lines are non-$\phi$ $B^{0}_{(s)}\to J/ \psi K^+ K^- $ signal, green dotted lines are the combinatorial background component, and the orange dotted lines are the $ \varLambda _b^0$ background component.

To validate the sequential fit procedure, a large number of pseudosamples were generated according to the fit models for the $ m(J/\psi{{K^+}} {{K^-}} ) $ and $ m({{K^+}} {{K^-}} ) $ distributions. The model parameters were taken from the result of the baseline fit to the data. The fit procedure described above was applied to each pseudosample. The distributions of the obtained estimate of $ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $ and the corresponding pulls are found to be consistent with the reference result, which indicates that the procedure has negligible bias and its uncertainty estimate is reliable. A similar check has been performed using pseudosamples generated with an alternative model for the $ {{B^0}} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ decays, which is based on the amplitude model developed for the $ {B^0_s} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ analysis [20] and includes contributions from P-wave $ {{B^0}} {\rightarrow} {{{J/\psi}}} \phi $ decays, S-wave $ {{B^0}} {\rightarrow} {{{J/\psi}}} {{K^+}} {{K^-}} $ decays and their interference. In this case, the robustness of the fit method has also been confirmed.
V.SYSTEMATIC UNCERTAINTIES
Two categories of systematic uncertainties are considered: multiplicative uncertainties, which are associated with the normalisation factors; and additive uncertainties, which affect the determination of the yields of the $ {{B^0}} {\rightarrow} {{{J/\psi}}} \phi $ and $ {B^0_s} {\rightarrow} {{{J/\psi}}} \phi $ modes.
The multiplicative uncertainties include those propagated from the estimates of $ {\cal{B}}({B^0_s} {\rightarrow} {{{J/\psi}}} \phi) $, $ f_s/f_d $ and $ {\varepsilon_{{B^0_s} }}/{\varepsilon_{{{B^0}} }} $. Using the $ f_s/f_d $ measurement at 7$ {\rm{TeV}}$ [29, 33], $ {\cal{B}}({B^0_s} {\rightarrow} {{{J/\psi}}} \phi) $ was measured to be $(10.50\pm0.13\,({\rm{stat.}}) \pm 0.64\,({\rm{syst.}})\pm0.82\,({ {f_s}}/{ {f_d}}))\times10^{-4}$. The third uncertainty is completely anti-correlated with the uncertainty on $ f_s/f_d $, since the estimate of $ {\cal{B}}({B^0_s} {\rightarrow} {{{J/\psi}}} \phi) $ is inversely proportional to the value used for $ f_s/f_d $. Taking this correlation into account yields $ {\cal{B}}({B^0_s} {\rightarrow} {{{J/\psi}}} \phi)\times f_s/f_d = (2.69 \pm 0.17) \times 10^{-4} $ for 7 $ {\rm{TeV}}$. The luminosity-weighted average of the scaling factor for $ f_s/f_d $ for 13 $ {\rm{TeV}}$ has a relative uncertainty of 3.4%. For the efficiency ratio $ {\varepsilon_{{B^0_s} }}/{\varepsilon_{{{B^0}} }} $, its luminosity-weighted average has a relative uncertainty of 1.8%. Summing these three contributions in quadrature gives a total relative uncertainty of 7.3% on $ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $.
The additive uncertainties are due to imperfect modeling of the $ m({{{J/\psi}}} {{K^+}} {{K^-}} ) $ and $ m({{K^+}} {{K^-}} ) $ shapes of the signal and background components. To evaluate the systematic effect associated with the $ m({{{J/\psi}}} {{K^+}} {{K^-}} ) $ model of the combinatorial background, the fit procedure is repeated by replacing the exponential function for the combinatorial background with a second-order polynomial function. A large number of simulated pseudosamples were generated according to the obtained alternative model. Each pseudosample was fitted twice, using the baseline and alternative combinatorial shape, respectively. The average difference of $ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $ is $ 0.03\times10^{-8} $, which is taken as a systematic uncertainty.
In the $ m({{K^+}} {{K^-}} ) $ fit, the yields of $ {\varLambda _b^0} {\rightarrow} {{{J/\psi}}} {p}{{K^-}} $ decay, combinatorial backgrounds under the $ {{B^0}}$ and $ {B^0_s}$ peaks, and that of the $ {B^0_s}$ tail leaking into the $ {{B^0}}$ region are fixed to the values in Table 1. Varying these yields separately leads to a change of $ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $ by $ 0.05\times 10^{-8} $ for $ {\varLambda _b^0} {\rightarrow} {{{J/\psi}}} {p}{{K^-}} $, $ 0.61\times 10^{-8} $ for the combinatorial background and $ 0.24\times 10^{-8} $ for the $ {B^0_s}$ tail in the $ {{B^0}}$ region, and these are assigned as systematic uncertainties on $ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $.
The constant d in Eq. (3) is varied between 1.0 and 3.0 $ ({\rm{GeV/c}})^{-1} $. The maximum change of $ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $ is evaluated to be $ 0.01\times10^{-8} $, which is taken as a systematic uncertainty.
The $ m({{K^+}} {{K^-}} ) $ shape of the $ {B^0_s}$ tail under the $ {{B^0}}$ peak is extracted using a $ {B^0_s} {\rightarrow} {{{J/\psi}}} \phi $ simulation sample. The statistical uncertainty due to the limited size of this sample is estimated using the bootstrapping technique [36]. A large number of new data sets of the same size as the original simulation sample were formed by randomly cloning events from the original sample, allowing one event to be cloned more than once. The spread in the results of $ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $ obtained by using these pseudosamples in the analysis procedure is then adopted as a systematic uncertainty, which is evaluated to be $ 0.29\times 10^{-8} $.
In the reference model, the $ m({{K^+}} {{K^-}} ) $ shape of the $ {\varLambda _b^0} {\rightarrow} {{{J/\psi}}} {p}{{K^-}} $ background is determined from simulation, under the assumption that this shape is insensitive to the $ m({{{J/\psi}}} {{K^+}} {{K^-}} ) $ region. A sideband sample enriched with $ {\varLambda _b^0} {\rightarrow} {{{J/\psi}}} {p}{{K^-}} $ contributions is selected by requiring one kaon to have a large probability to be a proton. An alternative $ m({{K^+}} {{K^-}} ) $ shape is extracted from this sample after subtracting the random combinations, and used in the $ m({{K^+}} {{K^-}} ) $ fit. The resulting change of $ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $ is $ 0.28\times 10^{-8} $, which is assigned as a systematic uncertainty.
The $ m({{K^+}} {{K^-}} ) $ shape of the combinatorial background is represented by that of the $ {{{J/\psi}}} {{K^+}} {{K^-}} $ combinations with a BDT selection that strongly favours the background over the signal, under the assumption that this shape is insensitive to the BDT requirement. Repeating the $ m({{K^+}} {{K^-}} ) $ fit by using the combinatorial background shape obtained with two non-overlapping sub-intervals of BDT response, the result for $ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $ is found to be stable, with a maximum variation of $ 0.16\times 10^{-8} $, which is regarded as a systematic uncertainty.
In Eqs. (7)–(9), the coupling factors $ g_{\eta\pi} $, $ g_{KK}^2/g_{\eta\pi}^2 $, $ g_{\pi\pi} $ and $ g_{KK}/g_{\pi\pi} $, are fixed to their mean values from Ref. [31, 32]. The fit is repeated by varying each factor by its experimental uncertainty and the maximum variation of the branching fraction is considered for each parameter. The sum of the variations in quadrature is $ 0.06\times 10^{-8} $, which is assigned as a systematic uncertainty.
The systematic uncertainties are summarised in Table 2. The total systematic uncertainty is the sum in quadrature of all these contributions.
Multiplicative uncertaintiesValue (%)
${\cal{B}}( B^0_s \to J/ \psi\phi)$6.2
Scaling factor for $f_{s}/f_{d}$3.4
${\varepsilon_{ B^0 }}/{\varepsilon_{ B^0_s }}$1.8
Total7.3

Additive uncertaintiesValue (10?8)

$m( J/ \psi K^+ K^- )$ model of combinatorial background0.03
Fixed yields of $ \varLambda _b^0 $ in $m( K^+ K^- )$ fit0.05
Fixed yields of combinatorial background in $m( K^+ K^- )$ fit0.61
Fixed yields of $ B^0_s $ contribution in $m( K^+ K^- )$ fit0.24
Constant d0.01
$m( K^+ K^- )$ shape of $ B^0_s $ contribution0.29
$m( K^+ K^- )$ shape of $ \varLambda _b^0 $0.28
$m( K^+ K^- )$ shape of combinatorial background0.16
$m( K^+ K^- )$ shape of non-$\phi$0.06
Total0.80


Table2.Systematic uncertainties on ${\cal{B}}( B^0 \to J/ \psi\phi)$ for multiplicative and additive sources.

A profile likelihood method is used to compute the upper limit of $ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $ [37, 38]. The profile likelihood ratio as a function of $ {\cal{B}} \equiv {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $ is defined as
$ \lambda_0({\cal{B}}) \equiv \frac{L({\cal{B}},\widehat{\widehat{\nu}})}{L(\widehat{{\cal{B}}},\widehat{\nu})}\;, $
(11)
where $ \nu $ represents the set of fit parameters other than $ {\cal{B}} $, $ \widehat{{\cal{B}}} $ and $ \widehat{\nu} $ are the maximum likelihood estimators, and $ \widehat{\widehat{\nu}} $ is the profiled value of the parameter $ \nu $ that maximises L for the specified $ {\cal{B}} $. Systematic uncertainties are incorporated by smearing the profile likelihood ratio function with a Gaussian function which has a zero mean and a width equal to the total systematic uncertainty:
$ \lambda({\cal{B}}) = \int_{-\infty}^{+\infty}{\lambda_0}({\cal{B}}'){\times} G({\cal{B}}-{\cal{B}}',0,{\sigma_{\rm{sys}}}({\cal{B}}')){\rm d} {\cal{B}}' \;. $
(12)
The smeared profile likelihood ratio curve is shown in Fig. 7. The 90% confidence interval starting at $ {\cal{B}} = 0 $ is shown as the red area, which covers 90% of the integral of the $ \lambda({\cal{B}}) $ function in the physical region. The obtained upper limit on $ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) $ at 90% CL is $ 1.1\times10^{-7} $.
Figure7. (color online) Smeared profile likelihood ratio curve shown as the blue solid line, and the 90% confidence interval indicated by the red area.

VI.CONCLUSION
A search for the rare decay $ {{B^0}} {\rightarrow} {{{J/\psi}}} \phi $ has been performed using the full Run 1 and Run 2 data samples of $ pp$ collisions collected with the LHCb experiment, corresponding to an integrated luminosity of 9 $ {{\rm{fb}}^{-1}} $. A br-anching fraction of $ {\cal{B}}({{B^0}} {\rightarrow} {{{J/\psi}}} \phi) = (6.8\pm3.0\pm0.9)\times 10^{-8} $ is measured, which indicates no statistically significant excess of the decay $ {{B^0}} {\rightarrow} {{{J/\psi}}} \phi $ above the background-only hypothesis. The upper limit on its branching fraction at 90% CL is determined to be $ 1.1\times10^{-7} $, which is compatible with theoretical expectations and improved compared with the previous limit of $ 1.9\times10^{-7} $ obtained by the LHCb experiment using Run 1 data, with a corresponding integrated luminosity of 1 $ {{\rm{fb}}^{-1}} $.
ACKNOWLEDGEMENTS
We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MICINN (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); DOE NP and NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFINHH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open-source software packages on which we depend.
相关话题/Search decay