HTML
--> --> --> -->A.Theoretical framework
In our previous work, we extended the model of FSIs to baryon decays [25, 26] and suggested the discovery channels for $ \langle i;{\rm{out}} \,| Q |\, {\cal B}_{cc}; {\rm{in}}\rangle ^* = \sum_j S_{ji}^* \langle j;{\rm{out}}\,| Q | \,{\cal B}_{cc}; {\rm{in}}\rangle, $ | (1) |
$ 2 {\cal A}bs\,\langle i;{\rm{out}} \,| Q |\, {\cal B}_{cc}; {\rm{in}}\rangle = \sum_j T^*_{ji} \langle j;{\rm{out}}\,| Q | \,{\cal B}_{cc}; {\rm{in}}\rangle. $ | (2) |
$ \begin{aligned}[b] {\cal A}bs\, {\cal M}({\cal B}_{cc}\to {\cal B} {D^{(*)}}) =\;& \frac{1}{2} \sum_j \left(\prod_{k = 1}^j \int \frac{{\rm d}^3 q_k}{(2\pi)^3 2 E_k}\right)(2\pi)^4 \delta^4\left(p_{\cal B}+p_{D^{(*)}}-\sum_{k = 1}^j q_k\right)\\ &\times {\cal M}(p_{{\cal B}_{cc}}\to \{q_k\}) T^*(p_{\cal B}p_{D^{(*)}}\to \{q_k\}). \end{aligned} $ | (3) |
The weak decays
$ {\cal H}_{\rm eff} = \frac{G_{\rm F}}{\sqrt{2}} \sum\limits_{q = d,s} V^{*}_{cq} V_{uD} \big[ C_{1}({\mu}) O^{q}_{1}({\mu}) + C_{2}({\mu}) O^{q}_{2}({\mu})\Big] + {\rm{h.c.}} , $ | (4) |
$ \begin{aligned}[b]& O^{q}_{1} = ({\bar{u}}_{\alpha}D_{\beta} )_{V-A} ({\bar{q}}_{\beta} c_{\alpha})_{V-A}, \\& O^{q}_{2} = ({\bar{u}}_{\alpha}D_{\alpha})_{V-A} ({\bar{q}}_{\beta} c_{\beta} )_{V-A}, \end{aligned} $ | (5) |
The contributions induced by the above Hamiltonian in two body nonleptonic decays of
Figure1. Topological diagrams of
The short distance strong interactions are associated with the weak vertex, and this part of the contribution occurs at a high energy scale so that the perturbative calculation is still valid. Drawing on the experience of studying b baryon decays [28, 29], one can observe that the W exchange contribution can be safely neglected at a short distance. The situation differs when one considers the long distance contributions, which are thought to be dominating because of the low energy release, and the W exchange mechanism may become important [35-39]. A decay process of
Figure2. Decay process indicated at hadron level. The black square is a weak vertex at which the intermediate state
2
B.Calculation of weak vertices
As stated in the previous subsection, the first step in obtaining the amplitude is to calculate the weak production of an intermediate state. To avoid double counting, this part of the contribution is short distance dynamics in principle. At the hadron level, this part is represented by a weak vertex. At a short distance, the W exchange mechanism can safely be neglected. Therefore, the weak vertex can be calculated reliably with the factorization hypothesis. Given the Hamiltonian in Eqs. (4) and (5), the T diagram in the factorization hypothesis is factorized as follows: $ {\cal A}({\cal B}_{cc}\to {\cal B}_c {\cal M}) = \frac{G_{\rm F}}{\sqrt{2}} \sum\limits_{q = d,s} V^{*}_{cq} V_{uD} \left(C_2+C_1/N_C\right) \langle{\cal M}|({\bar{u}}_{\alpha}D_{\alpha})_{V-A}|0\rangle \langle{\cal B}_c| ({\bar{q}}_{\beta} c_{\beta} )_{V-A}|{\cal B}_{cc}\rangle $ | (6) |
$ \begin{aligned}[b] \langle {\cal B}_c(p^\prime,s_z^\prime)| (V-A)_\mu |{\cal B}_{cc}(p,s_z)\rangle =\; & \bar u(p^\prime,s^\prime_z)\left[ \gamma_\mu f_1(q^2) + {\rm i}\sigma_{\mu\nu}\frac{q^\nu}{M} f_2(q^2) +\frac{q^\mu}{M} f_3(q^2) \right] u(p,s_z) \\ &- \bar u(p^\prime,s^\prime_z)\left[ \gamma_\mu g_1(q^2) + {\rm i}\sigma_{\mu\nu}\frac{q^\nu}{M} g_2(q^2) +\frac{q^\mu}{M} g_3(q^2) \right] \gamma_5 u(p,s_z), \end{aligned} $ | (7) |
The expressions of
The decay constants of pseudoscalar and vector mesons are respectively defined as as
$ \begin{array}{l} \langle 0|A_\mu|P(q)\rangle = {\rm i}f_Pq_\mu \, , \end{array} $ | (8) |
$ \begin{array}{l} \langle 0|V_\mu|V(q)\rangle = f_Vm_V\epsilon_\mu \, , \end{array} $ | (9) |
$ W_T({\cal B}_{cc}\to{\cal B}_c P) = {\rm i}\frac{G_{\rm F}}{\sqrt{2}} V^*_{cq} V_{uD} a_1 f_P \bar u(p^\prime,s^\prime_z)\left[(M-M^\prime) f_1(m_P^2)+ (M+M^\prime) g_1(m_P^2) \gamma_5 \right] u(p,s_z)\, . $ | (10) |
$ W_C({\cal B}_{cc}\to{\cal B}_c P) = {\rm i}\frac{G_{\rm F}}{\sqrt{2}} V^*_{cq} V_{uD} a_2 f_P \bar u(p^\prime,s^\prime_z)\left[(M-M^\prime) f_1(m_P^2)+ (M+M^\prime) g_1(m_P^2) \gamma_5 \right] u(p,s_z)\, . $ | (11) |
For
$ \begin{aligned}[b] W_T({\cal B}_{cc}\to{\cal B}_c V) = &\frac{G_{\rm F}}{\sqrt{2}} V^*_{cq} V_{uD} a_1 f_V \epsilon^*_\mu \bar u(p^\prime,s^\prime_z)\left[\left(f_1(m_V^2)-\frac{M+M^\prime}{M}f_2(m_V^2)\right)\gamma^\mu +\frac{2}{M}f_2(m_V^2)p^{\prime\mu} \right. \\ &-\left.\left(g_1(m_V^2)+\frac{M-M^\prime}{M}g_2(m_V^2)\right)\gamma^\mu\gamma_5 -\frac{2}{M}g_2(m_V^2)p^{\prime\mu}\gamma_5\right] u(p,s_z)\, ,\\ W_C({\cal B}_{cc}\to{\cal B}_c V) =& \frac{G_{\rm F}}{\sqrt{2}} V^*_{cq} V_{uD} a_2 f_V \epsilon^*_\mu \bar u(p^\prime,s^\prime_z)\left[\left(f_1(m_V^2)-\frac{M+M^\prime}{M}f_2(m_V^2)\right)\gamma^\mu +\frac{2}{M}f_2(m_V^2)p^{\prime\mu}\right. \\ &-\left.\left(g_1(m_V^2)+\frac{M-M^\prime}{M}g_2(m_V^2)\right)\gamma^\mu\gamma_5 -\frac{2}{M}g_2(m_V^2)p^{\prime\mu}\gamma_5\right] u(p,s_z)\, . \end{aligned} $ | (12) |
2
C.Rescattering at long distance
The rescattering between the intermediate particles is nonperturbative dynamics by nature and very difficult to calculate. In this work, we employ the framework of FSIs and perform the calculation with the one-particle-exchange model at the hadron level [31, 35-39, 41, 42]. In thefollowing, we useAs mentioned previously and depicted in Fig. 2, the long distance contributions are calculated at the hadron level. The calculation is performed with the chiral Lagrangian. One can draw all of the leading diagrams according to the perturbation theory with only one particle exchanged, as in Fig. 3. The Lagrangian used in this study is obtained from Refs. [43-46]. The readers can refer to Ref. [25] for specific expressions.
Figure3. Leading FSI contributions to
The three diagrams of the s channel, presented in Figs. 3(g), (h) and (i), make a sizeable contribution only when the mass of each resonant state is quite close to the mass of the mother particle
$ A(m_1^2) = \frac{1}{\pi}\int_s^\infty \frac{{\cal A}bs\,A(s^\prime)}{s^\prime - m_1^2-{\rm i}\epsilon} {\rm{d}}s^\prime. $ | (13) |
2
D.Analytical expressions for diagrams
We derive the analytical expressions of the amplitudes by combining the discussions in Sections II B and II C in this subsection. To simplify the subscripts, we assign numbers to the particles in a triangle diagram, as illustrated in Fig. 4, in which the momentum flows are also defined. We useFigure4. Numbers assigned to lines in triangle diagram. The arrows define the momentum directions in our calculation.
Specifically, the absorptive part of Fig. 3(a) is given by
$ \begin{aligned}[b] {\cal A}bs\,M_{a}(K^{+};\Omega_{c}^{0};D^{*0}) =& \int\frac{|\vec{p_2}|{\rm sin}\theta {\rm d}\theta {\rm d}\varphi}{32\pi^{2}m_{\Omega_{cc}^{+}}} \frac{G_{\rm F}}{\sqrt{2}}V_{cs}^{*}V_{us}a_{1}f_{K^+} \frac{F^{2}(t,m_{D^{*0}})}{t-m_{D^{*0}}^{2}+{\rm i}m_{D^{*0}}\Gamma_{D^{*0}}}g_{D^{*0}D_s^{+}K^+}p_{2\alpha}\\&\times\overline{u}(p_{6},s^{\prime}_{z}) \left[f_{1\Omega_{c}^{0}\Xi^{0}D^{*0}}\gamma_{\mu}(-g^{\mu\alpha}+\frac{p_{4}^{\mu}p_{4}^{\alpha}}{m_{D^{*0}}^{2}}) +\frac{f_{2\Omega_{c}^{0}\Xi^{0}D^{*0}}}{m_{\Omega_{c}^{0}} +m_{\Xi^{0}}}\sigma_{\mu\nu}{\rm i}p_{4}^{\mu} (-g^{\nu\alpha}+\frac{p_{4}^{\nu}p_{4}^{\alpha}}{m_{D^{*0}}^{2}})\right]\\&\times(/\kern-0.57 em {{p_{3}}}+m_{\Omega_{c}^{0}}) \left[(m_{\Omega_{cc}^{+}}-m_{\Omega_{c}^{0}})f_{1}(m^{2}_{K^+}) +(m_{\Omega_{cc}^{+}}+m_{\Omega_{c}^{0}})g_{1}(m^{2}_{k^+})\gamma_{5}\right] u(p_{1},s_{z}). \end{aligned} $ | (14) |
$ F(t,m) = \left(\frac{\Lambda^2-m^2}{\Lambda^2-t}\right)^n, $ | (15) |
$ \Lambda = m + \eta \Lambda_{\rm QCD} $ | (16) |
Similarly, the absorptive part of Fig. 3(d) is given as
$ \begin{aligned}[b] {\cal A}bs\,M_{d}(K^{*+};\Omega_{c}^{0};D^{0}) = & -{\rm i}\int\frac{|\vec{p_2}|{\rm sin}\theta {\rm d}\theta {\rm d}\varphi}{32\pi^{2}m_{\Omega_{cc}^{+}}} \frac{G_{\rm F}}{\sqrt{2}}V_{cs}^{*}V_{us}a_{1}f_{K^{*+}} \frac{F^{2}(t,m_{D^{0}})}{t-m_{D^{0}}^{2}+{\rm i}m_{D^{0}}\Gamma_{D^{0}}} g_{\Omega_c^{0}\Xi^{0}D^{0}} g_{D_s^{+}D^{0}K^{*+}}(p_{5\alpha}+p_{4\alpha})\\&\times\overline{u}(p_{6},s^{\prime}_{z})\gamma_{5}(/\kern-0.57 em {{p_{3}}}+m_{\Omega_{c}^{0}}) \left(-g^{\mu\alpha}+\frac{p_{2}^{\mu}p_{2}^{\alpha}}{m_{K^{*+}}^{2}}\right)\\&\times\left[ \left(f_{1}(m^2_{K^{*+}}) -\frac{m_{\Omega_{cc}^{+}}+m_{\Omega_{c}^{0}}}{m_{\Omega_{cc}^{+}}}{f_{2}(m^2_{K^{*+}})}\right)\gamma_{\mu}\right. +\frac{2}{m_{\Omega_{cc}^+}}{f_{2}(m^2_{K^{*+}})}p_{3\mu}\\ &\left.-\left (g_{1}\left(m^2_{K^{*+}}\right)+\frac{m_{\Omega_{cc}^{+}}-m_{\Omega_{c}^{0}}}{m_{\Omega_{cc}^{+}}}g_{2}\left(m^2_{K^{*+}}\right)\right) \gamma_{\mu}\gamma_{5}\right.\\& \left.-\frac{2}{m_{\Omega_{cc}^+}}g_{2}\left(m^2_{K^{*+}}\right)p_{3\mu}\gamma_{5} \right] u(p_{1},s_{z}), \end{aligned} $ | (17) |
$ \begin{aligned}[b] {\cal A}(\Omega_{cc}^{+}\to\Xi^{0} D_s^+) =& \;{\rm i} {\cal A}bs[ M_{a}(K^{+};\Omega_{c}^{0};D^{*0})+M_{b}(\phi;\Xi_c^+;D_s^{+})+M_{b}(\phi;\Xi_c^{\prime +};D_s^{+})+M_{c}(\phi;\Xi_c^+;\Xi^0)+M_{c}(\phi;\Xi_c^{\prime +};\Xi^0)\\ &+M_{c}(\eta_1;\Xi_c^+;\Xi^0)+M_{c}(\eta_1;\Xi_c^{\prime +};\Xi^0)+M_{c}(\eta_8;\Xi_c^+;\Xi^0)+M_{c}(\eta_8;\Xi_c^{\prime +};\Xi^0)+M_{d}(K^{*+};\Omega_{c}^{0};D^{0})\\ &+M_{e}(\eta_1;\Xi_c^{+}; D_s^{*+})+M_{e}(\eta_1;\Xi_c^{\prime +};D_s^{*+})+M_{e}(\eta_8;\Xi_c^{+};D_s^{*+})+M_{e}(\eta_8;\Xi_c^{\prime +};D_s^{*+})\\ &+M_{f}(\pi^+;\Xi_c^0;\Xi^-)+M_{f}(\pi^+;\Xi_c^{\prime 0};\Xi^-)+M_{f}(\rho^+;\Xi_c^0;\Xi^-)+M_{f}(\rho^+;\Xi_c^{\prime 0};\Xi^-)]. \end{aligned} $ | (18) |
$ \Gamma({\cal B}_{cc}\to {\cal B}D^{(*)}) = \frac{\sqrt{(m_{{\cal B}_{cc}}^2-(m_{\cal B}+m_{D^{(*)}})^2)((m_{{\cal B}_{cc}}^2-(m_{\cal B}-m_{D^{(*)}})^2}}{32\pi m_{{\cal B}_{cc}}^3}\sum_{\rm pol.}|{\cal A}({\cal B}_{cc}\to {\cal B}D^{(*)})|^2, $ | (19) |
The calculation of the short distance contribution requires the decay constants of several pseudoscalar and vector mesons, which are presented in Table 1. Furthermore, numerous strong couplings are required, most of which are obtained from Refs. [31, 47-53]. Certain strong couplings that cannot be found in literature are calculated under the
130 | 156 | 163 | 152 | 216 | 217 | 195 | 233 |
Table1.Decay constants of light pseudoscalar and vector mesons obtained from Refs. [54, 55] (in units of MeV).
Now we can obtain the numerical values of the related decays. We use the lifetime
Channel | CKM | Channel | CKM | |||
CF | CF | |||||
SCS | SCS | |||||
SCS | SCS | |||||
DCS | DCS |
Table2.Results for branching ratios of
In Tables 3 and 4 the decay widths of
Channel | CKM | Contributions | Channel | CKM | Contributions | |||
CF | CF | |||||||
CF | CF | |||||||
CF | B | CF | B | |||||
CF | B | CF | B | |||||
SCS | B | SCS | ||||||
SCS | SCS | |||||||
SCS | SCS | |||||||
SCS | SCS | B | ||||||
DCS | DCS |
Table3.Results for branching ratios of
Channel | CKM | Contributions | Channels | CKM | Contributions | |||
CF | CF | |||||||
SCS | B | SCS | ||||||
SCS | SCS | |||||||
SCS | SCS | |||||||
SCS | SCS | B | ||||||
DCS | DCS | |||||||
DCS | B | DCS | B | |||||
DCS | B | DCS | B | |||||
DCS | B | DCS | B |
Table4.The same as Table 3 but for decay widths of
$ \begin{aligned}[b] &{\cal BR}(\Xi_{cc}^{+}\rightarrow\Lambda D^{*+})\in [0.38 \%, 2.63 \%],\\&{\cal BR}(\Xi_{cc}^{+}\rightarrow\Sigma^{0} D^{*+})\in [0.45 \%, 3.16 \%]. \end{aligned} $ | (20) |
$ \begin{aligned}[b] & {\cal BR}(\Omega_{cc}^{+}\rightarrow\Xi^{0} D^{*+}) \in [0.27 \%, 1.03 \%],\\& {\cal BR}(\Omega_{cc}^{+}\rightarrow\Xi^{0} D^{+}) \in [0.07 \%, 0.44 \%],\\& {\cal BR}(\Omega_{cc}^{+}\rightarrow\Sigma^{0} D^{*+}) \in [0.06 \%, 0.45 \%]. \end{aligned} $ | (21) |
$ \frac{\Gamma(\Omega_{cc}^+\to \Xi^0 D^+)}{\Gamma(\Omega_{cc}^+ \to \Sigma^+ D^0)}\sim 10. $ | (22) |
$ \frac{V_{cs}V^*_{ud}}{V_{cs}V^*_{us}}\sim 4.4. $ | (23) |
$ \begin{aligned}[b] {\cal A}bs\,M_{b}(\phi;\Xi_c^+;D_s^{+}) =\;& {\rm i}\int\frac{|\vec{p_2}|{\rm sin}\theta {\rm d}\theta {\rm d}\varphi}{32\pi^{2}m_{\Omega_{cc}^{+}}} \frac{G_{\rm F}}{\sqrt{2}}V_{cs}^{*}V_{us}a_{2}f_{\phi} \frac{F^{2}(t,m_{D_s^{+}})}{t-m_{D_s^{+}}^{2}+{\rm i}m_{D_s^{+}}\Gamma_{D_s^{+}}} g_{\Xi_c^{+}\Xi^0D_s^{+}} g_{D_s^+D_s^+\phi}(p_{4\alpha}+p_{5\alpha})\\ &\times\overline{u}(p_{6},s^{\prime}_{z})\gamma_{5}(/\kern-0.57 em {{p_{3}}}+m_{\Xi_{c}^{+}}) \left(-g^{\mu\alpha}+\frac{p_{2}^{\mu}p_{2}^{\alpha}}{m_{\phi}^{2}}\right)\times\left[ \left(f_{1}(m^2_{\phi}) -\frac{m_{\Omega_{cc}^{+}}+m_{\Xi_{c}^{+}}}{m_{\Omega_{cc}^{+}}}{f_{2}\left(m^2_{\phi}\right)}\right)\gamma_{\mu}\right. +\frac{2}{m_{\Omega_{cc}^+}}{f_{2}(m^2_{\phi})}p_{3\mu}\\&\left.-\left (g_{1}(m^2_{\phi})+\frac{m_{\Omega_{cc}^{+}}-m_{\Xi_{c}^{+}}}{m_{\Omega_{cc}^{+}}}{g_{2}(m^2_{\phi})}\right) \gamma_{\mu}\gamma_{5}\right. \left.-\frac{2}{m_{\Omega_{cc}^+}}{g_{2}(m^2_{\phi})}p_{3\mu}\gamma_{5} \right] u(p_{1},s_{z}). \end{aligned} \tag{A1}$ |
$\tag{A2} \begin{aligned}[b] {\cal A}bs\,M_{b}(\phi;\Xi_c^{\prime +};D_s^{+}) = & \;{\rm i}\int\frac{|\vec{p_2}|{\rm sin}\theta {\rm d}\theta {\rm d}\varphi}{32\pi^{2}m_{\Omega_{cc}^{+}}} \frac{G_{\rm F}}{\sqrt{2}}V_{cs}^{*}V_{us}a_{2}f_{\phi} \frac{F^{2}(t,m_{D_s^+})}{t-m_{D_s^+}^{2}+{\rm i}m_{D_s^{+}}\Gamma_{D_s^{+}}} g_{\Xi_c^{\prime+}\Xi^0D_s^{+}} g_{D_s^+D_s^+\phi}(p_{4\alpha}+p_{5\alpha})\\&\times\overline{u}(p_{6},s^{\prime}_{z})\gamma_{5}(/\kern-0.57 em {{p_{3}}}+m_{\Xi_{c}^{\prime +}}) \left(-g^{\mu\alpha}+\frac{p_{2}^{\mu}p_{2}^{\alpha}}{m_{\phi}^{2}}\right)\times\left[ \left(f_{1}\left(m^2_{\phi}\right)-\frac{m_{\Omega_{cc}^{+}}+m_{\Xi_{c}^{\prime+}}}{m_{\Omega_{cc}^{+}}}{f_{2}\left(m^2_{\phi}\right)}\right)\gamma_{\mu}\right.+\frac{2}{m_{\Omega_{cc}^+}}{f_{2}\left(m^2_{\phi}\right)}p_{3\mu}\\ &\left.-\left (g_{1}\left(m^2_{\phi}\right)+\frac{m_{\Omega_{cc}^{+}}-m_{\Xi_{c}^{\prime+}}}{m_{\Omega_{cc}^{+}}}{g_{2}\left(m^2_{\phi}\right)}\right) \gamma_{\mu}\gamma_{5}\right. \left.-\frac{2}{m_{\Omega_{cc}^+}}{g_{2}\left(m^2_{\phi}\right)}p_{3\mu}\gamma_{5} \right] u(p_{1},s_{z}). \end{aligned} $ |
$ \tag{A3}\begin{aligned}[b] {\cal A}bs\,M_{e}(\eta_1;\Xi_c^{+}; D_s^{*+}) = & -\int\frac{|\vec{p_2}|{\rm sin}\theta {\rm d}\theta {\rm d}\varphi}{32\pi^{2}m_{\Omega_{cc}^{+}}} \frac{G_{\rm F}}{\sqrt{2}}V_{cs}^{*}V_{us}a_{2}f_{\eta_1} \frac{F^{2}(t,m_{D_s^{*+}})}{t-m_{D_s^{*+}}^{2}+{\rm i}m_{D_s^{*+}}\Gamma_{D_s^{*+}}}g_{D_s^{*+}D_s^{+}\eta_1}p_{2\alpha}\\&\times\overline{u}(p_{6},s^{\prime}_{z}) \left[f_{1\Xi_{c}^{+}\Xi^{0}D_s^{*+}}\gamma_{\mu}\left(-g^{\mu\alpha}+\frac{p_{4}^{\mu}p_{4}^{\alpha}}{m_{D_s^{*+}}^{2}}\right) +\frac{f_{2\Xi_{c}^{+}\Xi^{0}D_s^{*+}}}{m_{\Xi_{c}^{+}} +m_{\Xi^{0}}}\sigma_{\mu\nu}{\rm i}p_{4}^{\mu} \left(-g^{\nu\alpha}+\frac{p_{4}^{\nu}p_{4}^{\alpha}}{m_{D_s^{*+}}^{2}}\right)\right]\\&\times(/\kern-0.57 em {{p_{3}}}+m_{\Xi_{c}^{+}}) \left[(m_{\Omega_{cc}^{+}}-m_{\Xi_{c}^{+}})f_{1}(m^{2}_{\eta_1}) +(m_{\Omega_{cc}^{+}}+m_{\Xi_{c}^{+}})g_{1}(m^{2}_{\eta_1})\gamma_{5}\right] u(p_{1},s_{z}), \end{aligned} $ |
$ \tag{A4}\begin{aligned}[b] {\cal A}bs\,M_{e}(\eta_1;\Xi_c^{\prime +};D_s^{*+}) = & -\int\frac{|\vec{p_2}|{\rm sin}\theta {\rm d}\theta {\rm d}\varphi}{32\pi^{2}m_{\Omega_{cc}^{+}}} \frac{G_{\rm F}}{\sqrt{2}}V_{cs}^{*}V_{us}a_{2}f_{\eta_1} \frac{F^{2}(t,m_{D_s^{*+}})}{t-m_{D_s^{*+}}^{2}+{\rm i}m_{D_s^{*+}}\Gamma_{D_s^{*+}}}g_{D_s^{*+}D_s^{+}\eta_1}p_{2\alpha}\\&\times\overline{u}(p_{6},s^{\prime}_{z}) \left[f_{1\Xi_{c}^{\prime +}\Xi^{0}D_s^{*+}}\gamma_{\mu}\left(-g^{\mu\alpha}+\frac{p_{4}^{\mu}p_{4}^{\alpha}}{m_{D_s^{*+}}^{2}}\right) +\frac{f_{2\Xi_{c}^{\prime +}\Xi^{0}D_s^{*+}}}{m_{\Xi_{c}^{\prime +}} +m_{\Xi^{0}}}\sigma_{\mu\nu}{\rm i}p_{4}^{\mu} \left(-g^{\nu\alpha}+\frac{p_{4}^{\nu}p_{4}^{\alpha}}{m_{D_s^{*+}}^{2}}\right)\right]\\&\times(/\kern-0.57 em {{p_{3}}}+m_{\Xi_{c}^{\prime +}}) \left[(m_{\Omega_{cc}^{+}}-m_{\Xi_{c}^{\prime +}})f_{1}(m^{2}_{\eta_1}) +(m_{\Omega_{cc}^{+}}+m_{\Xi_{c}^{\prime +}})g_{1}(m^{2}_{\eta_1})\gamma_{5}\right] u(p_{1},s_{z}), \end{aligned} $ |
$\tag{A5} \begin{aligned}[b] {\cal A}bs\,M_{e}(\eta_8;\Xi_c^{+};D_s^{*+}) = & -\int\frac{|\vec{p_2}|{\rm sin}\theta {\rm d}\theta {\rm d}\varphi}{32\pi^{2}m_{\Omega_{cc}^{+}}} \frac{G_{\rm F}}{\sqrt{2}}V_{cs}^{*}V_{us}a_{2}f_{\eta_8} \frac{F^{2}(t,m_{D_s^{*+}})}{t-m_{D_s^{*+}}^{2}+{\rm i}m_{D_s^{*+}}\Gamma_{D_s^{*+}}}g_{D_s^{*+}D_s^{+}\eta_8}p_{2\alpha}\\&\times\overline{u}(p_{6},s^{\prime}_{z}) \left[f_{1\Xi_{c}^{+}\Xi^{0}D_s^{*+}}\gamma_{\mu}\left(-g^{\mu\alpha}+\frac{p_{4}^{\mu}p_{4}^{\alpha}}{m_{D_s^{*+}}^{2}}\right) +\frac{f_{2\Xi_{c}^{+}\Xi^{0}D_s^{*+}}}{m_{\Xi_{c}^{+}} +m_{\Xi^{0}}}\sigma_{\mu\nu}{\rm i}p_{4}^{\mu} \left(-g^{\nu\alpha}+\frac{p_{4}^{\nu}p_{4}^{\alpha}}{m_{D_s^{*+}}^{2}}\right)\right]\\ &\times(/\kern-0.57 em {{p_{3}}}+m_{\Xi_{c}^{+}}) \left[(m_{\Omega_{cc}^{+}}-m_{\Xi_{c}^{+}})f_{1}(m^{2}_{\eta_8}) +(m_{\Omega_{cc}^{+}}+m_{\Xi_{c}^{+}})g_{1}(m^{2}_{\eta_8})\gamma_{5}\right] u(p_{1},s_{z}), \end{aligned} $ |
$\tag{A6} \begin{aligned}[b] {\cal A}bs\,M_{e}(\eta_8;\Xi_c^{\prime +};D_s^{*+}) = & -\int\frac{|\vec{p_2}|{\rm sin}\theta {\rm d}\theta {\rm d}\varphi}{32\pi^{2}m_{\Omega_{cc}^{+}}} \frac{G_{\rm F}}{\sqrt{2}}V_{cs}^{*}V_{us}a_{2}f_{\eta_8} \frac{F^{2}(t,m_{D_s^{*+}})}{t-m_{D_s^{*+}}^{2}+{\rm i}m_{D_s^{*+}}\Gamma_{D_s^{*+}}}g_{D_s^{*+}D_s^{+}\eta_8}p_{2\alpha}\\&\times\overline{u}(p_{6},s^{\prime}_{z}) \left[f_{1\Xi_{c}^{\prime +}\Xi^{0}D_s^{*+}}\gamma_{\mu}\left(-g^{\mu\alpha}+\frac{p_{4}^{\mu}p_{4}^{\alpha}}{m_{D_s^{*+}}^{2}}\right) +\frac{f_{2\Xi_{c}^{\prime +}\Xi^{0}D_s^{*+}}}{m_{\Xi_{c}^{\prime +}} +m_{\Xi^{0}}}\sigma_{\mu\nu}{\rm i}p_{4}^{\mu} \left(-g^{\nu\alpha}+\frac{p_{4}^{\nu}p_{4}^{\alpha}}{m_{D_s^{*+}}^{2}}\right)\right]\\&\times(/\kern-0.57 em {{p_{3}}}+m_{\Xi_{c}^{\prime +}}) \left[(m_{\Omega_{cc}^{+}}-m_{\Xi_{c}^{\prime +}})f_{1}(m^{2}_{\eta_8}) +(m_{\Omega_{cc}^{+}}+m_{\Xi_{c}^{\prime +}})g_{1}(m^{2}_{\eta_8})\gamma_{5}\right] u(p_{1},s_{z}), \end{aligned} $ |
$\tag{A7} \begin{aligned}[b] {\cal A}bs\,M_{c}(\phi;\Xi_c^+;\Xi^0) =& \;-{\rm i}\int\frac{|\vec{p_2}|{\rm sin}\theta {\rm d}\theta {\rm d}\varphi}{32\pi^{2}m_{\Omega_{cc}^{+}}} \frac{G_{F}}{\sqrt{2}}V_{cs}^{*}V_{us}a_{2}f_{\phi} \frac{F^{2}(t,m_{\Xi^{0}})}{t-m_{\Xi^{0}}^{2}+{\rm i}m_{\Xi^{0}}\Gamma_{\Xi^{0}}}g_{\Xi_c^{+}\Xi^0D_s^{+}}\\&\times\overline{u}(p_{5},s^{\prime}_{z}) \left[ f_{1\Xi^0\Xi^0\phi}\gamma_{\mu} \left(-g^{\alpha\mu}+\frac{p_{2}^{\alpha}p_{2}^{\mu}}{m_{\phi}^{2}}\right) +\frac{f_{2\Xi^{0}\Xi^{0}\phi}}{m_{\Xi^{0}}+m_{\Xi^{0}}}\sigma_{\mu\nu}(-ip_{2}^{\mu}) \left(-g^{\alpha\nu}+\frac{p_{2}^{\alpha}p_{2}^{\nu}}{m_{\phi}^{2}}\right)\right]\\ &\times(/\kern-0.57 em {{p_{4}}}+m_{\Xi^{0}})\gamma_{5}(/\kern-0.57 em {{p_{3}}}+m_{\Xi_c^{+}}) \left[ \left(f_{1}(m^2_{\phi}) -\frac{m_{\Omega_{cc}^{+}}+m_{\Xi_{c}^{+}}}{m_{\Omega_{cc}^{+}}}{f_{2}(m^2_{\phi})}\right)\gamma_{\alpha}\right. +\frac{2}{m_{\Omega_{cc}^+}}{f_{2}(m^2_{\phi})}p_{3\alpha}\\& \left.-\left (g_{1}(m^2_{\phi})+\frac{m_{\Omega_{cc}^{+}}-m_{\Xi_{c}^{+}}}{m_{\Omega_{cc}^{+}}}{g_{2}(m^2_{\phi})}\right) \gamma_{\alpha}\gamma_{5}\right. \left.-\frac{2}{m_{\Omega_{cc}^+}}{g_{2}(m^2_{\phi})}p_{3\alpha}\gamma_{5} \right] u(p_{1},s_{z}). \end{aligned} $ |
$ \tag{A8}\begin{aligned}[b] {\cal A}bs\,M_{c}(\phi;\Xi_c^{\prime +};\Xi^0) = &\; -{\rm i}\int\frac{|\vec{p_2}|{\rm sin}\theta {\rm d}\theta {\rm d}\varphi}{32\pi^{2}m_{\Omega_{cc}^{+}}} \frac{G_{\rm F}}{\sqrt{2}}V_{cs}^{*}V_{us}a_{2}f_{\phi} \frac{F^{2}(t,m_{\Xi^{0}})}{t-m_{\Xi^{0}}^{2}+{\rm i}m_{\Xi^{0}}\Gamma_{\Xi^{0}}}g_{\Xi_c^{\prime +}\Xi^0D_s^{+}}\\&\times\overline{u}(p_{5},s^{\prime}_{z}) \left[ f_{1\Xi^0\Xi^0\phi}\gamma_{\mu} \left(-g^{\alpha\mu}+\frac{p_{2}^{\alpha}p_{2}^{\mu}}{m_{\phi}^{2}}\right) +\frac{f_{2\Xi^{0}\Xi^{0}\phi}}{m_{\Xi^{0}}+m_{\Xi^{0}}}\sigma_{\mu\nu}(-ip_{2}^{\mu}) \left(-g^{\alpha\nu}+\frac{p_{2}^{\alpha}p_{2}^{\nu}}{m_{\phi}^{2}}\right)\right]\\ &\times(/\kern-0.57 em {{p_{4}}}+m_{\Xi^{0}})\gamma_{5}(/\kern-0.57 em {{p_{3}}}+m_{\Xi_c^{\prime +}}) \left[ \left(f_{1}(m^2_{\phi}) -\frac{m_{\Omega_{cc}^{+}}+m_{\Xi_{c}^{\prime +}}}{m_{\Omega_{cc}^{+}}}{f_{2}(m^2_{\phi})}\right)\gamma_{\alpha}\right. +\frac{2}{m_{\Omega_{cc}^+}}{f_{2}(m^2_{\phi})}p_{3\alpha}\\& \left.-\left (g_{1}(m^2_{\phi})+\frac{m_{\Omega_{cc}^{+}}-m_{\Xi_{c}^{\prime +}}}{m_{\Omega_{cc}^{+}}}{g_{2}(m^2_{\phi})}\right) \gamma_{\alpha}\gamma_{5}\right.\left.-\frac{2}{m_{\Omega_{cc}^+}}{g_{2}(m^2_{\phi})}p_{3\alpha}\gamma_{5} \right] u(p_{1},s_{z}). \end{aligned} $ |
$ \tag{A9}\begin{aligned}[b] {\cal A}bs\,M_{c}(\eta_1;\Xi_c^+;\Xi^0) = & {\rm i}\int\frac{|\vec{p_2}|{\rm sin}\theta {\rm d}\theta {\rm d}\varphi}{32\pi^{2}m_{\Omega_{cc}^{+}}} \frac{G_{F}}{\sqrt{2}}V_{cs}^{*}V_{us}a_{2}f_{\eta_1} \frac{F^{2}(t,m_{\Xi^{0}})}{t-m_{\Xi^{0}}^{2}+{\rm i}m_{\Xi^{0}}\Gamma_{\Xi^{0}}} g_{\Xi^{0}\Xi^{0}\eta_1} g_{\Xi_c^{+}\Xi^{0}D_s^+}\\&\times\overline{u}(p_{5},s^{\prime}_{z})\gamma_{5}(/\kern-0.57 em {{p_{4}}}+m_{\Xi^{0}}) \gamma_{5} (/\kern-0.57 em {{p_{3}}}+m_{\Xi_c^{+}}) \\&\times\left[(m_{\Omega_{cc}^{+}}-m_{\Xi_{c}^{+}})f_{1}(m^{2}_{\eta_1}) +(m_{\Omega_{cc}^{+}}+m_{\Xi_{c}^{+}})g_{1}(m^{2}_{\eta_1})\gamma_{5}\right]u(p_{1},s_{z}). \end{aligned} $ |
$\tag{A10} \begin{aligned}[b] {\cal A}bs\,M_{c}(\eta_1;\Xi_c^{\prime +};\Xi^0) = &\; {\rm i}\int\frac{|\vec{p_2}|{\rm sin}\theta {\rm d}\theta {\rm d}\varphi}{32\pi^{2}m_{\Omega_{cc}^{+}}} \frac{G_{\rm F}}{\sqrt{2}}V_{cs}^{*}V_{us}a_{2}f_{\eta_1} \frac{F^{2}(t,m_{\Xi^{0}})}{t-m_{\Xi^{0}}^{2}+{\rm i}m_{\Xi^{0}}\Gamma_{\Xi^{0}}} g_{\Xi^{0}\Xi^{0}\eta_1} g_{\Xi_c^{\prime +}\Xi^{0}D_s^+}\\&\times\overline{u}(p_{5},s^{\prime}_{z})\gamma_{5}(/\kern-0.57 em {{p_{4}}}+m_{\Xi^{0}}) \gamma_{5} (/\kern-0.57 em {{p_{3}}}+m_{\Xi_c^{\prime +}}) \\&\times\left[(m_{\Omega_{cc}^{+}}-m_{\Xi_{c}^{\prime +}})f_{1}(m^{2}_{\eta_1}) +(m_{\Omega_{cc}^{+}}+m_{\Xi_{c}^{\prime +}})g_{1}(m^{2}_{\eta_1})\gamma_{5}\right]u(p_{1},s_{z}). \end{aligned} $ |
$\tag{A11} \begin{aligned}[b] {\cal A}bs\,M_{c}(\eta_8;\Xi_c^+;\Xi^0) =& \;{\rm i}\int\frac{|\vec{p_2}|{\rm sin}\theta {\rm d}\theta {\rm d}\varphi}{32\pi^{2}m_{\Omega_{cc}^{+}}} \frac{G_{\rm F}}{\sqrt{2}}V_{cs}^{*}V_{us}a_{2}f_{\eta_8} \frac{F^{2}(t,m_{\Xi^{0}})}{t-m_{\Xi^{0}}^{2}+{\rm i}m_{\Xi^{0}}\Gamma_{\Xi^{0}}} g_{\Xi^{0}\Xi^{0}\eta_8} g_{\Xi_c^{+}\Xi^{0}D_s^+}\\&\times\overline{u}(p_{5},s^{\prime}_{z})\gamma_{5}(/\kern-0.57 em {{p_{4}}}+m_{\Xi^{0}}) \gamma_{5} (/\kern-0.57 em {{p_{3}}}+m_{\Xi_c^{+}}) \\&\times\left[(m_{\Omega_{cc}^{+}}-m_{\Xi_{c}^{+}})f_{1}(m^{2}_{\eta_8}) +(m_{\Omega_{cc}^{+}}+m_{\Xi_{c}^{+}})g_{1}(m^{2}_{\eta_8})\gamma_{5}\right]u(p_{1},s_{z}). \end{aligned} $ |
$ \tag{A12}\begin{aligned}[b] {\cal A}bs\,M_{c}(\eta_8;\Xi_c^{\prime +};\Xi^0) = & \;{\rm i}\int\frac{|\vec{p_2}|{\rm sin}\theta {\rm d}\theta {\rm d}\varphi}{32\pi^{2}m_{\Omega_{cc}^{+}}} \frac{G_{\rm F}}{\sqrt{2}}V_{cs}^{*}V_{us}a_{2}f_{\eta_8} \frac{F^{2}(t,m_{\Xi^{0}})}{t-m_{\Xi^{0}}^{2}+{\rm i}m_{\Xi^{0}}\Gamma_{\Xi^{0}}} g_{\Xi^{0}\Xi^{0}\eta_8} g_{\Xi_c^{\prime +}\Xi^{0}D_s^+}\\&\times\overline{u}(p_{5},s^{\prime}_{z})\gamma_{5}(/\kern-0.57 em {{p_{4}}}+m_{\Xi^{0}}) \gamma_{5} (/\kern-0.57 em {{p_{3}}}+m_{\Xi_c^{\prime +}}) \\&\times\left[(m_{\Omega_{cc}^{+}}-m_{\Xi_{c}^{\prime +}})f_{1}(m^{2}_{\eta_8}) +(m_{\Omega_{cc}^{+}}+m_{\Xi_{c}^{\prime +}})g_{1}(m^{2}_{\eta_8})\gamma_{5}\right]u(p_{1},s_{z}). \end{aligned} $ |
$\tag{A13} \begin{aligned}[b] {\cal A}bs\,M_{f}(\pi^+;\Xi_c^0;\Xi^-) =& \;{\rm i}\int\frac{|\vec{p_2}|{\rm sin}\theta {\rm d}\theta {\rm d}\varphi}{32\pi^{2}m_{\Omega_{cc}^{+}}} \frac{G_{\rm F}}{\sqrt{2}}V_{cd}^{*}V_{ud}a_{2}f_{\pi^+} \frac{F^{2}(t,m_{\Xi^{-}})}{t-m_{\Xi^{-}}^{2}+{\rm i}m_{\Xi^{-}}\Gamma_{\Xi^{-}}} g_{\Xi^{0}\Xi^{-}\pi^+} g_{\Xi_c^{0}\Xi^{-}D_s^+}\\&\times\overline{u}(p_{5},s^{\prime}_{z})\gamma_{5}(/\kern-0.57 em {{p_{4}}}+m_{\Xi^{-}}) \gamma_{5} (/\kern-0.57 em {{p_{3}}}+m_{\Xi_c^{0}}) \\&\times\left[(m_{\Omega_{cc}^{+}}-m_{\Xi_{c}^{0}})f_{1}(m^{2}_{\pi^+}) +(m_{\Omega_{cc}^{+}}+m_{\Xi_{c}^{0}})g_{1}(m^{2}_{\pi^+})\gamma_{5}\right]u(p_{1},s_{z}). \end{aligned} $ |
$\tag{A14} \begin{aligned}[b] {\cal A}bs\,M_{f}(\pi^+;\Xi_c^{\prime 0};\Xi^-) = & \;{\rm i}\int\frac{|\vec{p_2}|{\rm sin}\theta {\rm d}\theta {\rm d}\varphi}{32\pi^{2}m_{\Omega_{cc}^{+}}} \frac{G_{\rm F}}{\sqrt{2}}V_{cd}^{*}V_{ud}a_{2}f_{\pi^+} \frac{F^{2}(t,m_{\Xi^{-}})}{t-m_{\Xi^{-}}^{2}+{\rm i}m_{\Xi^{-}}\Gamma_{\Xi^{-}}} g_{\Xi^{0}\Xi^{-}\pi^+} g_{\Xi_c^{\prime 0}\Xi^{-}D_s^+}\\&\times\overline{u}(p_{5},s^{\prime}_{z})\gamma_{5}(/\kern-0.57 em {{p_{4}}}+m_{\Xi^{-}}) \gamma_{5} (/\kern-0.57 em {{p_{3}}}+m_{\Xi_c^{\prime 0}}) \\&\times\left[(m_{\Omega_{cc}^{+}}-m_{\Xi_{c}^{\prime 0}})f_{1}(m^{2}_{\pi^+}) +(m_{\Omega_{cc}^{+}}+m_{\Xi_{c}^{\prime 0}})g_{1}(m^{2}_{\pi^+})\gamma_{5}\right]u(p_{1},s_{z}). \end{aligned} $ |
$\tag{A15} \begin{aligned}[b] {\cal A}bs\,M_{f}(\rho^+;\Xi_c^0;\Xi^-) = & -{\rm i}\int\frac{|\vec{p_2}|{\rm sin}\theta {\rm d}\theta {\rm d}\varphi}{32\pi^{2}m_{\Omega_{cc}^{+}}} \frac{G_{\rm F}}{\sqrt{2}}V_{cd}^{*}V_{ud}a_{2}f_{\rho^+} \frac{F^{2}(t,m_{\Xi^{-}})}{t-m_{\Xi^{-}}^{2}+{\rm i}m_{\Xi^{-}}\Gamma_{\Xi^{-}}} g_{\Xi_c^{0}\Xi^-D_s^{+}}\\&\times\overline{u}(p_{5},s^{\prime}_{z}) \left[ f_{1\Xi^0\Xi^-\rho^+}\gamma_{\mu} +\frac{f_{2\Xi^{0}\Xi^{-}\rho^+}}{m_{\Xi^{0}}+m_{\Xi^{-}}}\sigma_{\mu\nu}(-{\rm i}p_{2}^{\mu}) \right]\\ &\times(/\kern-0.57 em {{p_{4}}}+m_{\Xi^{-}})\gamma_{5}(/\kern-0.57 em {{p_{3}}}+m_{\Xi_c^{0}}) \left(-g^{\alpha\mu}+\frac{p_{2}^{\alpha}p_{2}^{\mu}}{m_{\rho^+}^{2}}\right) \left(-g^{\alpha\nu}+\frac{p_{2}^{\alpha}p_{2}^{\nu}}{m_{\rho^+}^{2}}\right)\\ &\times\left[ \left(f_{1}(m^2_{\rho^+}) -\frac{m_{\Omega_{cc}^{+}}+m_{\Xi_{c}^{0}}}{m_{\Omega_{cc}^{+}}}{f_{2}(m^2_{\rho^+})}\right)\gamma_{\alpha}\right. +\frac{2}{m_{\Omega_{cc}^+}}{f_{2}(m^2_{\rho^+})}p_{3\alpha}\\ &\left.-\left (g_{1}(m^2_{\rho^+})+\frac{m_{\Omega_{cc}^{+}}-m_{\Xi_{c}^{0}}}{m_{\Omega_{cc}^{+}}}{g_{2}(m^2_{\rho^+})}\right) \gamma_{\alpha}\gamma_{5}\right. \left.-\frac{2}{m_{\Omega_{cc}^+}}{g_{2}(m^2_{\rho^+})}p_{3\alpha}\gamma_{5} \right] u(p_{1},s_{z}). \end{aligned} $ |
$ \tag{A16}\begin{aligned}[b] {\cal A}bs\,M_{f}(\rho^+;\Xi_c^{\prime 0};\Xi^-) = & \;-{\rm i}\int\frac{|\vec{p_2}|{\rm sin}\theta {\rm d}\theta {\rm d}\varphi}{32\pi^{2}m_{\Omega_{cc}^{+}}} \frac{G_{\rm F}}{\sqrt{2}}V_{cd}^{*}V_{ud}a_{2}f_{\rho^+} \frac{F^{2}(t,m_{\Xi^{-}})}{t-m_{\Xi^{-}}^{2}+{\rm i}m_{\Xi^{-}}\Gamma_{\Xi^{-}}} g_{\Xi_c^{\prime 0}\Xi^-D_s^{+}}\\&\times\overline{u}(p_{5},s^{\prime}_{z}) \left[ f_{1\Xi^0\Xi^-\rho^+}\gamma_{\mu} +\frac{f_{2\Xi^{0}\Xi^{-}\rho^+}}{m_{\Xi^{0}}+m_{\Xi^{-}}}\sigma_{\mu\nu}(-{\rm i}p_{2}^{\mu}) \right]\\&\times(/\kern-0.57 em {{p_{4}}}+m_{\Xi^{-}})\gamma_{5}(/\kern-0.57 em {{p_{3}}}+m_{\Xi_c^{\prime 0}}) \left(-g^{\alpha\mu}+\frac{p_{2}^{\alpha}p_{2}^{\mu}}{m_{\rho^+}^{2}}\right) \left(-g^{\alpha\nu}+\frac{p_{2}^{\alpha}p_{2}^{\nu}}{m_{\rho^+}^{2}}\right)\\ &\times\left[ \left(f_{1}(m^2_{\rho^+}) -\frac{m_{\Omega_{cc}^{+}}+m_{\Xi_{c}^{\prime 0}}}{m_{\Omega_{cc}^{+}}}{f_{2}(m^2_{\rho^+})}\right)\gamma_{\alpha}\right. +\frac{2}{m_{\Omega_{cc}^+}}{f_{2}(m^2_{\rho^+})}p_{3\alpha}\\ &\left.-\left (g_{1}(m^2_{\rho^+})+\frac{m_{\Omega_{cc}^{+}}-m_{\Xi_{c}^{\prime 0}}}{m_{\Omega_{cc}^{+}}}{g_{2}(m^2_{\rho^+})}\right) \gamma_{\alpha}\gamma_{5}\right. \left.-\frac{2}{m_{\Omega_{cc}^+}}{g_{2}(m^2_{\rho^+})}p_{3\alpha}\gamma_{5} \right] u(p_{1},s_{z}). \end{aligned} $ |
$\tag{B1} {\cal A}bs\,M_{a}(K^+;\Omega_c^0;D^{*0}) = {\cal M}(\Omega_{cc}^{+}, K^+,\Omega_c^0,D^{*0},\Xi^0,D_s^{+}). $ |
$\begin{split} {\cal A}(\Xi_{cc}^{++}\to\Sigma^{+}D^{+}) =&\; {\rm i} [ {\cal M}(\Xi_{cc}^{++}, \pi^+, \Xi_c^+, D^{*0}, D^+, \Sigma^{+}) + {\cal M}(\Xi_{cc}^{++}, \pi^+, \Xi_c^{\prime +}, D^{*0}, D^+, \Sigma^{+}) + {\cal M}(\Xi_{cc}^{++}, \rho^+, \Xi_c^+, D^{0}, D^+, \Sigma^{+}) \\&+ {\cal M}(\Xi_{cc}^{++}, \rho^+, \Xi_c^{\prime +}, D^0, D^+, \Sigma^{+}) + {\cal M}(\Xi_{cc}^{++}, \bar K^{0}, \Sigma_c^{++}, D_s^{*+}, D^+, \Sigma^{+}) + {\cal M}(\Xi_{cc}^{++}, \bar K^{*0}, \Sigma_c^{++}, D_s^{+}, D^+, \Sigma^{+}) \\&+ {\cal M}(\Xi_{cc}^{++}, \pi^+, \Xi_c^+, \Sigma^0, \Sigma^{+}, D^+ ) + {\cal M}(\Xi_{cc}^{++}, \pi^+, \Xi_c^+, \Lambda, \Sigma^{+}, D^+ ) + {\cal M}(\Xi_{cc}^{++}, \pi^+, \Xi_c^{\prime +}, \Sigma^0, \Sigma^{+}, D^+ ) \\&+ {\cal M}(\Xi_{cc}^{++}, \pi^+, \Xi_c^{\prime +}, \Lambda, \Sigma^{+}, D^+ ) + {\cal M}(\Xi_{cc}^{++}, \rho^+, \Xi_c^+, \Sigma^0, \Sigma^{+}, D^+ ) + {\cal M}(\Xi_{cc}^{++}, \rho^+, \Xi_c^+, \Lambda, \Sigma^{+}, D^+ ) \\&+ {\cal M}(\Xi_{cc}^{++}, \rho^+, \Xi_c^{\prime +}, \Sigma^0, \Sigma^{+}, D^+ ) + {\cal M}(\Xi_{cc}^{++}, \rho^+, \Xi_c^{\prime +}, \Lambda, \Sigma^{+}, D^+ ) + {\cal M}(\Xi_{cc}^{++}, \bar K^{0}, \Sigma_c^{++}, p, \Sigma^{+}, D^+ ) \\&+ {\cal M}(\Xi_{cc}^{++}, \bar K^{*0}, \Sigma_c^{++}, p, \Sigma^{+}, D^+ ) ], \end{split} \tag{B2} $ |
$ \begin{split} {\cal A}(\Xi_{cc}^{++}\to\Sigma^{+}D^{*+}) = &\;{\rm i} [ {\cal M}(\Xi_{cc}^{++}, \pi^+, \Xi_c^+, D^{0}, D^{*+}, \Sigma^{+}) + {\cal M}(\Xi_{cc}^{++}, \pi^+, \Xi_c^{\prime +}, D^{0}, D^{*+}, \Sigma^{+}) + {\cal M}(\Xi_{cc}^{++}, \rho^+, \Xi_c^+, D^{*0}, D^{*+}, \Sigma^{+}) \\&+ {\cal M}(\Xi_{cc}^{++}, \rho^+, \Xi_c^{\prime +}, D^{*0}, D^{*+}, \Sigma^{+}) + {\cal M}(\Xi_{cc}^{++}, \bar K^{0}, \Sigma_c^{++}, D_s^{+}, D^{*+}, \Sigma^{+}) + {\cal M}(\Xi_{cc}^{++}, \bar K^{*0}, \Sigma_c^{++}, D_s^{*+}, D^{*+}, \Sigma^{+}) \\&+ {\cal M}(\Xi_{cc}^{++}, \pi^+, \Xi_c^+, \Sigma^0, \Sigma^{+}, D^{*+} ) + {\cal M}(\Xi_{cc}^{++}, \pi^+, \Xi_c^+, \Lambda, \Sigma^{+}, D^{*+} ) + {\cal M}(\Xi_{cc}^{++}, \pi^+, \Xi_c^{\prime +}, \Sigma^0, \Sigma^{+}, D^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{++}, \pi^+, \Xi_c^{\prime +}, \Lambda, \Sigma^{+}, D^{*+} ) + {\cal M}(\Xi_{cc}^{++}, \rho^+, \Xi_c^+, \Sigma^0, \Sigma^{+}, D^{*+} ) + {\cal M}(\Xi_{cc}^{++}, \rho^+, \Xi_c^+, \Lambda, \Sigma^{+}, D^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{++}, \rho^+, \Xi_c^{\prime +}, \Sigma^0, \Sigma^{+}, D^{*+} ) + {\cal M}(\Xi_{cc}^{++}, \rho^+, \Xi_c^{\prime +}, \Lambda, \Sigma^{+}, D^{*+} ) + {\cal M}(\Xi_{cc}^{++}, \bar K^{0}, \Sigma_c^{++}, p, \Sigma^{+}, D^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{++}, \bar K^{*0}, \Sigma_c^{++}, p, \Sigma^{+}, D^{*+} ) ], \end{split}\tag{B3} $ |
$ \begin{split} {\cal A}(\Xi_{cc}^{++}\rightarrow\Sigma^{+}D^{+}_{s}) =&\; {\rm i} [ {\cal M}(\Xi_{cc}^{++}, K^+, \Xi_c^+, D^{*0}, D_s^{+}, \Sigma^{+}) + {\cal M}(\Xi_{cc}^{++}, k^+, \Xi_c^{\prime +}, D^{*0}, D_s^{+}, \Sigma^{+}) + {\cal M}(\Xi_{cc}^{++}, K^{*+}, \Xi_c^+, D^{0}, D_s^{+}, \Sigma^{+}) \\&+ {\cal M}(\Xi_{cc}^{++}, K^{*+}, \Xi_c^{\prime +}, D^{0}, D_s^{+}, \Sigma^{+}) + {\cal M}(\Xi_{cc}^{++}, \phi, \Sigma_c^{++}, D_s^{+}, D_s^{+}, \Sigma^{+}) + {\cal M}(\Xi_{cc}^{++}, \eta_1, \Sigma_c^{++}, D_s^{*+}, D_s^{+}, \Sigma^{+}) \\&+ {\cal M}(\Xi_{cc}^{++}, \eta_8, \Sigma_c^{++}, D_s^{*+}, D_s^{+}, \Sigma^{+}) + {\cal M}(\Xi_{cc}^{++}, K^+, \Xi_c^+, \Xi^0, \Sigma^{+}, D_s^{+} ) + {\cal M}(\Xi_{cc}^{++}, K^+, \Xi_c^{\prime +}, \Xi^0, \Sigma^{+}, D_s^{+} ) \\&+ {\cal M}(\Xi_{cc}^{++}, K^{*+}, \Xi_c^+, \Xi^0, \Sigma^{+}, D_s^{+} ) + {\cal M}(\Xi_{cc}^{++}, K^{*+}, \Xi_c^{\prime +}, \Xi^0, \Sigma^{+}, D_s^{+} ) + {\cal M}(\Xi_{cc}^{++}, \phi, \Sigma_c^{++}, \Sigma^{+}, \Sigma^{+}, D_s^{+} ) \\&+ {\cal M}(\Xi_{cc}^{++}, \eta_1, \Sigma_c^{++}, \Sigma^{+}, \Sigma^{+}, D_s^{+} ) + {\cal M}(\Xi_{cc}^{++}, \eta_8, \Sigma_c^{++}, \Sigma^{+}, \Sigma^{+}, D_s^{+} ) + {\cal M}(\Xi_{cc}^{++}, \pi^+, \Lambda_c^{+}, \Sigma^{0}, \Sigma^{+}, D_s^{+} ) \\&+ {\cal M}(\Xi_{cc}^{++}, \pi^+, \Lambda_c^{+}, \Lambda, \Sigma^{+}, D_s^{+} ) + {\cal M}(\Xi_{cc}^{++}, \pi^+, \Sigma_c^{+}, \Sigma^{0}, \Sigma^{+}, D_s^{+} ) + {\cal M}(\Xi_{cc}^{++}, \pi^+, \Sigma_c^{+}, \Lambda, \Sigma^{+}, D_s^{+} ) \\&+ {\cal M}(\Xi_{cc}^{++}, \rho^+, \Lambda_c^{+}, \Sigma^{0}, \Sigma^{+}, D_s^{+} ) + {\cal M}(\Xi_{cc}^{++}, \rho^+, \Lambda_c^{+}, \Lambda, \Sigma^{+}, D_s^{+} ) + {\cal M}(\Xi_{cc}^{++}, \rho^+, \Sigma_c^{+}, \Sigma^{0}, \Sigma^{+}, D_s^{+} ) \\&+ {\cal M}(\Xi_{cc}^{++}, \rho^+, \Sigma_c^{+}, \Lambda, \Sigma^{+}, D_s^{+} ) ], \end{split} \tag{B4}$ |
$\begin{split} {\cal A}(\Xi_{cc}^{++}\rightarrow\Sigma^{+}D^{*+}_{s}) =&\; {\rm i} [ {\cal M}(\Xi_{cc}^{++}, K^+, \Xi_c^+, D^{0}, D_s^{*+}, \Sigma^{+}) + {\cal M}(\Xi_{cc}^{++}, K^+, \Xi_c^{\prime +}, D^{0}, D_s^{*+}, \Sigma^{+}) + {\cal M}(\Xi_{cc}^{++}, K^{*+}, \Xi_c^+, D^{*0}, D_s^{*+}, \Sigma^{+}) \\&+ {\cal M}(\Xi_{cc}^{++}, K^{*+}, \Xi_c^{\prime +}, D^{*0}, D_s^{*+}, \Sigma^{+}) + {\cal M}(\Xi_{cc}^{++}, \phi, \Sigma_c^{++}, D_s^{*+}, D_s^{*+}, \Sigma^{+}) + {\cal M}(\Xi_{cc}^{++}, \eta_1, \Sigma_c^{++}, D_s^{+}, D_s^{*+}, \Sigma^{+}) \\&+ {\cal M}(\Xi_{cc}^{++}, \eta_8, \Sigma_c^{++}, D_s^{+}, D_s^{*+}, \Sigma^{+}) + {\cal M}(\Xi_{cc}^{++}, K^+, \Xi_c^+, \Xi^0, \Sigma^{+}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{++}, K^+, \Xi_c^{\prime +}, \Xi^0, \Sigma^{+}, D_s^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{++}, K^{*+}, \Xi_c^+, \Xi^0, \Sigma^{+}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{++}, K^{*+}, \Xi_c^{\prime +}, \Xi^0, \Sigma^{+}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{++}, \phi, \Sigma_c^{++}, \Sigma^{+}, \Sigma^{+}, D_s^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{++}, \eta_1, \Sigma_c^{++}, \Sigma^{+}, \Sigma^{+}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{++}, \eta_8, \Sigma_c^{++}, \Sigma^{+}, \Sigma^{+}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{++}, \pi^+, \Lambda_c^{+}, \Sigma^{0}, \Sigma^{+}, D_s^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{++}, \pi^+, \Lambda_c^{+}, \Lambda, \Sigma^{+}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{++}, \pi^+, \Sigma_c^{+}, \Sigma^{0}, \Sigma^{+}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{++}, \pi^+, \Sigma_c^{+}, \Lambda, \Sigma^{+}, D_s^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{++}, \rho^+, \Lambda_c^{+}, \Sigma^{0}, \Sigma^{+}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{++}, \rho^+, \Lambda_c^{+}, \Lambda, \Sigma^{+}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{++}, \rho^+, \Sigma_c^{+}, \Sigma^{0}, \Sigma^{+}, D_s^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{++}, \rho^+, \Sigma_c^{+}, \Lambda, \Sigma^{+}, D_s^{*+} ) ], \end{split}\tag{B5} $ |
$ \begin{split} {\cal A}(\Xi_{cc}^{++}\rightarrow p D^{+}) = &\;{\rm i} [ {\cal M}(\Xi_{cc}^{++}, \pi^+, \Lambda_c^+, D^{*0}, D^{+}, p ) + {\cal M}(\Xi_{cc}^{++}, \pi^+, \Sigma_c^+, D^{*0}, D^{+}, p ) + {\cal M}(\Xi_{cc}^{++}, \rho^+, \Lambda_c^+, D^{0}, D^{+}, p ) \\&+ {\cal M}(\Xi_{cc}^{++}, \rho^+, \Sigma_c^+, D^{0}, D^{+}, p ) + {\cal M}(\Xi_{cc}^{++}, \rho^0, \Sigma_c^{++}, D^{+}, D^{+}, p ) + {\cal M}(\Xi_{cc}^{++}, \omega, \Sigma_c^{++}, D^{+}, D^{+}, p ) \\&+ {\cal M}(\Xi_{cc}^{++}, \pi^0, \Sigma_c^{++}, D^{*+}, D^{+}, p ) + {\cal M}(\Xi_{cc}^{++}, \eta_1, \Sigma_c^{++}, D^{*+}, D^{+}, p ) + {\cal M}(\Xi_{cc}^{++}, \eta_8, \Sigma_c^{++}, D^{*+}, D^{+}, p )\\&+ {\cal M}(\Xi_{cc}^{++}, \pi^+, \Lambda_c^+, n, p, D^+ ) + {\cal M}(\Xi_{cc}^{++}, \pi^+, \Sigma_c^+, n, p, D^+ ) + {\cal M}(\Xi_{cc}^{++}, \rho^+, \Lambda_c^+, n, p, D^+ ) \\&+ {\cal M}(\Xi_{cc}^{++}, \rho^+, \Sigma_c^+, n, p, D^+ ) + {\cal M}(\Xi_{cc}^{++}, \rho^0, \Sigma_c^{++}, p, p, D^+ ) + {\cal M}(\Xi_{cc}^{++}, \pi^0, \Sigma_c^{++}, p, p, D^+ ) \\&+ {\cal M}(\Xi_{cc}^{++}, \eta_1, \Sigma_c^{++}, p, p, D^+ ) + {\cal M}(\Xi_{cc}^{++}, \eta_8, \Sigma_c^{++}, p, p, D^+ ) + {\cal M}(\Xi_{cc}^{++}, K^+, \Xi_c^+, \Sigma^0, p, D^+ ) \\&+ {\cal M}(\Xi_{cc}^{++}, K^+, \Xi_c^+, \Lambda, p, D^+ ) + {\cal M}(\Xi_{cc}^{++}, K^+, \Xi_c^{\prime +}, \Sigma^0, p, D^+ ) + {\cal M}(\Xi_{cc}^{++}, K^+, \Xi_c^{\prime +}, \Lambda, p, D^+ )\\&+ {\cal M}(\Xi_{cc}^{++}, K^{*+}, \Xi_c^{\prime +}, \Sigma^0, p, D^+ ) + {\cal M}(\Xi_{cc}^{++}, K^{*+}, \Xi_c^{\prime +}, \Lambda, p, D^+ ) + {\cal M}(\Xi_{cc}^{++}, K^{*+}, \Xi_c^+, \Sigma^0, p, D^+ ) \\&+ {\cal M}(\Xi_{cc}^{++}, K^{*+}, \Xi_c^+, \Lambda, p, D^+ ) ], \end{split} \tag{B6}$ |
$\tag{B7} \begin{aligned}[b] {\cal A}(\Xi_{cc}^{++}\rightarrow p D^{*+}) =& \;{\rm i} [ {\cal M}(\Xi_{cc}^{++}, \pi^+, \Lambda_c^+, D^{0}, D^{*+}, p ) + {\cal M}(\Xi_{cc}^{++}, \pi^+, \Sigma_c^+, D^{0}, D^{*+}, p ) + {\cal M}(\Xi_{cc}^{++}, \rho^+, \Lambda_c^+, D^{*0}, D^{*+}, p ) \\ &+ {\cal M}(\Xi_{cc}^{++}, \rho^+, \Sigma_c^+, D^{*0}, D^{*+}, p ) + {\cal M}(\Xi_{cc}^{++}, \rho^0, \Sigma_c^{++}, D^{*+}, D^{*+}, p ) + {\cal M}(\Xi_{cc}^{++}, \omega, \Sigma_c^{++}, D^{*+}, D^{*+}, p ) \\ &+ {\cal M}(\Xi_{cc}^{++}, \pi^0, \Sigma_c^{++}, D^{+}, D^{*+}, p ) + {\cal M}(\Xi_{cc}^{++}, \eta_1, \Sigma_c^{++}, D^{+}, D^{*+}, p ) + {\cal M}(\Xi_{cc}^{++}, \eta_8, \Sigma_c^{++}, D^{+}, D^{*+}, p ) \\&+ {\cal M}(\Xi_{cc}^{++}, \pi^+, \Lambda_c^+, n, p, D^{*+} ) + {\cal M}(\Xi_{cc}^{++}, \pi^+, \Sigma_c^+, n, p, D^{*+} ) + {\cal M}(\Xi_{cc}^{++}, \rho^+, \Lambda_c^+, n, p, D^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{++}, \rho^+, \Sigma_c^+, n, p, D^{*+} ) + {\cal M}(\Xi_{cc}^{++}, \rho^0, \Sigma_c^{++}, p, p, D^{*+} ) + {\cal M}(\Xi_{cc}^{++}, \pi^0, \Sigma_c^{++}, p, p, D^{*+} ) \\ &+ {\cal M}(\Xi_{cc}^{++}, \eta_1, \Sigma_c^{++}, p, p, D^{*+} ) + {\cal M}(\Xi_{cc}^{++}, \eta_8, \Sigma_c^{++}, p, p, D^{*+} ) + {\cal M}(\Xi_{cc}^{++}, K^+, \Xi_c^+, \Sigma^0, p, D^{*+} ) \\ &+ {\cal M}(\Xi_{cc}^{++}, K^+, \Xi_c^+, \Lambda, p, D^{*+} ) + {\cal M}(\Xi_{cc}^{++}, K^+, \Xi_c^{\prime +}, \Sigma^0, p, D^{*+} ) + {\cal M}(\Xi_{cc}^{++}, K^+, \Xi_c^{\prime +}, \Lambda, p, D^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{++}, K^{*+}, \Xi_c^{\prime +}, \Sigma^0, p, D^{*+} ) + {\cal M}(\Xi_{cc}^{++}, K^{*+}, \Xi_c^{\prime +}, \Lambda, p, D^{*+} ) + {\cal M}(\Xi_{cc}^{++}, K^{*+}, \Xi_c^+, \Sigma^0, p, D^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{++}, K^{*+}, \Xi_c^+, \Lambda, p, D^{*+} ) ], \end{aligned} $ |
$\tag{B8} \begin{aligned}[b] {\cal A}(\Xi_{cc}^{++}\rightarrow p D^{+}_{s}) = &\;{\rm i} [ {\cal M}(\Xi_{cc}^{++}, K^+, \Lambda_c^+, D^{*0}, D_s^{+}, p ) + {\cal M}(\Xi_{cc}^{++}, K^+, \Sigma_c^+, D^{*0}, D_s^{+}, p ) + {\cal M}(\Xi_{cc}^{++}, K^{*+}, \Lambda_c^+, D^{0}, D_s^{+}, p ) \\&+ {\cal M}(\Xi_{cc}^{++}, K^{*+}, \Sigma_c^+, D^{0}, D_s^{+}, p ) + {\cal M}(\Xi_{cc}^{++}, K^+, \Lambda_c^+, \Sigma^0, p, D_s^{+} ) + {\cal M}(\Xi_{cc}^{++}, K^+, \Lambda_c^+, \Lambda, p, D_s^{+} ) \\&+ {\cal M}(\Xi_{cc}^{++}, K^+, \Sigma_c^+, \Sigma^0, p, D_s^{+} ) + {\cal M}(\Xi_{cc}^{++}, K^+, \Sigma_c^+, \Lambda, p, D_s^{+} ) + {\cal M}(\Xi_{cc}^{++}, K^{*+}, \Lambda_c^+, \Sigma^0, p, D_s^{+} ) \\ &+ {\cal M}(\Xi_{cc}^{++}, K^{*+}, \Lambda_c^+, \Lambda, p, D_s^{+} ) + {\cal M}(\Xi_{cc}^{++}, K^{*+}, \Sigma_c^+, \Sigma^0, p, D_s^{+} ) + {\cal M}(\Xi_{cc}^{++}, K^{*+}, \Sigma_c^+, \Lambda, p, D_s^{+} ) \\ &+ {\cal M}(\Xi_{cc}^{++}, K^0, \Sigma_c^{++}, D^{*+}, D_s^{+}, p ) + {\cal M}(\Xi_{cc}^{++}, K^{*0}, \Sigma_c^{++}, D^{+}, D_s^{+}, p ) + {\cal M}(\Xi_{cc}^{++}, K^0, \Sigma_c^{++}, \Sigma^+, p, D_s^{+} ) \\&+ {\cal M}(\Xi_{cc}^{++}, K^{*0}, \Sigma_c^{++}, \Sigma^+, p, D_s^{+} ) ], \end{aligned} $ |
$\tag{B9} \begin{aligned}[b] {\cal A}(\Xi_{cc}^{++}\rightarrow p D^{*+}_{s} ) = &\;{\rm i} [ {\cal M}(\Xi_{cc}^{++}, K^+, \Lambda_c^+, D^{0}, D_s^{*+}, p ) + {\cal M}(\Xi_{cc}^{++}, K^+, \Sigma_c^+, D^{0}, D_s^{*+}, p ) + {\cal M}(\Xi_{cc}^{++}, K^{*+}, \Lambda_c^+, D^{*0}, D_s^{*+}, p ) \\&+ {\cal M}(\Xi_{cc}^{++}, K^{*+}, \Sigma_c^+, D^{*0}, D_s^{*+}, p ) + {\cal M}(\Xi_{cc}^{++}, K^+, \Lambda_c^+, \Sigma^0, p, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{++}, K^+, \Lambda_c^+, \Lambda, p, D_s^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{++}, K^+, \Sigma_c^+, \Sigma^0, p, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{++}, K^+, \Sigma_c^+, \Lambda, p, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{++}, K^{*+}, \Lambda_c^+, \Sigma^0, p, D_s^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{++}, K^{*+}, \Lambda_c^+, \Lambda, p, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{++}, K^{*+}, \Sigma_c^+, \Sigma^0, p, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{++}, K^{*+}, \Sigma_c^+, \Lambda, p, D_s^{*+} ) \\ &+ {\cal M}(\Xi_{cc}^{++}, K^0, \Sigma_c^{++}, D^{+}, D_s^{*+}, p ) + {\cal M}(\Xi_{cc}^{++}, K^{*0}, \Sigma_c^{++}, D^{*+}, D_s^{*+}, p ) + {\cal M}(\Xi_{cc}^{++}, K^0, \Sigma_c^{++}, \Sigma^+, p, D_s^{*+} ) \\ &+ {\cal M}(\Xi_{cc}^{++}, K^{*0}, \Sigma_c^{++}, \Sigma^+, p, D_s^{*+} ) ], \end{aligned} $ |
$\tag{B10} \begin{aligned}[b] {\cal A}(\Xi_{cc}^{+}\rightarrow\Sigma^{0} D^{+}) =&\; {\rm i} [ {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Xi_c^{ 0}, D^{*0}, D^{+}, \Sigma^{0} ) + {\cal M}(\Xi_{cc}^{+}, \rho^{+}, \Xi_c^{ 0}, D^{0}, D^{+}, \Sigma^{0} ) + {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Xi_c^{ 0}, \Sigma^{-}, \Sigma^{0}, D^{+} ) \\ &+ {\cal M}(\Xi_{cc}^{+}, \rho^{+}, \Xi_c^{ 0}, \Sigma^{-}, \Sigma^{0}, D^{+} ) + {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Xi_c^{\prime 0}, D^{*0}, D^{+}, \Sigma^{0} ) + {\cal M}(\Xi_{cc}^{+}, \rho^{+}, \Xi_c^{\prime 0}, D^{0}, D^{+}, \Sigma^{0} ) \\ &+ {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Xi_c^{\prime 0},\Sigma^{-}, \Sigma^{0}, D^{+} ) + {\cal M}(\Xi_{cc}^{+}, \rho^{+}, \Xi_c^{\prime 0},\Sigma^{-}, \Sigma^{0}, D^{+} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{0}, \Sigma_c^{+}, D_{s}^{*+}, D^{+}, \Sigma^{0} ) \\ &+ {\cal M}(\Xi_{cc}^{+}, \bar K^{*0}, \Sigma_c^{+}, D_{s}^{+}, D^{+}, \Sigma^{0} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{0}, \Lambda_c^{+}, D_{s}^{*+}, D^{+}, \Sigma^{0} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{*0}, \Lambda_c^{+}, D_{s}^{+}, D^{+}, \Sigma^{0} ) \\ &+ {\cal M}(\Xi_{cc}^{+}, \bar K^{0}, \Lambda_c^{+}, n, \Sigma^{0}, D^{+} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{0}, \Sigma_c^{+}, n, \Sigma^{0}, D^{+} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{*0}, \Lambda_c^{+}, n, \Sigma^{0}, D^{+} ) \\ &+ {\cal M}(\Xi_{cc}^{+}, \bar K^{*0}, \Sigma_c^{+}, n, \Sigma^{0}, D^{+} ) ], \end{aligned} $ |
$\tag{B11} \begin{aligned}[b] {\cal A}(\Xi_{cc}^{+}\rightarrow\Lambda D^{+}) =& \;{\rm i} [ {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Xi_c^{ 0}, D^{*0}, D^{+}, \Lambda ) + {\cal M}(\Xi_{cc}^{+}, \rho^{+}, \Xi_c^{ 0}, D^{0}, D^{+}, \Lambda ) + {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Xi_c^{ 0}, \Sigma^{-}, \Lambda, D^{+} ) \\ &+ {\cal M}(\Xi_{cc}^{+}, \rho^{+}, \Xi_c^{ 0}, \Sigma^{-}, \Lambda, D^{+} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{0}, \Sigma_c^{+}, D_{s}^{*+}, D^{+}, \Lambda ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{*0}, \Sigma_c^{+}, D_{s}^{+}, D^{+}, \Lambda ) \\&+ {\cal M}(\Xi_{cc}^{+}, \bar K^{0}, \Lambda_c^{+}, D_{s}^{*+}, D^{+}, \Lambda ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{*0}, \Lambda_c^{+}, D_{s}^{+}, D^{+}, \Lambda ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{0}, \Lambda_c^{+}, n, \Lambda, D^{+} ) \\ &+ {\cal M}(\Xi_{cc}^{+}, \bar K^{0}, \Sigma_c^{+}, n, \Lambda, D^{+} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{*0}, \Lambda_c^{+}, n, \Lambda, D^{+} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{*0}, \Sigma_c^{+}, n, \Lambda, D^{+} ) \\ &+ {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Xi_c^{\prime 0}, D^{*0}, D^{+}, \Lambda ) + {\cal M}(\Xi_{cc}^{+}, \rho^{+}, \Xi_c^{\prime 0}, D^{0}, D^{+}, \Lambda ) + {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Xi_c^{\prime 0},\Sigma^{-}, \Lambda, D^{+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \rho^{+}, \Xi_c^{\prime 0},\Sigma^{-}, \Lambda, D^{+} ) ], \end{aligned} $ |
$\tag{B12} \begin{aligned}[b] {\cal A}(\Xi_{cc}^{+}\rightarrow\Sigma^{0} D^{*+} ) =& \;{\rm i} [ {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Xi_c^{ 0}, D^{0}, D^{*+}, \Sigma^{0} ) + {\cal M}(\Xi_{cc}^{+}, \rho^{+}, \Xi_c^{ 0}, D^{*0}, D^{*+}, \Sigma^{0} ) + {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Xi_c^{ 0}, \Sigma^{-}, \Sigma^{0}, D^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \rho^{+}, \Xi_c^{ 0}, \Sigma^{-}, \Sigma^{0}, D^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{0}, \Sigma_c^{+}, D_{s}^{+}, D^{*+}, \Sigma^{0} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{*0}, \Sigma_c^{+}, D_{s}^{*+}, D^{*+}, \Sigma^{0} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \bar K^{0}, \Lambda_c^{+}, D_{s}^{+}, D^{*+}, \Sigma^{0} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{*0}, \Lambda_c^{+}, D_{s}^{*+}, D^{*+}, \Sigma^{0} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{0}, \Lambda_c^{+}, n, \Sigma^{0}, D^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \bar K^{0}, \Sigma_c^{+}, n, \Sigma^{0}, D^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{*0}, \Lambda_c^{+}, n, \Sigma^{0}, D^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{*0}, \Sigma_c^{+}, n, \Sigma^{0}, D^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Xi_c^{\prime 0}, D^{0}, D^{*+}, \Sigma^{0} ) + {\cal M}(\Xi_{cc}^{+}, \rho^{+}, \Xi_c^{\prime 0}, D^{*0}, D^{*+}, \Sigma^{0} ) + {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Xi_c^{\prime 0},\Sigma^{-}, \Sigma^{0}, D^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \rho^{+}, \Xi_c^{\prime 0},\Sigma^{-}, \Sigma^{0}, D^{*+} ) ], \end{aligned} $ |
$\tag{B13} \begin{aligned}[b] {\cal A}(\Xi_{cc}^{+}\rightarrow\Lambda D^{*+}) = & \;{\rm i} [ {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Xi_c^{ 0}, D^{0}, D^{*+}, \Lambda ) + {\cal M}(\Xi_{cc}^{+}, \rho^{+}, \Xi_c^{ 0}, D^{*0}, D^{*+}, \Lambda ) + {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Xi_c^{ 0}, \Sigma^{-}, \Lambda, D^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \rho^{+}, \Xi_c^{ 0}, \Sigma^{-}, \Lambda, D^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{0}, \Sigma_c^{+}, D_{s}^{+}, D^{*+}, \Lambda ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{*0}, \Sigma_c^{+}, D_{s}^{*+}, D^{*+}, \Lambda ) \\&+ {\cal M}(\Xi_{cc}^{+}, \bar K^{0}, \Lambda_c^{+}, D_{s}^{+}, D^{*+}, \Lambda ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{*0}, \Lambda_c^{+}, D_{s}^{*+}, D^{*+}, \Lambda ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{0}, \Lambda_c^{+}, n, \Lambda, D^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \bar K^{0}, \Sigma_c^{+}, n, \Lambda, D^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{*0}, \Lambda_c^{+}, n, \Lambda, D^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{*0}, \Sigma_c^{+}, n, \Lambda, D^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Xi_c^{\prime 0}, D^{0}, D^{*+}, \Lambda ) + {\cal M}(\Xi_{cc}^{+}, \rho^{+}, \Xi_c^{\prime 0}, D^{*0}, D^{*+}, \Lambda ) + {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Xi_c^{\prime 0},\Sigma^{-}, \Lambda, D^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \rho^{+}, \Xi_c^{\prime 0},\Sigma^{-}, \Lambda, D^{*+} ) ], \end{aligned} $ |
$\tag{B14} \begin{aligned}[b] {\cal A}( \Xi_{cc}^{+}\rightarrow\Lambda D_{s}^{+} ) =& \;{\rm i} [ {\cal M}(\Xi_{cc}^{+}, K^{+}, \Xi_c^{ 0}, D^{*0}, D_s^{+}, \Lambda ) + {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Xi_c^{ 0}, D^{0}, D_s^{+}, \Lambda ) + {\cal M}(\Xi_{cc}^{+}, K^{+}, \Xi_c^{ 0}, \Xi^{-}, \Lambda, D_s^{+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Xi_c^{ 0}, \Xi^{-}, \Lambda, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, \phi, \Lambda_{c}^{+}, D_s^{+}, D_s^{+}, \Lambda ) + {\cal M}(\Xi_{cc}^{+}, \phi, \Sigma_{c}^{+}, D_s^{+}, D_s^{+}, \Lambda ) \\&+ {\cal M}(\Xi_{cc}^{+}, \eta_1, \Lambda_{c}^{+}, D_s^{*+}, D_s^{+}, \Lambda ) + {\cal M}(\Xi_{cc}^{+}, \eta_1, \Sigma_{c}^{+}, D_s^{*+}, D_s^{+}, \Lambda ) + {\cal M}(\Xi_{cc}^{+}, \eta_8, \Lambda_{c}^{+}, D_s^{*+}, D_s^{+}, \Lambda ) \\&+ {\cal M}(\Xi_{cc}^{+}, \eta_8, \Sigma_{c}^{+}, D_s^{*+}, D_s^{+}, \Lambda ) + {\cal M}(\Xi_{cc}^{+}, \phi, \Lambda_{c}^{+}, \Lambda, \Lambda, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, \eta_1, \Lambda_{c}^{+}, \Lambda, \Lambda, D_s^{+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \eta_8, \Lambda_{c}^{+}, \Lambda, \Lambda, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, \phi, \Sigma_{c}^{+}, \Lambda, \Lambda, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, \eta_1, \Sigma_{c}^{+}, \Lambda, \Lambda, D_s^{+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \eta_8, \Sigma_{c}^{+}, \Lambda, \Lambda, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, \pi^+, \Sigma_{c}^{0}, \Sigma^{-}, \Lambda, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, \rho^+, \Sigma_{c}^{0}, \Sigma^{-}, \Lambda, D_s^{+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \rho^0, \Lambda_{c}^{+}, \Sigma^{0}, \Lambda, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, \rho^0, \Sigma_{c}^{+}, \Sigma^{0}, \Lambda, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, \omega, \Lambda_{c}^{+}, \Lambda, \Lambda, D_s^{+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \omega, \Sigma_{c}^{+}, \Lambda, \Lambda, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, \pi^0, \Lambda_{c}^{+}, \Sigma^{0}, \Lambda, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, \pi^0, \Sigma_{c}^{+}, \Sigma^{0}, \Lambda, D_s^{+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \eta_1, \Lambda_{c}^{+}, \Lambda, \Lambda, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, \eta_8, \Lambda_{c}^{+}, \Lambda, \Lambda, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, \eta_1, \Sigma_{c}^{+}, \Lambda, \Lambda, D_s^{+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \eta_8, \Sigma_{c}^{+}, \Lambda, \Lambda, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, K^{+}, \Xi_c^{\prime 0}, D^{*0}, D_s^{+}, \Lambda ) + {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Xi_c^{\prime 0}, D^{0}, D_s^{+}, \Lambda ) \\&+ {\cal M}(\Xi_{cc}^{+}, K^{+}, \Xi_c^{\prime 0},\Xi^{-}, \Lambda, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Xi_c^{\prime 0},\Xi^{-}, \Lambda, D_s^{+} ) ], \end{aligned} $ |
$\tag{B15} \begin{aligned}[b] {\cal A}(\Xi_{cc}^{+}\rightarrow\Sigma^{0} D_{s}^{+}) =& \;{\rm i} [ {\cal M}(\Xi_{cc}^{+}, K^{+}, \Xi_c^{ 0}, D^{*0}, D_s^{+}, \Sigma^{0} ) + {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Xi_c^{ 0}, D^{0}, D_s^{+}, \Sigma^{0} ) + {\cal M}(\Xi_{cc}^{+}, K^{+}, \Xi_c^{ 0}, \Xi^{-}, \Sigma^{0}, D_s^{+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Xi_c^{ 0}, \Xi^{-}, \Sigma^{0}, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, \phi, \Lambda_{c}^{+}, D_s^{+}, D_s^{+}, \Sigma^{0} ) + {\cal M}(\Xi_{cc}^{+}, \phi, \Sigma_{c}^{+}, D_s^{+}, D_s^{+}, \Sigma^{0} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \eta_1, \Lambda_{c}^{+}, D_s^{*+}, D_s^{+}, \Sigma^{0} ) + {\cal M}(\Xi_{cc}^{+}, \eta_1, \Sigma_{c}^{+}, D_s^{*+}, D_s^{+}, \Sigma^{0} ) + {\cal M}(\Xi_{cc}^{+}, \eta_8, \Lambda_{c}^{+}, D_s^{*+}, D_s^{+}, \Sigma^{0} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \eta_8, \Sigma_{c}^{+}, D_s^{*+}, D_s^{+}, \Sigma^{0} ) + {\cal M}(\Xi_{cc}^{+}, \phi, \Lambda_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, \eta_1, \Lambda_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D_s^{+} ) \\& + {\cal M}(\Xi_{cc}^{+}, \eta_8, \Lambda_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, \phi, \Sigma_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, \eta_1, \Sigma_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D_s^{+} ) \\& + {\cal M}(\Xi_{cc}^{+}, \eta_8, \Sigma_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, \pi^+, \Sigma_{c}^{0}, \Sigma^{-}, \Sigma^{0}, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, \rho^+, \Sigma_{c}^{0}, \Sigma^{-}, \Sigma^{0}, D_s^{+} ) \\& + {\cal M}(\Xi_{cc}^{+}, \rho^0, \Lambda_{c}^{+}, \Lambda, \Sigma^{0}, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, \rho^0, \Sigma_{c}^{+}, \Lambda, \Sigma^{0}, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, \omega, \Lambda_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D_s^{+} ) \\& + {\cal M}(\Xi_{cc}^{+}, \omega, \Sigma_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, \pi^0, \Lambda_{c}^{+}, \Lambda, \Sigma^{0}, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, \pi^0, \Sigma_{c}^{+}, \Lambda, \Sigma^{0}, D_s^{+} ) \\& + {\cal M}(\Xi_{cc}^{+}, \eta_1, \Lambda_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, \eta_8, \Lambda_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, \eta_1, \Sigma_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D_s^{+} ) \\& + {\cal M}(\Xi_{cc}^{+}, \eta_8, \Sigma_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, K^{+}, \Xi_c^{\prime 0}, D^{*0}, D_s^{+}, \Sigma^{0} ) + {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Xi_c^{\prime 0}, D^{0}, D_s^{+}, \Sigma^{0} ) \\& + {\cal M}(\Xi_{cc}^{+}, K^{+}, \Xi_c^{\prime 0},\Xi^{-}, \Sigma^{0}, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Xi_c^{\prime 0},\Xi^{-}, \Sigma^{0}, D_s^{+} ) ], \end{aligned} $ |
$\tag{B16} \begin{aligned}[b] {\cal A}(\Xi_{cc}^{+}\rightarrow\Sigma^{0} D_{s}^{*+}) =&\; {\rm i} [ {\cal M}(\Xi_{cc}^{+}, K^{+}, \Xi_c^{ 0}, D^{0}, D_s^{*+}, \Sigma^{0} ) + {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Xi_c^{ 0}, D^{*0}, D_s^{*+}, \Sigma^{0} ) + {\cal M}(\Xi_{cc}^{+}, K^{+}, \Xi_c^{ 0}, \Xi^{-}, \Sigma^{0}, D_s^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Xi_c^{ 0}, \Xi^{-}, \Sigma^{0}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \phi, \Lambda_{c}^{+}, D_s^{*+}, D_s^{*+}, \Sigma^{0} ) + {\cal M}(\Xi_{cc}^{+}, \phi, \Sigma_{c}^{+}, D_s^{*+}, D_s^{*+}, \Sigma^{0} ) \\& + {\cal M}(\Xi_{cc}^{+}, \eta_1, \Lambda_{c}^{+}, D_s^{+}, D_s^{*+}, \Sigma^{0} ) + {\cal M}(\Xi_{cc}^{+}, \eta_1, \Sigma_{c}^{+}, D_s^{+}, D_s^{*+}, \Sigma^{0} ) + {\cal M}(\Xi_{cc}^{+}, \eta_8, \Lambda_{c}^{+}, D_s^{+}, D_s^{*+}, \Sigma^{0} ) \\& + {\cal M}(\Xi_{cc}^{+}, \eta_8, \Sigma_{c}^{+}, D_s^{+}, D_s^{*+}, \Sigma^{0} ) + {\cal M}(\Xi_{cc}^{+}, \phi, \Lambda_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \eta_1, \Lambda_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D_s^{*+} ) \\& + {\cal M}(\Xi_{cc}^{+}, \eta_8, \Lambda_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \phi, \Sigma_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \eta_1, \Sigma_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D_s^{*+} ) \\& + {\cal M}(\Xi_{cc}^{+}, \eta_8, \Sigma_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \pi^+, \Sigma_{c}^{0}, \Sigma^{-}, \Sigma^{0}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \rho^+, \Sigma_{c}^{0}, \Sigma^{-}, \Sigma^{0}, D_s^{*+} ) \\& + {\cal M}(\Xi_{cc}^{+}, \rho^0, \Lambda_{c}^{+}, \Lambda, \Sigma^{0}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \rho^0, \Sigma_{c}^{+}, \Lambda, \Sigma^{0}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \omega, \Lambda_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D_s^{*+} ) \\& + {\cal M}(\Xi_{cc}^{+}, \omega, \Sigma_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \pi^0, \Lambda_{c}^{+}, \Lambda, \Sigma^{0}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \pi^0, \Sigma_{c}^{+}, \Lambda, \Sigma^{0}, D_s^{*+} ) \\& + {\cal M}(\Xi_{cc}^{+}, \eta_1, \Lambda_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \eta_8, \Lambda_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \eta_1, \Sigma_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D_s^{*+} ) \\& + {\cal M}(\Xi_{cc}^{+}, \eta_8, \Sigma_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, K^{+}, \Xi_c^{\prime 0}, D^{0}, D_s^{*+}, \Sigma^{0} ) + {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Xi_c^{\prime 0}, D^{*0}, D_s^{*+}, \Sigma^{0} ) \\& + {\cal M}(\Xi_{cc}^{+}, K^{+}, \Xi_c^{\prime 0}, \Xi^{-}, \Sigma^{0}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Xi_c^{\prime 0}, \Xi^{-}, \Sigma^{0}, D_s^{*+} ) ], \end{aligned} $ |
$\tag{B17} \begin{aligned}[b] {\cal A}(\Xi_{cc}^{+}\rightarrow\Lambda D_{s}^{*+}) =& \;{\rm i} [ {\cal M}(\Xi_{cc}^{+}, K^{+}, \Xi_c^{ 0}, D^{0}, D_s^{*+}, \Lambda ) + {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Xi_c^{ 0}, D^{*0}, D_s^{*+}, \Lambda ) + {\cal M}(\Xi_{cc}^{+}, K^{+}, \Xi_c^{ 0}, \Xi^{-}, \Lambda, D_s^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Xi_c^{ 0}, \Xi^{-}, \Lambda, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \phi, \Lambda_{c}^{+}, D_s^{*+}, D_s^{*+}, \Lambda ) + {\cal M}(\Xi_{cc}^{+}, \phi, \Sigma_{c}^{+}, D_s^{*+}, D_s^{*+}, \Lambda ) \\&+ {\cal M}(\Xi_{cc}^{+}, \eta_1, \Lambda_{c}^{+}, D_s^{+}, D_s^{*+}, \Lambda ) + {\cal M}(\Xi_{cc}^{+}, \eta_1, \Sigma_{c}^{+}, D_s^{+}, D_s^{*+}, \Lambda ) + {\cal M}(\Xi_{cc}^{+}, \eta_8, \Lambda_{c}^{+}, D_s^{+}, D_s^{*+}, \Lambda ) \\&+ {\cal M}(\Xi_{cc}^{+}, \eta_8, \Sigma_{c}^{+}, D_s^{+}, D_s^{*+}, \Lambda ) + {\cal M}(\Xi_{cc}^{+}, \phi, \Lambda_{c}^{+}, \Lambda, \Lambda, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \eta_1, \Lambda_{c}^{+}, \Lambda, \Lambda, D_s^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \eta_8, \Lambda_{c}^{+}, \Lambda, \Lambda, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \phi, \Sigma_{c}^{+}, \Lambda, \Lambda, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \eta_1, \Sigma_{c}^{+}, \Lambda, \Lambda, D_s^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \eta_8, \Sigma_{c}^{+}, \Lambda, \Lambda, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \pi^+, \Sigma_{c}^{0}, \Sigma^{-}, \Lambda, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \rho^+, \Sigma_{c}^{0}, \Sigma^{-}, \Lambda, D_s^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \rho^0, \Lambda_{c}^{+}, \Sigma^{0}, \Lambda, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \rho^0, \Sigma_{c}^{+}, \Sigma^{0}, \Lambda, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \omega, \Lambda_{c}^{+}, \Lambda, \Lambda, D_s^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \omega, \Sigma_{c}^{+}, \Lambda, \Lambda, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \pi^0, \Lambda_{c}^{+}, \Sigma^{0}, \Lambda, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \pi^0, \Sigma_{c}^{+}, \Sigma^{0}, \Lambda, D_s^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \eta_1, \Lambda_{c}^{+}, \Lambda, \Lambda, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \eta_8, \Lambda_{c}^{+}, \Lambda, \Lambda, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \eta_1, \Sigma_{c}^{+}, \Lambda, \Lambda, D_s^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \eta_8, \Sigma_{c}^{+}, \Lambda, \Lambda, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, K^{+}, \Xi_c^{\prime 0}, D^{0}, D_s^{*+}, \Lambda ) + {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Xi_c^{\prime 0}, D^{*0}, D_s^{*+}, \Lambda ) \\&+ {\cal M}(\Xi_{cc}^{+}, K^{+}, \Xi_c^{\prime 0}, \Xi^{-}, \Lambda, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Xi_c^{\prime 0}, \Xi^{-}, \Lambda, D_s^{*+} ) ], \end{aligned} $ |
$\tag{B18} \begin{aligned}[b] {\cal A}(\Xi_{cc}^{+}\rightarrow n D_{s}^{+}) =&\; {\rm i} [ {\cal M}(\Xi_{cc}^{+}, K^{+}, \Sigma_c^{0}, D^{*0}, D_s^{+}, n ) + {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Sigma_c^{0}, D^{0}, D_s^{+}, n ) + {\cal M}(\Xi_{cc}^{+}, K^{+}, \Sigma_c^{0}, \Sigma^{-}, n, D_s^{+} ) \\ &+ {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Sigma_c^{0}, \Sigma^{-}, n, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, K^{0}, \Lambda_{c}^{+}, D^{*+}, D_s^{+}, n ) + {\cal M}(\Xi_{cc}^{+}, K^{0}, \Sigma_c^{+}, D^{*+}, D_s^{+}, n ) \\&+ {\cal M}(\Xi_{cc}^{+}, K^{*0}, \Lambda_{c}^{+}, D^{+}, D_s^{+}, n ) + {\cal M}(\Xi_{cc}^{+}, K^{*0}, \Sigma_c^{+}, D^{+}, D_s^{+}, n ) + {\cal M}(\Xi_{cc}^{+}, K^{0}, \Lambda_{c}^{+}, \Sigma^{0}, n, D_s^{+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, K^{0}, \Lambda_{c}^{+}, \Lambda, n, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, K^{0}, \Sigma_c^{+}, \Sigma^{0}, n, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, K^{0}, \Sigma_c^{+}, \Lambda, n, D_s^{+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, K^{*0}, \Lambda_{c}^{+}, \Sigma^{0}, n, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, K^{*0}, \Lambda_{c}^{+}, \Lambda, n, D_s^{+} ) + {\cal M}(\Xi_{cc}^{+}, K^{*0}, \Sigma_c^{+}, \Sigma^{0}, n, D_s^{+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, K^{*0}, \Sigma_c^{+}, \Lambda, n, D_s^{+} ) ], \end{aligned} $ |
$\tag{B19} \begin{aligned}[b] {\cal A}(\Xi_{cc}^{+}\rightarrow n D_{s}^{*+}) =&\; {\rm i} [ {\cal M}(\Xi_{cc}^{+}, K^{+}, \Sigma_c^{0}, D^{0}, D_s^{*+}, n ) + {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Sigma_c^{0}, D^{*0}, D_s^{*+}, n ) + {\cal M}(\Xi_{cc}^{+}, K^{+}, \Sigma_c^{0}, \Sigma^{-}, n, D_s^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Sigma_c^{0}, \Sigma^{-}, n, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, K^{0}, \Lambda_{c}^{+}, D^{+}, D_s^{*+}, n ) + {\cal M}(\Xi_{cc}^{+}, K^{0}, \Sigma_c^{+}, D^{+}, D_s^{*+}, n ) \\&+ {\cal M}(\Xi_{cc}^{+}, K^{*0}, \Lambda_{c}^{+}, D^{*+}, D_s^{*+}, n ) + {\cal M}(\Xi_{cc}^{+}, K^{*0}, \Sigma_c^{+}, D^{*+}, D_s^{*+}, n ) + {\cal M}(\Xi_{cc}^{+}, K^{0}, \Lambda_{c}^{+}, \Sigma^{0}, n, D_s^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, K^{0}, \Lambda_{c}^{+}, \Lambda, n, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, K^{0}, \Sigma_c^{+}, \Sigma^{0}, n, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, K^{0}, \Sigma_c^{+}, \Lambda, n, D_s^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, K^{*0}, \Lambda_{c}^{+}, \Sigma^{0}, n, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, K^{*0}, \Lambda_{c}^{+}, \Lambda, n, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, K^{*0}, \Sigma_c^{+}, \Sigma^{0}, n, D_s^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, K^{*0}, \Sigma_c^{+}, \Lambda, n, D_s^{*+} ) ], \end{aligned} $ |
$\tag{B20} \begin{aligned}[b] {\cal A}(\Xi_{cc}^{+}\rightarrow n D^{+}) =&\; {\rm i} [ {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Sigma_c^{ 0}, D^{*0}, D^{+}, n ) + {\cal M}(\Xi_{cc}^{+}, \rho^{+}, \Sigma_c^{ 0}, D^{0}, D^{+}, n ) + {\cal M}(\Xi_{cc}^{+}, \rho^{0}, \Lambda_{c}^{+}, D^{+}, D^{+}, n ) \\ &+ {\cal M}(\Xi_{cc}^{+}, \rho^{0}, \Sigma_c^{ +}, D^{+}, D^{+}, n ) + {\cal M}(\Xi_{cc}^{+}, \omega, \Lambda_{c}^{+}, D^{+}, D^{+}, n ) + {\cal M}(\Xi_{cc}^{+}, \omega, \Sigma_c^{ +}, D^{+}, D^{+}, n ) \\&+ {\cal M}(\Xi_{cc}^{+}, \pi^{0}, \Lambda_{c}^{+}, D^{*+}, D^{+}, n ) + {\cal M}(\Xi_{cc}^{+}, \pi^{0}, \Sigma_c^{ +}, D^{*+}, D^{+}, n ) + {\cal M}(\Xi_{cc}^{+}, \eta_1, \Lambda_{c}^{+}, D^{*+}, D^{+}, n ) \\&+ {\cal M}(\Xi_{cc}^{+}, \eta_8, \Lambda_{c}^{+}, D^{*+}, D^{+}, n ) + {\cal M}(\Xi_{cc}^{+}, \eta_1, \Sigma_c^{ +}, D^{*+}, D^{+}, n ) + {\cal M}(\Xi_{cc}^{+}, \eta_8, \Sigma_c^{ +}, D^{*+}, D^{+}, n ) \\&+ {\cal M}(\Xi_{cc}^{+}, \rho^{0}, \Lambda_{c}^{+}, n, n, D^{+} ) + {\cal M}(\Xi_{cc}^{+}, \rho^{0}, \Sigma_c^{ +}, n, n, D^{+} ) + {\cal M}(\Xi_{cc}^{+}, \pi^{0}, \Lambda_{c}^{+}, n, n, D^{+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \pi^{0}, \Sigma_c^{ +}, n, n, D^{+} ) + {\cal M}(\Xi_{cc}^{+}, \eta_1, \Lambda_{c}^{+}, n, n, D^{+} ) + {\cal M}(\Xi_{cc}^{+}, \eta_8, \Lambda_{c}^{+}, n, n, D^{+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \eta_1, \Sigma_c^{ +}, n, n, D^{+} ) + {\cal M}(\Xi_{cc}^{+}, \eta_8, \Sigma_c^{ +}, n, n, D^{+} ) + {\cal M}(\Xi_{cc}^{+}, K^+, \Xi_c^{ 0}, \Sigma^-, n, D^{+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Xi_c^{ 0}, \Sigma^-, n, D^{+} ) + {\cal M}(\Xi_{cc}^{+}, K^+, \Xi_c^{\prime 0}, \Sigma^-, n, D^{+} ) + {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Xi_c^{\prime 0}, \Sigma^-, n, D^{+} ) ], \end{aligned} $ |
$\tag{B21} \begin{aligned}[b] {\cal A}(\Xi_{cc}^{+}\rightarrow n D^{*+}) =&\; {\rm i} [ {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Sigma_c^{ 0}, D^{0}, D^{*+}, n ) + {\cal M}(\Xi_{cc}^{+}, \rho^{+}, \Sigma_c^{ 0}, D^{*0}, D^{*+}, n ) + {\cal M}(\Xi_{cc}^{+}, \rho^{0}, \Lambda_{c}^{+}, D^{*+}, D^{*+}, n ) \\&+ {\cal M}(\Xi_{cc}^{+}, \rho^{0}, \Sigma_c^{ +}, D^{*+}, D^{*+}, n ) + {\cal M}(\Xi_{cc}^{+}, \omega, \Lambda_{c}^{+}, D^{*+}, D^{*+}, n ) + {\cal M}(\Xi_{cc}^{+}, \omega, \Sigma_c^{ +}, D^{*+}, D^{*+}, n ) \\&+ {\cal M}(\Xi_{cc}^{+}, \pi^{0}, \Lambda_{c}^{+}, D^{+}, D^{*+}, n ) + {\cal M}(\Xi_{cc}^{+}, \pi^{0}, \Sigma_c^{ +}, D^{+}, D^{*+}, n ) + {\cal M}(\Xi_{cc}^{+}, \eta_1, \Lambda_{c}^{+}, D^{+}, D^{*+}, n ) \\&+ {\cal M}(\Xi_{cc}^{+}, \eta_8, \Lambda_{c}^{+}, D^{+}, D^{*+}, n ) + {\cal M}(\Xi_{cc}^{+}, \eta_1, \Sigma_c^{ +}, D^{+}, D^{*+}, n ) + {\cal M}(\Xi_{cc}^{+}, \eta_8, \Sigma_c^{ +}, D^{+}, D^{*+}, n ) \\&+ {\cal M}(\Xi_{cc}^{+}, \rho^{0}, \Lambda_{c}^{+}, n, n, D^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \rho^{0}, \Sigma_c^{ +}, n, n, D^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \pi^{0}, \Lambda_{c}^{+}, n, n, D^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \pi^{0}, \Sigma_c^{ +}, n, n, D^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \eta_1, \Lambda_{c}^{+}, n, n, D^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \eta_8, \Lambda_{c}^{+}, n, n, D^{*+} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \eta_1, \Sigma_c^{ +}, n, n, D^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \eta_8, \Sigma_c^{ +}, n, n, D^{*+} ) + {\cal M}(\Xi_{cc}^{+}, K^+, \Xi_c^{ 0}, \Sigma^-, n, D^{*+} )\\&+ {\cal M}(\Xi_{cc}^{+}, K^+, \Xi_c^{\prime 0}, \Sigma^-, n, D^{*+} ) + {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Xi_c^{\prime 0}, \Sigma^-, n, D^{*+} ) + {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Xi_c^{ 0}, \Sigma^-, n, D^{*+} ) ], \end{aligned} $ |
$\tag{B22} \begin{aligned}[b] {\cal A}(\Xi_{cc}^{+}\rightarrow p D^{0}) = & \;{\rm i} [ {\cal M}(\Xi_{cc}^{+}, K^{+}, \Xi_c^{ 0}, \Sigma^{0}, p, D^{0} ) + {\cal M}(\Xi_{cc}^{+}, K^{+}, \Xi_c^{ 0}, \Lambda, p, D^{0} ) + {\cal M}(\Xi_{cc}^{+}, K^{+}, \Xi_c^{\prime 0}, \Sigma^{0}, p, D^{0} ) \\&+ {\cal M}(\Xi_{cc}^{+}, K^{+}, \Xi_c^{\prime 0}, \Lambda, p, D^{0} ) + {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Xi_c^{ 0}, \Sigma^{0}, p, D^{0} ) + {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Xi_c^{ 0}, \Lambda, p, D^{0} ) \\&+ {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Xi_c^{\prime 0}, \Sigma^{0}, p, D^{0} ) + {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Xi_c^{\prime 0}, \Lambda, p, D^{0} ) + {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Sigma_c^{ 0}, n, p, D^{0} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \rho^+, \Sigma_c^{ 0}, n, p, D^{0} ) + {\cal M}(\Xi_{cc}^{+}, \rho^0, \Sigma_c^{ +}, p, p, D^{0} ) + {\cal M}(\Xi_{cc}^{+}, \pi^{0}, \Sigma_c^{ +}, p, p, D^{0} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \eta_1, \Sigma_c^{ +}, p, p, D^{0} ) + {\cal M}(\Xi_{cc}^{+}, \eta_8, \Sigma_c^{ +}, p, p, D^{0} ) + {\cal M}(\Xi_{cc}^{+}, \rho^0, \Lambda_c^{ +}, p, p, D^{0} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \pi^{0}, \Lambda_c^{ +}, p, p, D^{0} ) + {\cal M}(\Xi_{cc}^{+}, \eta_1, \Lambda_c^{ +}, p, p, D^{0} ) + {\cal M}(\Xi_{cc}^{+}, \eta_8, \Lambda_c^{ +}, p, p, D^{0} ) ], \end{aligned} $ |
$\tag{B23} \begin{aligned}[b] {\cal A}(\Xi_{cc}^{+}\rightarrow p D^{*0}) =&\; {\rm i} [ {\cal M}(\Xi_{cc}^{+}, K^{+}, \Xi_c^{ 0}, \Sigma^{0}, p, D^{*0} ) + {\cal M}(\Xi_{cc}^{+}, K^{+}, \Xi_c^{ 0}, \Lambda, p, D^{*0} ) + {\cal M}(\Xi_{cc}^{+}, K^{+}, \Xi_c^{\prime 0}, \Sigma^{0}, p, D^{*0} ) \\&+ {\cal M}(\Xi_{cc}^{+}, K^{+}, \Xi_c^{\prime 0}, \Lambda, p, D^{*0} ) + {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Xi_c^{ 0}, \Sigma^{0}, p, D^{*0} ) + {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Xi_c^{ 0}, \Lambda, p, D^{*0} ) \\&+ {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Xi_c^{\prime 0}, \Sigma^{0}, p, D^{*0} ) + {\cal M}(\Xi_{cc}^{+}, K^{*+}, \Xi_c^{\prime 0}, \Lambda, p, D^{*0} ) + {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Sigma_c^{ 0}, n, p, D^{*0} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \rho^+, \Sigma_c^{ 0}, n, p, D^{*0} ) + {\cal M}(\Xi_{cc}^{+}, \rho^0, \Sigma_c^{ +}, p, p, D^{*0} ) + {\cal M}(\Xi_{cc}^{+}, \pi^{0}, \Sigma_c^{ +}, p, p, D^{*0} ) \\ &+ {\cal M}(\Xi_{cc}^{+}, \eta_1, \Sigma_c^{ +}, p, p, D^{*0} ) + {\cal M}(\Xi_{cc}^{+}, \eta_8, \Sigma_c^{ +}, p, p, D^{*0} ) + {\cal M}(\Xi_{cc}^{+}, \rho^0, \Lambda_c^{ +}, p, p, D^{*0} ) \\ &+ {\cal M}(\Xi_{cc}^{+}, \pi^{0}, \Lambda_c^{ +}, p, p, D^{*0} ) + {\cal M}(\Xi_{cc}^{+}, \eta_1, \Lambda_c^{ +}, p, p, D^{*0} ) + {\cal M}(\Xi_{cc}^{+}, \eta_8, \Lambda_c^{ +}, p, p, D^{*0} ) ], \end{aligned} $ |
$\tag{B24} \begin{aligned}[b] {\cal A}(\Xi_{cc}^{+}\rightarrow\Sigma^{+} D^{0}) =& \;{\rm i} [ {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Xi_c^{ 0}, \Sigma^{0}, \Sigma^{ +}, D^{0} ) + {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Xi_c^{ 0}, \Lambda, \Sigma^{ +}, D^{0} ) + {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Xi_c^{\prime 0}, \Sigma^{0}, \Sigma^{ +}, D^{0} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Xi_c^{\prime 0}, \Lambda, \Sigma^{ +}, D^{0} ) + {\cal M}(\Xi_{cc}^{+}, \rho^+, \Xi_c^{ 0}, \Sigma^{0}, \Sigma^{ +}, D^{0} ) + {\cal M}(\Xi_{cc}^{+}, \rho^+, \Xi_c^{ 0}, \Lambda, \Sigma^{ +}, D^{0} ) \\ &+ {\cal M}(\Xi_{cc}^{+}, \rho^+, \Xi_c^{\prime 0}, \Sigma^{0}, \Sigma^{ +}, D^{0} ) + {\cal M}(\Xi_{cc}^{+}, \rho^+, \Xi_c^{\prime 0}, \Lambda, \Sigma^{ +}, D^{0} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{0}, \Sigma_c^{ +}, p, \Sigma^{ +}, D^{0} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \bar K^{*0}, \Sigma_c^{ +}, p, \Sigma^{ +}, D^{0} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{0}, \Lambda_c^{ +}, p, \Sigma^{ +}, D^{0} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{*0}, \Lambda_c^{ +}, p, \Sigma^{ +}, D^{0} ) ], \end{aligned} $ |
$\tag{B25} \begin{aligned}[b] {\cal A}(\Xi_{cc}^{+}\rightarrow\Sigma^{+} D^{*0}) =& \;{\rm i} [ {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Xi_c^{ 0}, \Sigma^{0}, \Sigma^{ +}, D^{*0} ) + {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Xi_c^{ 0}, \Lambda, \Sigma^{ +}, D^{*0} ) + {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Xi_c^{\prime 0}, \Sigma^{0}, \Sigma^{ +}, D^{*0} ) \\&+ {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Xi_c^{\prime 0}, \Lambda, \Sigma^{ +}, D^{*0} ) + {\cal M}(\Xi_{cc}^{+}, \rho^+, \Xi_c^{ 0}, \Sigma^{0}, \Sigma^{ +}, D^{*0} ) + {\cal M}(\Xi_{cc}^{+}, \rho^+, \Xi_c^{ 0}, \Lambda, \Sigma^{ +}, D^{*0} ) \\ &+ {\cal M}(\Xi_{cc}^{+}, \rho^+, \Xi_c^{\prime 0}, \Sigma^{0}, \Sigma^{ +}, D^{*0} ) + {\cal M}(\Xi_{cc}^{+}, \rho^+, \Xi_c^{\prime 0}, \Lambda, \Sigma^{ +}, D^{*0} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{0}, \Sigma_c^{ +}, p, \Sigma^{ +}, D^{*0} ) \\ &+ {\cal M}(\Xi_{cc}^{+}, \bar K^{*0}, \Sigma_c^{ +}, p, \Sigma^{ +}, D^{*0} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{0}, \Lambda_c^{ +}, p, \Sigma^{ +}, D^{*0} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{*0}, \Lambda_c^{ +}, p, \Sigma^{ +}, D^{*0} ) ], \end{aligned} $ |
$\tag{B26} \begin{aligned}[b] {\cal A}(\Xi_{cc}^{+}\rightarrow\Xi^{0} D_{s}^{+}) =&\; {\rm i} [ {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Xi_c^{ 0}, \Xi^{-}, \Xi^{0}, D_s^+ ) + {\cal M}(\Xi_{cc}^{+}, \rho^+, \Xi_c^{ 0}, \Xi^{-}, \Xi^{0}, D_s^+ ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{0}, \Sigma_c^{ +}, \Sigma^{0}, \Xi^{0}, D_s^+ ) \\&+ {\cal M}(\Xi_{cc}^{+}, \bar K^{0}, \Sigma_c^{ +}, \Lambda, \Xi^{0}, D_s^+ ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{*0}, \Sigma_c^{ +}, \Sigma^{0}, \Xi^{0}, D_s^+ ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{*0}, \Sigma_c^{ +}, \Lambda, \Xi^{0}, D_s^+ ) \\ &+ {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Xi_c^{\prime 0}, \Xi^{-}, \Xi^{0}, D_s^+ ) + {\cal M}(\Xi_{cc}^{+}, \rho^+, \Xi_c^{\prime 0}, \Xi^{-}, \Xi^{0}, D_s^+ ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{0}, \Lambda_c^{ +}, \Sigma^{0}, \Xi^{0}, D_s^+ ) \\&+ {\cal M}(\Xi_{cc}^{+}, \bar K^{0}, \Lambda_c^{ +}, \Lambda, \Xi^{0}, D_s^+ ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{*0}, \Lambda_c^{ +}, \Sigma^{0}, \Xi^{0}, D_s^+ ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{*0}, \Lambda_c^{ +}, \Lambda, \Xi^{0}, D_s^+ ) ], \end{aligned} $ |
$\tag{B27} \begin{aligned}[b] {\cal A}(\Xi_{cc}^{+}\rightarrow\Xi^{0} D_{s}^{*+}) =&\; {\rm i} [ {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Xi_c^{ 0}, \Xi^{-}, \Xi^{0}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \rho^+, \Xi_c^{ 0}, \Xi^{-}, \Xi^{0}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{0}, \Sigma_c^{ +}, \Sigma^{0}, \Xi^{0}, D_s^{*+} ) \\ &+ {\cal M}(\Xi_{cc}^{+}, \bar K^{0}, \Sigma_c^{ +}, \Lambda, \Xi^{0}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{*0}, \Sigma_c^{ +}, \Sigma^{0}, \Xi^{0}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{*0}, \Sigma_c^{ +}, \Lambda, \Xi^{0}, D_s^{*+} ) \\ &+ {\cal M}(\Xi_{cc}^{+}, \pi^{+}, \Xi_c^{\prime 0}, \Xi^{-}, \Xi^{0}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \rho^+, \Xi_c^{\prime 0}, \Xi^{-}, \Xi^{0}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{0}, \Lambda_c^{ +}, \Sigma^{0}, \Xi^{0}, D_s^{*+} ) \\ &+ {\cal M}(\Xi_{cc}^{+}, \bar K^{0}, \Lambda_c^{ +}, \Lambda, \Xi^{0}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{*0}, \Lambda_c^{ +}, \Sigma^{0}, \Xi^{0}, D_s^{*+} ) + {\cal M}(\Xi_{cc}^{+}, \bar K^{*0}, \Lambda_c^{ +}, \Lambda, \Xi^{0}, D_s^{*+} )], \end{aligned} $ |
$\tag{B28} \begin{aligned}[b] {\cal A}(\Omega_{cc}^{+}\rightarrow\Xi^{0} D^{+}) =& \;{\rm i} [ {\cal M}(\Omega_{cc}^{+}, \pi^{+}, \Omega_{c}^{0}, D^{*0}, D^{+}, \Xi^{0} ) + {\cal M}(\Omega_{cc}^{+}, \rho^+, \Omega_{c}^{0}, D^{0}, D^{+}, \Xi^{0} ) + {\cal M}(\Omega_{cc}^{+}, \pi^{+}, \Omega_{c}^{0}, \Xi^-, \Xi^{0}, D^{+} ) \\ &+ {\cal M}(\Omega_{cc}^{+}, \rho^+, \Omega_{c}^{0}, \Xi^-, \Xi^{0}, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \bar K^{0}, \Xi_c^{ +}, \Sigma^{ 0}, \Xi^{0}, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \bar K^{0}, \Xi_c^{ +}, \Lambda, \Xi^{0}, D^{+} ) \\ &+ {\cal M}(\Omega_{cc}^{+}, \bar K^{0}, \Xi_c^{\prime +}, \Sigma^{ 0}, \Xi^{0}, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \bar K^{0}, \Xi_c^{\prime +}, \Lambda, \Xi^{0}, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \bar K^{*0},\Xi_c^{ +}, \Sigma^{ 0}, \Xi^{0}, D^{+} ) \\ &+ {\cal M}(\Omega_{cc}^{+}, \bar K^{*0},\Xi_c^{ +}, \Lambda, \Xi^{0}, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \bar K^{*0},\Xi_c^{\prime +}, \Sigma^{ 0}, \Xi^{0}, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \bar K^{*0},\Xi_c^{\prime +}, \Lambda, \Xi^{0}, D^{+} ) \\ &+ {\cal M}(\Omega_{cc}^{+}, \bar K^{0}, \Xi_c^{ +}, D_s^{*+}, D^{+}, \Xi^{0} ) + {\cal M}(\Omega_{cc}^{+}, \bar K^{0}, \Xi_c^{\prime +}, D_s^{*+}, D^{+}, \Xi^{0} ) + {\cal M}(\Omega_{cc}^{+}, \bar K^{*0},\Xi_c^{ +}, D_s^{+}, D^{+}, \Xi^{0} ) \\ &+ {\cal M}(\Omega_{cc}^{+}, \bar K^{*0},\Xi_c^{\prime +}, D_s^{+}, D^{+}, \Xi^{0} ) ], \end{aligned} $ |
$\tag{B29} \begin{aligned}[b] {\cal A}(\Omega_{cc}^{+}\rightarrow\Xi^{0} D^{*+}) =& \;{\rm i} [ {\cal M}(\Omega_{cc}^{+}, \pi^{+}, \Omega_{c}^{0}, D^{0}, D^{*+}, \Xi^{0} ) + {\cal M}(\Omega_{cc}^{+}, \rho^+, \Omega_{c}^{0}, D^{*0}, D^{*+}, \Xi^{0} ) + {\cal M}(\Omega_{cc}^{+}, \pi^{+}, \Omega_{c}^{0}, \Xi^-, \Xi^{0}, D^{*+} ) \\ &+ {\cal M}(\Omega_{cc}^{+}, \rho^+, \Omega_{c}^{0}, \Xi^-, \Xi^{0}, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \bar K^{0}, \Xi_c^{ +}, \Sigma^{ 0}, \Xi^{0}, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \bar K^{0}, \Xi_c^{ +}, \Lambda, \Xi^{0}, D^{*+} ) \\ &+ {\cal M}(\Omega_{cc}^{+}, \bar K^{0}, \Xi_c^{\prime +}, \Sigma^{ 0}, \Xi^{0}, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \bar K^{0}, \Xi_c^{\prime +}, \Lambda, \Xi^{0}, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \bar K^{*0},\Xi_c^{ +}, \Sigma^{ 0}, \Xi^{0}, D^{*+} ) \\ &+ {\cal M}(\Omega_{cc}^{+}, \bar K^{*0},\Xi_c^{ +}, \Lambda, \Xi^{0}, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \bar K^{*0},\Xi_c^{\prime +}, \Sigma^{ 0}, \Xi^{0}, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \bar K^{*0},\Xi_c^{\prime +}, \Lambda, \Xi^{0}, D^{*+} ) \\ &+ {\cal M}(\Omega_{cc}^{+}, \bar K^{0}, \Xi_c^{ +}, D_s^{+}, D^{*+}, \Xi^{0} ) + {\cal M}(\Omega_{cc}^{+}, \bar K^{0}, \Xi_c^{\prime +}, D_s^{+}, D^{*+}, \Xi^{0} ) + {\cal M}(\Omega_{cc}^{+}, \bar K^{*0},\Xi_c^{ +}, D_s^{*+}, D^{*+}, \Xi^{0} ) \\&+ {\cal M}(\Omega_{cc}^{+}, \bar K^{*0},\Xi_c^{\prime +}, D_s^{*+}, D^{*+}, \Xi^{0} ) ], \end{aligned} $ |
$\tag{B30} \begin{aligned}[b] {\cal A}(\Omega_{cc}^{+}\rightarrow\Xi^{0} D_{s}^{+}) =& \;{\rm i}[ {\cal M}(\Omega_{cc}^{+}, K^{+}, \Omega_{c}^{0}, D^{*0}, D_s^{+}, \Xi^{0} ) + {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Omega_{c}^{0}, D^{0}, D_s^{+}, \Xi^{0} ) + {\cal M}(\Omega_{cc}^{+}, \phi, \Xi_c^+, D_s^{+}, D_s^{+}, \Xi^{0} ) \\ &+ {\cal M}(\Omega_{cc}^{+}, \phi, \Xi_c^{\prime +}, D_s^{+}, D_s^{+}, \Xi^{0} ) + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_c^{ +}, D_s^{*+}, D_s^{+}, \Xi^{0} ) + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_c^{\prime +}, D_s^{*+}, D_s^{+}, \Xi^{0} ) \\ &+ {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_c^{ +}, D_s^{*+}, D_s^{+}, \Xi^{0} ) + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_c^{\prime +}, D_s^{*+}, D_s^{+}, \Xi^{0} ) + {\cal M}(\Omega_{cc}^{+}, \phi, \Xi_c^+, \Xi^0, \Xi^{0}, D_s^{+} ) \\ &+ {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_c^+, \Xi^0, \Xi^{0}, D_s^{+} ) + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_c^+, \Xi^0, \Xi^{0}, D_s^{+} ) + {\cal M}(\Omega_{cc}^{+}, \phi, \Xi_c^{\prime +}, \Xi^0, \Xi^{0}, D_s^{+} ) \\ &+ {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_c^{\prime +}, \Xi^0, \Xi^{0}, D_s^{+} ) + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_c^{\prime +}, \Xi^0, \Xi^{0}, D_s^{+} ) + {\cal M}(\Omega_{cc}^{+}, \pi^+, \Xi_c^0, \Xi^-, \Xi^{0}, D_s^{+} ) \\ &+ {\cal M}(\Omega_{cc}^{+}, \rho^+, \Xi_c^0, \Xi^-, \Xi^{0}, D_s^{+} ) + {\cal M}(\Omega_{cc}^{+}, \pi^+, \Xi_c^{\prime 0}, \Xi^-, \Xi^{0}, D_s^{+} ) + {\cal M}(\Omega_{cc}^{+}, \rho^+, \Xi_c^{\prime 0}, \Xi^-, \Xi^{0}, D_s^{+} ) ], \end{aligned} $ |
$\tag{B31} \begin{aligned}[b] {\cal A}(\Omega_{cc}^{+}\rightarrow\Xi^{0} D_{s}^{*+}) =& \;{\rm i} [ {\cal M}(\Omega_{cc}^{+}, K^{+}, \Omega_{c}^{0}, D^{0}, D_s^{*+}, \Xi^{0} ) + {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Omega_{c}^{0}, D^{*0}, D_s^{*+}, \Xi^{0} ) + {\cal M}(\Omega_{cc}^{+}, \phi, \Xi_c^+, D_s^{*+}, D_s^{*+}, \Xi^{0} ) \\&+ {\cal M}(\Omega_{cc}^{+}, \phi, \Xi_c^{\prime +}, D_s^{*+}, D_s^{*+}, \Xi^{0} ) + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_c^{ +}, D_s^{+}, D_s^{*+}, \Xi^{0} ) + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_c^{\prime +}, D_s^{+}, D_s^{*+}, \Xi^{0} ) \\ &+ {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_c^{ +}, D_s^{+}, D_s^{*+}, \Xi^{0} ) + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_c^{\prime +}, D_s^{+}, D_s^{*+}, \Xi^{0} ) + {\cal M}(\Omega_{cc}^{+}, \phi, \Xi_c^+, \Xi^0, \Xi^{0}, D_s^{*+} ) \\ &+ {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_c^+, \Xi^0, \Xi^{0}, D_s^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_c^+, \Xi^0, \Xi^{0}, D_s^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \phi, \Xi_c^{\prime +}, \Xi^0, \Xi^{0}, D_s^{*+} ) \\ &+ {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_c^{\prime +}, \Xi^0, \Xi^{0}, D_s^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_c^{\prime +}, \Xi^0, \Xi^{0}, D_s^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \pi^+, \Xi_c^0, \Xi^-, \Xi^{0}, D_s^{*+} ) \\&+ {\cal M}(\Omega_{cc}^{+}, \rho^+, \Xi_c^0, \Xi^-, \Xi^{0}, D_s^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \pi^+, \Xi_c^{\prime 0}, \Xi^-, \Xi^{0}, D_s^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \rho^+, \Xi_c^{\prime 0}, \Xi^-, \Xi^{0}, D_s^{*+} ) ], \end{aligned} $ |
$\tag{B32} \begin{aligned}[b] {\cal A}(\Omega_{cc}^{+}\rightarrow\Sigma^{0} D_{s}^{+}) =&\; {\rm i} [ {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_c^0, D^{*0}, D_s^{+}, \Sigma^{0} ) + {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_c^{\prime 0}, D^{*0}, D_s^{+}, \Sigma^{0} ) + {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_c^0, D^{0}, D_s^{+}, \Sigma^{0} )\\&+ {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_c^{\prime 0}, D^{0}, D_s^{+}, \Sigma^{0} ) + {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_c^0, \Xi^{-}, \Sigma^{0}, D_s^{+} ) + {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_c^{\prime 0}, \Xi^{-}, \Sigma^{0}, D_s^{+} )\\ &+ {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_c^0, \Xi^{-}, \Sigma^{0}, D_s^{+} ) + {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_c^{\prime 0}, \Xi^{-}, \Sigma^{0}, D_s^{+} ) + {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_c^+, \Xi^{0}, \Sigma^{0}, D_s^{+} )\\ &+ {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_c^{\prime +}, \Xi^{0}, \Sigma^{0}, D_s^{+} ) + {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_c^+, \Xi^{0}, \Sigma^{0}, D_s^{+} ) + {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_c^{\prime +}, \Xi^{0}, \Sigma^{0}, D_s^{+} )\\ &+ {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_c^+, D^{*+}, D_s^{+}, \Sigma^{0} ) + {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_c^{\prime +}, D^{*+}, D_s^{+}, \Sigma^{0} ) + {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_c^+, D^{+}, D_s^{+}, \Sigma^{0} )\\&+ {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_c^{\prime +}, D^{+}, D_s^{+}, \Sigma^{0} ) ], \end{aligned} $ |
$\tag{B33} \begin{aligned}[b] {\cal A}(\Omega_{cc}^{+}\rightarrow\Lambda D_{s}^{+}) =&\; {\rm i} [ {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_c^0, D^{*0}, D_s^{+}, \Lambda ) + {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_c^{\prime 0}, D^{*0}, D_s^{+}, \Lambda ) + {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_c^0, D^{0}, D_s^{+}, \Lambda )\\&+ {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_c^{\prime 0}, D^{0}, D_s^{+}, \Lambda ) + {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_c^0, \Xi^{-}, \Lambda, D_s^{+} ) + {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_c^{\prime 0}, \Xi^{-}, \Lambda, D_s^{+} )\\ &+ {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_c^0, \Xi^{-}, \Lambda, D_s^{+} ) + {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_c^{\prime 0}, \Xi^{-}, \Lambda, D_s^{+} ) + {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_c^+, \Xi^{0}, \Lambda, D_s^{+} )\\ &+ {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_c^{\prime +}, \Xi^{0}, \Lambda, D_s^{+} ) + {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_c^+, \Xi^{0}, \Lambda, D_s^{+} ) + {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_c^{\prime +}, \Xi^{0}, \Lambda, D_s^{+} )\\ &+ {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_c^+, D^{*+}, D_s^{+}, \Lambda ) + {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_c^{\prime +}, D^{*+}, D_s^{+}, \Lambda ) + {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_c^+, D^{+}, D_s^{+}, \Lambda )\\&+ {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_c^{\prime +}, D^{+}, D_s^{+}, \Lambda ) ], \end{aligned} $ |
$\tag{B34} \begin{aligned}[b] {\cal A}(\Omega_{cc}^{+}\rightarrow\Sigma^{0} D_{s}^{*+}) = & \;{\rm i} [ {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_c^0, D^{0}, D_s^{*+}, \Sigma^{0} ) + {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_c^{\prime 0}, D^{0}, D_s^{*+}, \Sigma^{0} ) + {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_c^0, D^{*0}, D_s^{*+}, \Sigma^{0} )\\&+ {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_c^{\prime 0}, D^{*0}, D_s^{*+}, \Sigma^{0} ) + {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_c^0, \Xi^{-}, \Sigma^{0}, D_s^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_c^{\prime 0}, \Xi^{-}, \Sigma^{0}, D_s^{*+} )\\&+ {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_c^0, \Xi^{-}, \Sigma^{0}, D_s^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_c^{\prime 0}, \Xi^{-}, \Sigma^{0}, D_s^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_c^+, \Xi^{0}, \Sigma^{0}, D_s^{*+} )\\ &+ {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_c^{\prime +}, \Xi^{0}, \Sigma^{0}, D_s^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_c^+, \Xi^{0}, \Sigma^{0}, D_s^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_c^{\prime +}, \Xi^{0}, \Sigma^{0}, D_s^{*+} )\\ &+ {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_c^+, D^{+}, D_s^{*+}, \Sigma^{0} ) + {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_c^{\prime +}, D^{+}, D_s^{*+}, \Sigma^{0} ) + {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_c^+, D^{*+}, D_s^{*+}, \Sigma^{0} )\\&+ {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_c^{\prime +}, D^{*+}, D_s^{*+}, \Sigma^{0} ) ], \end{aligned} $ |
$\tag{B35} \begin{aligned}[b] {\cal A}(\Omega_{cc}^{+}\rightarrow\Lambda D_{s}^{*+}) =&\; {\rm i} [ {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_c^0, D^{0}, D_s^{*+}, \Lambda ) + {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_c^{\prime 0}, D^{0}, D_s^{*+}, \Lambda ) + {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_c^0, D^{*0}, D_s^{*+}, \Lambda )\\ &+ {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_c^{\prime 0}, D^{*0}, D_s^{*+}, \Lambda ) + {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_c^0, \Xi^{-}, \Lambda, D_s^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_c^{\prime 0}, \Xi^{-}, \Lambda, D_s^{*+} )\\ &+ {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_c^0, \Xi^{-}, \Lambda, D_s^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_c^{\prime 0}, \Xi^{-}, \Lambda, D_s^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_c^+, \Xi^{0}, \Lambda, D_s^{*+} )\\ &+ {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_c^{\prime +}, \Xi^{0}, \Lambda, D_s^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_c^+, \Xi^{0}, \Lambda, D_s^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_c^{\prime +}, \Xi^{0}, \Lambda, D_s^{*+} )\\ &+ {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_c^+, D^{+}, D_s^{*+}, \Lambda ) + {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_c^{\prime +}, D^{+}, D_s^{*+}, \Lambda ) + {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_c^+, D^{*+}, D_s^{*+}, \Lambda )\\&+ {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_c^{\prime +}, D^{*+}, D_s^{*+}, \Lambda ) ], \end{aligned} $ |
$\tag{B36} \begin{aligned}[b] {\cal A}(\Omega_{cc}^{+}\rightarrow\Sigma^{0} D^{+}) = &\; {\rm i} [ {\cal M}(\Omega_{cc}^{+}, \pi^{+}, \Xi_{c}^{0}, D^{*0}, D^{+}, \Sigma^{0} ) + {\cal M}(\Omega_{cc}^{+}, \pi^{+}, \Xi_c^{\prime 0}, D^{*0}, D^{+}, \Sigma^{0} ) + {\cal M}(\Omega_{cc}^{+}, \rho^+, \Xi_{c}^{0}, D^{*0}, D^{+}, \Sigma^{0} )\\&+ {\cal M}(\Omega_{cc}^{+}, \rho^+, \Xi_c^{\prime 0}, D^{*0}, D^{+}, \Sigma^{0} ) + {\cal M}(\Omega_{cc}^{+}, \pi^{+}, \Xi_{c}^{0}, \Sigma^-, \Sigma^{0}, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \pi^{+}, \Xi_{c}^{\prime 0}, \Sigma^-, \Sigma^{0}, D^{+} )\\&+ {\cal M}(\Omega_{cc}^{+}, \rho^+, \Xi_{c}^{0}, \Sigma^-, \Sigma^{0}, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \rho^+, \Xi_{c}^{\prime 0}, \Sigma^-, \Sigma^{0}, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \rho^0, \Xi_{c}^{+}, D^{+}, D^{+}, \Sigma^{0} )\\& + {\cal M}(\Omega_{cc}^{+}, \rho^0, \Xi_{c}^{\prime +}, D^{+}, D^{+}, \Sigma^{0} ) + {\cal M}(\Omega_{cc}^{+}, \pi^{0}, \Xi_{c}^{+}, D^{*+}, D^{+}, \Sigma^{0} ) + {\cal M}(\Omega_{cc}^{+}, \pi^{0}, \Xi_{c}^{\prime +}, D^{*+}, D^{+}, \Sigma^{0} )\\ &+ {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_{c}^{+}, D^{*+}, D^{+}, \Sigma^{0} ) + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_{c}^{+}, D^{*+}, D^{+}, \Sigma^{0} ) + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_{c}^{\prime +}, D^{*+}, D^{+}, \Sigma^{0} )\\ &+ {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_{c}^{\prime +}, D^{*+}, D^{+}, \Sigma^{0} ) + {\cal M}(\Omega_{cc}^{+}, \omega, \Xi_{c}^{+}, D^{+}, D^{+}, \Sigma^{0} ) + {\cal M}(\Omega_{cc}^{+}, \omega, \Xi_{c}^{\prime +}, D^{+}, D^{+}, \Sigma^{0} )\\ &+ {\cal M}(\Omega_{cc}^{+}, \rho^0, \Xi_{c}^{+}, \Lambda, \Sigma^{0}, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \rho^0, \Xi_{c}^{\prime +}, \Lambda, \Sigma^{0}, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \omega, \Xi_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D^{+} )\\&+ {\cal M}(\Omega_{cc}^{+}, \omega, \Xi_{c}^{\prime +}, \Sigma^{0}, \Sigma^{0}, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \pi^{0}, \Xi_{c}^{+}, \Lambda, \Sigma^{0}, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \pi^{0}, \Xi_{c}^{\prime +}, \Lambda, \Sigma^{0}, D^{+} )\\ &+ {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_{c}^{\prime +}, \Sigma^{0}, \Sigma^{0}, D^{+} )\\&+ {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_{c}^{\prime +}, \Sigma^{0}, \Sigma^{0}, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, K^+, \Omega_{c}^{0}, \Xi^-, \Sigma^{0}, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Omega_{c}^{0}, \Xi^-, \Sigma^{0}, D^{+} )\\ &+ {\cal M}(\Omega_{cc}^{+}, \phi, \Xi_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D^{+} )\\ &+ {\cal M}(\Omega_{cc}^{+}, \phi, \Xi_{c}^{\prime +}, \Sigma^{0}, \Sigma^{0}, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_{c}^{\prime +}, \Sigma^{0}, \Sigma^{0}, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_{c}^{\prime +}, \Sigma^{0}, \Sigma^{0}, D^{+} ) ], \end{aligned} $ |
$\tag{B37} \begin{aligned}[b] {\cal A}(\Omega_{cc}^{+}\rightarrow\Lambda D^{+}) =& \;{\rm i} [ {\cal M}(\Omega_{cc}^{+}, \pi^{+}, \Xi_{c}^{0}, D^{*0}, D^{+}, \Lambda ) + {\cal M}(\Omega_{cc}^{+}, \pi^{+}, \Xi_c^{\prime 0}, D^{*0}, D^{+}, \Lambda ) + {\cal M}(\Omega_{cc}^{+}, \rho^+, \Xi_{c}^{0}, D^{*0}, D^{+}, \Lambda )\\&+ {\cal M}(\Omega_{cc}^{+}, \rho^+, \Xi_c^{\prime 0}, D^{*0}, D^{+}, \Lambda ) + {\cal M}(\Omega_{cc}^{+}, \pi^{+}, \Xi_{c}^{0}, \Sigma^-, \Lambda, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \pi^{+}, \Xi_{c}^{\prime 0}, \Sigma^-, \Lambda, D^{+} )\\ &+ {\cal M}(\Omega_{cc}^{+}, \rho^+, \Xi_{c}^{0}, \Sigma^-, \Lambda, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \rho^+, \Xi_{c}^{\prime 0}, \Sigma^-, \Lambda, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \rho^0, \Xi_{c}^{+}, D^{+}, D^{+}, \Lambda )\\ &+ {\cal M}(\Omega_{cc}^{+}, \rho^0, \Xi_{c}^{\prime +}, D^{+}, D^{+}, \Lambda ) + {\cal M}(\Omega_{cc}^{+}, \pi^{0}, \Xi_{c}^{+}, D^{*+}, D^{+}, \Lambda ) + {\cal M}(\Omega_{cc}^{+}, \pi^{0}, \Xi_{c}^{\prime +}, D^{*+}, D^{+}, \Lambda )\\ & + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_{c}^{+}, D^{*+}, D^{+}, \Lambda ) + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_{c}^{+}, D^{*+}, D^{+}, \Lambda ) + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_{c}^{\prime +}, D^{*+}, D^{+}, \Lambda )\\ & + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_{c}^{\prime +}, D^{*+}, D^{+}, \Lambda ) + {\cal M}(\Omega_{cc}^{+}, \omega, \Xi_{c}^{+}, D^{+}, D^{+}, \Lambda ) + {\cal M}(\Omega_{cc}^{+}, \omega, \Xi_{c}^{\prime +}, D^{+}, D^{+}, \Lambda )\\ & + {\cal M}(\Omega_{cc}^{+}, \rho^0, \Xi_{c}^{+}, \Lambda, \Lambda, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \rho^0, \Xi_{c}^{\prime +}, \Lambda, \Lambda, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \omega, \Xi_{c}^{+}, \Sigma^{0}, \Lambda, D^{+} )\\ & + {\cal M}(\Omega_{cc}^{+}, \omega, \Xi_{c}^{\prime +}, \Sigma^{0}, \Lambda, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \pi^{0}, \Xi_{c}^{+}, \Lambda, \Lambda, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \pi^{0}, \Xi_{c}^{\prime +}, \Lambda, \Lambda, D^{+} )\\ & + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_{c}^{+}, \Sigma^{0}, \Lambda, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_{c}^{+}, \Sigma^{0}, \Lambda, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_{c}^{\prime +}, \Sigma^{0}, \Lambda, D^{+} )\\ & + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_{c}^{\prime +}, \Sigma^{0}, \Lambda, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, K^+, \Omega_{c}^{0}, \Xi^-, \Lambda, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Omega_{c}^{0}, \Xi^-, \Lambda, D^{+} )\\ & + {\cal M}(\Omega_{cc}^{+}, \phi, \Xi_{c}^{+}, \Sigma^{0}, \Lambda, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_{c}^{+}, \Sigma^{0}, \Lambda, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_{c}^{+}, \Sigma^{0}, \Lambda, D^{+} )\\ & + {\cal M}(\Omega_{cc}^{+}, \phi, \Xi_{c}^{\prime +}, \Sigma^{0}, \Lambda, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_{c}^{\prime +}, \Sigma^{0}, \Lambda, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_{c}^{\prime +}, \Sigma^{0}, \Lambda, D^{+} ) ], \end{aligned} $ |
$\tag{B38} \begin{aligned}[b] {\cal A}(\Omega_{cc}^{+}\rightarrow\Sigma^{0} D^{*+}) =&\; {\rm i} [ {\cal M}(\Omega_{cc}^{+}, \pi^{+}, \Xi_{c}^{0}, D^{0}, D^{*+}, \Sigma^{0} ) + {\cal M}(\Omega_{cc}^{+}, \pi^{+}, \Xi_c^{\prime 0}, D^{0}, D^{*+}, \Sigma^{0} ) + {\cal M}(\Omega_{cc}^{+}, \rho^+, \Xi_{c}^{0}, D^{*0}, D^{*+}, \Sigma^{0} )\\ &+ {\cal M}(\Omega_{cc}^{+}, \rho^+, \Xi_c^{\prime 0}, D^{*0}, D^{*+}, \Sigma^{0} ) + {\cal M}(\Omega_{cc}^{+}, \pi^{+}, \Xi_{c}^{0}, \Sigma^-, \Sigma^{0}, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \pi^{+}, \Xi_{c}^{\prime 0}, \Sigma^-, \Sigma^{0}, D^{*+} )\\ & + {\cal M}(\Omega_{cc}^{+}, \rho^+, \Xi_{c}^{0}, \Sigma^-, \Sigma^{0}, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \rho^+, \Xi_{c}^{\prime 0}, \Sigma^-, \Sigma^{0}, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \rho^0, \Xi_{c}^{+}, D^{*+}, D^{*+}, \Sigma^{0} )\\ & + {\cal M}(\Omega_{cc}^{+}, \rho^0, \Xi_{c}^{\prime +}, D^{*+}, D^{*+}, \Sigma^{0} ) + {\cal M}(\Omega_{cc}^{+}, \pi^{0}, \Xi_{c}^{+}, D^{+}, D^{*+}, \Sigma^{0} ) + {\cal M}(\Omega_{cc}^{+}, \pi^{0}, \Xi_{c}^{\prime +}, D^{+}, D^{*+}, \Sigma^{0} )\\ & + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_{c}^{+}, D^{+}, D^{*+}, \Sigma^{0} ) + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_{c}^{+}, D^{+}, D^{*+}, \Sigma^{0} ) + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_{c}^{\prime +}, D^{+}, D^{*+}, \Sigma^{0} )\\ & + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_{c}^{\prime +}, D^{+}, D^{*+}, \Sigma^{0} ) + {\cal M}(\Omega_{cc}^{+}, \omega, \Xi_{c}^{+}, D^{*+}, D^{*+}, \Sigma^{0} ) + {\cal M}(\Omega_{cc}^{+}, \omega, \Xi_{c}^{\prime +}, D^{*+}, D^{*+}, \Sigma^{0} )\\ & + {\cal M}(\Omega_{cc}^{+}, \rho^0, \Xi_{c}^{+}, \Lambda, \Sigma^{0}, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \rho^0, \Xi_{c}^{\prime +}, \Lambda, \Sigma^{0}, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \omega, \Xi_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D^{*+} )\\ & + {\cal M}(\Omega_{cc}^{+}, \omega, \Xi_{c}^{\prime +}, \Sigma^{0}, \Sigma^{0}, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \pi^{0}, \Xi_{c}^{+}, \Lambda, \Sigma^{0}, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \pi^{0}, \Xi_{c}^{\prime +}, \Lambda, \Sigma^{0}, D^{*+} )\\ & + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_{c}^{\prime +}, \Sigma^{0}, \Sigma^{0}, D^{*+} )\\ & + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_{c}^{\prime +}, \Sigma^{0}, \Sigma^{0}, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^+, \Omega_{c}^{0}, \Xi^-, \Sigma^{0}, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Omega_{c}^{0}, \Xi^-, \Sigma^{0}, D^{*+} )\\ & + {\cal M}(\Omega_{cc}^{+}, \phi, \Xi_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_{c}^{+}, \Sigma^{0}, \Sigma^{0}, D^{*+} )\\ & + {\cal M}(\Omega_{cc}^{+}, \phi, \Xi_{c}^{\prime +}, \Sigma^{0}, \Sigma^{0}, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_{c}^{\prime +}, \Sigma^{0}, \Sigma^{0}, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_{c}^{\prime +}, \Sigma^{0}, \Sigma^{0}, D^{*+} ) ], \end{aligned} $ |
$\tag{B39} \begin{aligned}[b] {\cal A}(\Omega_{cc}^{+}\rightarrow\Lambda D^{*+}) =& \;{\rm i} [ {\cal M}(\Omega_{cc}^{+}, \pi^{+}, \Xi_{c}^{0}, D^{0}, D^{*+}, \Lambda ) + {\cal M}(\Omega_{cc}^{+}, \pi^{+}, \Xi_c^{\prime 0}, D^{0}, D^{*+}, \Lambda ) + {\cal M}(\Omega_{cc}^{+}, \rho^+, \Xi_{c}^{0}, D^{*0}, D^{*+}, \Lambda )\\ &+ {\cal M}(\Omega_{cc}^{+}, \rho^+, \Xi_c^{\prime 0}, D^{*0}, D^{*+}, \Lambda ) + {\cal M}(\Omega_{cc}^{+}, \pi^{+}, \Xi_{c}^{0}, \Sigma^-, \Lambda, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \pi^{+}, \Xi_{c}^{\prime 0}, \Sigma^-, \Lambda, D^{*+} )\\ & + {\cal M}(\Omega_{cc}^{+}, \rho^+, \Xi_{c}^{0}, \Sigma^-, \Lambda, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \rho^+, \Xi_{c}^{\prime 0}, \Sigma^-, \Lambda, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \rho^0, \Xi_{c}^{+}, D^{*+}, D^{*+}, \Lambda )\\ & + {\cal M}(\Omega_{cc}^{+}, \rho^0, \Xi_{c}^{\prime +}, D^{*+}, D^{*+}, \Lambda ) + {\cal M}(\Omega_{cc}^{+}, \pi^{0}, \Xi_{c}^{+}, D^{+}, D^{*+}, \Lambda ) + {\cal M}(\Omega_{cc}^{+}, \pi^{0}, \Xi_{c}^{\prime +}, D^{+}, D^{*+}, \Lambda )\\ & + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_{c}^{+}, D^{+}, D^{*+}, \Lambda ) + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_{c}^{+}, D^{+}, D^{*+}, \Lambda ) + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_{c}^{\prime +}, D^{+}, D^{*+}, \Lambda )\\ & + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_{c}^{\prime +}, D^{+}, D^{*+}, \Lambda ) + {\cal M}(\Omega_{cc}^{+}, \omega, \Xi_{c}^{+}, D^{*+}, D^{*+}, \Lambda ) + {\cal M}(\Omega_{cc}^{+}, \omega, \Xi_{c}^{\prime +}, D^{*+}, D^{*+}, \Lambda )\\ & + {\cal M}(\Omega_{cc}^{+}, \rho^0, \Xi_{c}^{+}, \Lambda, \Lambda, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \rho^0, \Xi_{c}^{\prime +}, \Lambda, \Lambda, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \omega, \Xi_{c}^{+}, \Sigma^{0}, \Lambda, D^{*+} )\\ & + {\cal M}(\Omega_{cc}^{+}, \omega, \Xi_{c}^{\prime +}, \Sigma^{0}, \Lambda, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \pi^{0}, \Xi_{c}^{+}, \Lambda, \Lambda, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \pi^{0}, \Xi_{c}^{\prime +}, \Lambda, \Lambda, D^{*+} )\\ & + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_{c}^{+}, \Sigma^{0}, \Lambda, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_{c}^{+}, \Sigma^{0}, \Lambda, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_{c}^{\prime +}, \Sigma^{0}, \Lambda, D^{*+} )\\ & + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_{c}^{\prime +}, \Sigma^{0}, \Lambda, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^+, \Omega_{c}^{0}, \Xi^-, \Lambda, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Omega_{c}^{0}, \Xi^-, \Lambda, D^{*+} )\\ & + {\cal M}(\Omega_{cc}^{+}, \phi, \Xi_{c}^{+}, \Sigma^{0}, \Lambda, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_{c}^{+}, \Sigma^{0}, \Lambda, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_{c}^{+}, \Sigma^{0}, \Lambda, D^{*+} )\\ & + {\cal M}(\Omega_{cc}^{+}, \phi, \Xi_{c}^{\prime +}, \Sigma^{0}, \Lambda, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_{c}^{\prime +}, \Sigma^{0}, \Lambda, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_{c}^{\prime +}, \Sigma^{0}, \Lambda, D^{*+} ) ], \end{aligned} $ |
$\tag{B40} \begin{aligned}[b] {\cal A}(\Omega_{cc}^{+}\rightarrow\Sigma^{+} D^{0}) = &\; {\rm i} [ {\cal M}(\Omega_{cc}^{+}, K^{+}, \Omega_{c}^{0}, \Xi^{0}, \Sigma^{+}, D^{0} ) + {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Omega_{c}^{0}, \Xi^{0}, \Sigma^{+}, D^{0} ) + {\cal M}(\Omega_{cc}^{+}, \pi^+, \Xi_{c}^{0}, \Sigma^{0}, \Sigma^{+}, D^{0} )\\ &+ {\cal M}(\Omega_{cc}^{+}, \pi^+, \Xi_{c}^{\prime 0}, \Sigma^{0}, \Sigma^{+}, D^{0} ) + {\cal M}(\Omega_{cc}^{+}, \pi^+, \Xi_{c}^{0}, \Lambda, \Sigma^{+}, D^{0} ) + {\cal M}(\Omega_{cc}^{+}, \pi^+, \Xi_{c}^{\prime 0}, \Lambda, \Sigma^{+}, D^{0} )\\ & + {\cal M}(\Omega_{cc}^{+}, \rho^+, \Xi_{c}^{0}, \Sigma^{0}, \Sigma^{+}, D^{0} ) + {\cal M}(\Omega_{cc}^{+}, \rho^+, \Xi_{c}^{\prime 0}, \Sigma^{0}, \Sigma^{+}, D^{0} ) + {\cal M}(\Omega_{cc}^{+}, \rho^+, \Xi_{c}^{0}, \Lambda, \Sigma^{+}, D^{0} )\\ & + {\cal M}(\Omega_{cc}^{+}, \rho^+, \Xi_{c}^{\prime 0}, \Lambda, \Sigma^{+}, D^{0} ) + {\cal M}(\Omega_{cc}^{+}, \phi, \Xi_{c}^{+}, \Sigma^{+}, \Sigma^{+}, D^{0} ) + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_{c}^{+}, \Sigma^{+}, \Sigma^{+}, D^{0} )\\ & + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_{c}^{+}, \Sigma^{+}, \Sigma^{+}, D^{0} ) + {\cal M}(\Omega_{cc}^{+}, \phi, \Xi_{c}^{\prime 0}, \Sigma^{+}, \Sigma^{+}, D^{0} ) + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_{c}^{\prime 0}, \Sigma^{+}, \Sigma^{+}, D^{0} )\\ & + {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_{c}^{\prime 0}, \Sigma^{+}, \Sigma^{+}, D^{0} ) ], \end{aligned} $ |
$\tag{B41} \begin{aligned}[b] {\cal A}(\Omega_{cc}^{+}\rightarrow\Sigma^{+} D^{*0}) =& \;{\rm i} [ {\cal M}(\Omega_{cc}^{+}, K^{+}, \Omega_{c}^{0}, \Xi^{0}, \Sigma^{+}, D^{*0} ) + {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Omega_{c}^{0}, \Xi^{0}, \Sigma^{+}, D^{*0} ) + {\cal M}(\Omega_{cc}^{+}, \pi^+, \Xi_{c}^{0}, \Sigma^{0}, \Sigma^{+}, D^{*0} )\\&+ {\cal M}(\Omega_{cc}^{+}, \pi^+, \Xi_{c}^{\prime 0}, \Sigma^{0}, \Sigma^{+}, D^{*0} ) + {\cal M}(\Omega_{cc}^{+}, \pi^+, \Xi_{c}^{0}, \Lambda, \Sigma^{+}, D^{*0} ) + {\cal M}(\Omega_{cc}^{+}, \pi^+, \Xi_{c}^{\prime 0}, \Lambda, \Sigma^{+}, D^{*0} )\\&+ {\cal M}(\Omega_{cc}^{+}, \rho^+, \Xi_{c}^{0}, \Sigma^{0}, \Sigma^{+}, D^{*0} ) + {\cal M}(\Omega_{cc}^{+}, \rho^+, \Xi_{c}^{\prime 0}, \Sigma^{0}, \Sigma^{+}, D^{*0} ) + {\cal M}(\Omega_{cc}^{+}, \rho^+, \Xi_{c}^{0}, \Lambda, \Sigma^{+}, D^{*0} )\\&+ {\cal M}(\Omega_{cc}^{+}, \rho^+, \Xi_{c}^{\prime 0}, \Lambda, \Sigma^{+}, D^{*0} ) + {\cal M}(\Omega_{cc}^{+}, \phi, \Xi_{c}^{+}, \Sigma^{+}, \Sigma^{+}, D^{*0} ) + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_{c}^{+}, \Sigma^{+}, \Sigma^{+}, D^{*0} )\\ &+ {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_{c}^{+}, \Sigma^{+}, \Sigma^{+}, D^{*0} ) + {\cal M}(\Omega_{cc}^{+}, \phi, \Xi_{c}^{\prime 0}, \Sigma^{+}, \Sigma^{+}, D^{*0} ) + {\cal M}(\Omega_{cc}^{+}, \eta_1, \Xi_{c}^{\prime 0}, \Sigma^{+}, \Sigma^{+}, D^{*0} )\\ &+ {\cal M}(\Omega_{cc}^{+}, \eta_8, \Xi_{c}^{\prime 0}, \Sigma^{+}, \Sigma^{+}, D^{*0} ) ], \end{aligned} $ |
$\tag{B42} \begin{aligned}[b] {\cal A}(\Omega_{cc}^{+}\rightarrow p D^{0}) =&\; {\rm i} [ {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_{c}^{0}, \Sigma^{0}, p, D^{0} ) + {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_{c}^{\prime 0}, \Sigma^{0}, p, D^{0} ) + {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_{c}^{0}, \Lambda, p, D^{0} )\\&+ {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_{c}^{\prime 0}, \Lambda, p, D^{0} ) + {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_{c}^{0}, \Sigma^{0}, p, D^{0} ) + {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_{c}^{\prime 0}, \Sigma^{0}, p, D^{0} )\\&+ {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_{c}^{0}, \Lambda, p, D^{0} ) + {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_{c}^{\prime 0}, \Lambda, p, D^{0} ) + {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_{c}^{+}, \Sigma^{+}, p, D^{0} )\\ &+ {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_{c}^{\prime +}, \Sigma^{+}, p, D^{0} ) + {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_{c}^{+}, \Sigma^{+}, p, D^{0} ) + {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_{c}^{\prime +}, \Sigma^{+}, p, D^{0} ) ], \end{aligned} $ |
$\tag{B43} \begin{aligned}[b] {\cal A}(\Omega_{cc}^{+}\rightarrow p D^{*0}) =&\; {\rm i} [ {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_{c}^{0}, \Sigma^{0}, p, D^{*0} ) + {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_{c}^{\prime 0}, \Sigma^{0}, p, D^{*0} ) + {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_{c}^{0}, \Lambda, p, D^{*0} )\\ &+ {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_{c}^{\prime 0}, \Lambda, p, D^{*0} ) + {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_{c}^{0}, \Sigma^{0}, p, D^{*0} ) + {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_{c}^{\prime 0}, \Sigma^{0}, p, D^{*0} )\\&+ {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_{c}^{0}, \Lambda, p, D^{*0} ) + {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_{c}^{\prime 0}, \Lambda, p, D^{*0} ) + {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_{c}^{+}, \Sigma^{+}, p, D^{*0} )\\ &+ {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_{c}^{\prime +}, \Sigma^{+}, p, D^{*0} ) + {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_{c}^{+}, \Sigma^{+}, p, D^{*0} ) + {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_{c}^{\prime +}, \Sigma^{+}, p, D^{*0} ) ], \end{aligned} $ |
$\tag{B44} \begin{aligned}[b] {\cal A}(\Omega_{cc}^{+}\rightarrow n D^{+}) =&\; {\rm i} [ {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_{c}^{0}, \Sigma^{-}, n, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_{c}^{\prime 0}, \Sigma^{-}, n, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_{c}^{0}, \Sigma^{-}, n, D^{+} )\\&+ {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_{c}^{\prime 0}, \Sigma^{-}, n, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_{c}^{+}, \Sigma^{0}, n, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_{c}^{+}, \Lambda, n, D^{+} )\\ &+ {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_{c}^{\prime +}, \Sigma^{0}, n, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_{c}^{\prime +}, \Lambda, n, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_{c}^{+}, \Sigma^{0}, n, D^{+} )\\ &+ {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_{c}^{+}, \Lambda, n, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_{c}^{\prime +}, \Sigma^{0}, n, D^{+} ) + {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_{c}^{\prime +}, \Lambda, n, D^{+} ) ], \end{aligned} $ |
$\tag{B45} \begin{aligned}[b] {\cal A}(\Omega_{cc}^{+}\rightarrow n D^{*+}) =& \;{\rm i} [ {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_{c}^{0}, \Sigma^{-}, n, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_{c}^{\prime 0}, \Sigma^{-}, n, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_{c}^{0}, \Sigma^{-}, n, D^{*+} )\\&+ {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_{c}^{\prime 0}, \Sigma^{-}, n, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_{c}^{+}, \Sigma^{0}, n, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_{c}^{+}, \Lambda, n, D^{*+} )\\ &+ {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_{c}^{\prime +}, \Sigma^{0}, n, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_{c}^{\prime +}, \Lambda, n, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_{c}^{+}, \Sigma^{0}, n, D^{*+} )\\&+ {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_{c}^{+}, \Lambda, n, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_{c}^{\prime +}, \Sigma^{0}, n, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_{c}^{\prime +}, \Lambda, n, D^{*+} ) ], \end{aligned} $ |
$\tag{B46} \begin{aligned}[b] {\cal A}(\Omega_{cc}^{+}\rightarrow n D^{*+}) = & \;{\rm i} [ {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_{c}^{0}, \Sigma^{-}, n, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^{+}, \Xi_{c}^{\prime 0}, \Sigma^{-}, n, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_{c}^{0}, \Sigma^{-}, n, D^{*+} )\\&+ {\cal M}(\Omega_{cc}^{+}, K^{*+}, \Xi_{c}^{\prime 0}, \Sigma^{-}, n, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_{c}^{+}, \Sigma^{0}, n, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_{c}^{+}, \Lambda, n, D^{*+} )\\ &+ {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_{c}^{\prime +}, \Sigma^{0}, n, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^{0}, \Xi_{c}^{\prime +}, \Lambda, n, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_{c}^{+}, \Sigma^{0}, n, D^{*+} )\\ &+ {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_{c}^{+}, \Lambda, n, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_{c}^{\prime +}, \Sigma^{0}, n, D^{*+} ) + {\cal M}(\Omega_{cc}^{+}, K^{*0}, \Xi_{c}^{\prime +}, \Lambda, n, D^{*+} ) ]. \end{aligned} $ |
According to the
Vertex | Vertex | Vertex | ||||||||
?2.40 | 32.95 | 2.00 | 12.30 | 7.20 | ?25.00 | |||||
2.00 | 12.30 | 5.66 | ?1.70 | ?2.26 | 37.05 | |||||
?6.00 | 2.50 | 4.00 | ?1.20 | 5.10 | ?28.00 | |||||
5.66 | ?1.70 | ?7.20 | 25.00 | ?4.00 | 1.20 | |||||
5.10 | ?28.00 | ?1.60 | 26.20 | ?6.00 | 2.50 | |||||
4.30 | ?1.10 | 1.90 | 11.90 | ?2.50 | 22.20 | |||||
?6.00 | 17.10 | ?6.00 | 17.10 | ?5.30 | 24.60 | |||||
?4.00 | 1.20 | ?7.10 | 8.70 | 5.66 | ?1.70 | |||||
5.10 | ?28.00 | ?2.26 | 37.05 | 2.50 | ?22.20 | |||||
4.45 | ?27.54 | 6.08 | ?1.56 | 1.60 | ?26.20 | |||||
?9.50 | 32.30 | 1.60 | ?26.20 |
Table5.Strong coupling constants of
Vertex | g | Vertex | g | Vertex | g | ||
21.20 | 10.00 | ?10.70 | |||||
10.00 | 5.75 | 19.80 | |||||
4.25 | ?13.50 | 5.75 | |||||
10.70 | ?4.25 | 19.80 | |||||
14.00 | 4.25 | ?13.50 | |||||
4.25 | 4.70 | 14.90 | |||||
14.14 | ?14.90 | ?4.25 | |||||
?13.50 | ?14.00 | 4.25 | |||||
4.70 | 4.25 | 14.14 | |||||
?14.00 | 10.00 | 4.25 | |||||
10.00 | 14.14 | ?13.50 | |||||
?10.00 | 10.00 | 14.14 | |||||
?14.14 | 14.14 |
Table6.Strong coupling constants of
Vertex | g | Vertex | g | Vertex | g | f |
17.90 | 3.69 | 3.69 | 4.61 |
Table7.Strong coupling constants of
Vertex | g | Vertex | g | f |
4.82 | ?5.80 | 3.60 | ||
3.78 | 11.21 | 4.64 |
Table8.Strong coupling constants of