HTML
--> --> --> $ {\cal H}_{\rm eff}\ = \ \frac{G_{\rm F}}{\sqrt{2}}\, \sum\limits_{q_{1},q_{2}}\, V_{cq_{1}}\,V_{cq_{2}}^{\ast}\, \big\{ C_{1}({\mu})\,O_{1}({\mu}) +C_{2}({\mu})\,O_{2}({\mu}) \big\} +{\rm h.c.} , $ | (1) |
$ \vec{C}({\mu})\, = \, U_{4}({\mu},m_{b})\,M(m_{b})\,U_{5}(m_{b},m_{W})\, \vec{C}(m_{W}) , $ | (2) |
$ O_{1} = \big[ \bar{c}_{\alpha}\,{\gamma}_{\mu}\, (1-{\gamma}_{5})\,q_{1,{\alpha}} \big]\, \big[ \bar{q}_{2,{\beta}}\,{\gamma}^{\mu}\, (1-{\gamma}_{5})\,c_{\beta} \big] ,$ | (3) |
$ O_{2} = \big[ \bar{c}_{\alpha}\,{\gamma}_{\mu}\, (1-{\gamma}_{5})\,q_{1,{\beta}} \big]\, \big[ \bar{q}_{2,{\beta}}\,{\gamma}^{\mu}\, (1-{\gamma}_{5})\,c_{\alpha} \big] , $ | (4) |
It should be noted that the contributions of penguin operators, being proportional to the CKM factors
The decay amplitudes can be expressed as
$ {\cal A}(J/{\psi}{\to}PP)\, = \, \frac{G_{\rm F}}{\sqrt{2}}\, \sum\limits_{q_{1},q_{2}}\, V_{cq_{1}}\,V_{cq_{2}}^{\ast}\, \sum\limits_{i = 1}^{2}\, C_{i}({\mu})\,{\langle}PP{\vert} O_{i}({\mu})\, {\vert} J/{\psi} {\rangle} , $ | (5) |
$ {\cal A}_{i} \, = \, \prod\limits_{j} {\int} {\rm d}x_{j}\,{\rm d}b_{j}\, C_{i}(t_{i})\,{\cal H}_{i}(t_{i},x_{j},b_{j})\, {\Phi}_{j}(x_{j},b_{j})\,{\rm e}^{-S_{j}} , $ | (6) |
Figure1. (color online) Feynman diagrams for the
It is convenient to use the light-cone vectors to define the kinematic variables. In the rest frame of the
$ p_{\psi}\, = \, p_{1}\, = \, \frac{m_{\psi}}{\sqrt{2}}(1,1,0) , $ | (7) |
$ p_{K}\, = \, p_{2}\, = \, \frac{m_{\psi}}{\sqrt{2}}(1,0,0) , $ | (8) |
$ p_{\pi}\, = \, p_{3}\, = \, \frac{m_{\psi}}{\sqrt{2}}(0,1,0) , $ | (9) |
$ k_{1}\, = \, x_{1}\,p_{1}+(0,0,\vec{k}_{1{\perp}}) , $ | (10) |
$ k_{2}\, = \, x_{2}\,p_{2}^++(0,0,\vec{k}_{2{\perp}}) , $ | (11) |
$ k_{3}\, = \, x_{3}\,p_{3}^-+(0,0,\vec{k}_{3{\perp}}) , $ | (12) |
$ {\epsilon}_{\psi}^{\parallel}\, = \, \frac{1}{ \sqrt{2} }(1,-1,0) , $ | (13) |
$ \begin{aligned}[b]& {\langle}\,0\,{\vert}\, \bar{c}_{\alpha}(0)\,c_{\beta}(z)\, {\vert} {\psi}(p_{1},{\epsilon}_{\parallel})\,{\rangle} \\ =& \, \frac{1}{4}\,f_{\psi}\, {\int}{\rm d}k_{1}\, {\rm e}^{+{\rm i}\,k_{1}{\cdot}z}\, \big\{ \!\not{\epsilon}_{\parallel} \big[ m_{\psi}\,{\phi}_{\psi}^{v} -\!\not{p}_{1}\, {\phi}_{\psi}^{t} \big] \big\}_{{\beta}{\alpha}} , \end{aligned} $ | (14) |
$ \begin{aligned}[b]& {\langle}\,K(p_{2})\,{\vert}\, \bar{u}_{\alpha}(0)\, s_{\beta}(z)\, {\vert}\,0\,{\rangle} \\ = & -\frac{{\rm i}\,f_{K}}{4}\, {\int}{\rm d}k_{2}\, {\rm e}^{-{\rm i}\,k_{2}{\cdot}z}\, \Big\{ {\gamma}_{5}\, \big[ \!\not{p}_{2}\,{\phi}_{K}^{a} +{\mu}_{K}\,{\phi}_{K}^{p}\\& -{\mu}_{K}\, \big( \!\not{n}_+\!\not{n}_--1\Big)\, {\phi}_{K}^{t} \big] \big\}_{{\beta}{\alpha}} , \end{aligned} $ | (15) |
$ \begin{aligned}[b]& {\langle}\,{\pi}(p_{3})\,{\vert}\, \bar{d}_{\alpha}(0)\, u_{\beta}(z)\, {\vert}\,0\,{\rangle} \\ = & -\frac{{\rm i}\,f_{\pi}}{4}\, {\int}{\rm d}k_{3}\, {\rm e}^{-{\rm i}\,k_{3}{\cdot}z}\, \big\{ {\gamma}_{5}\, \big[ \!\not{p}_{3}\,{\phi}_{\pi}^{a} +{\mu}_{\pi}\,{\phi}_{\pi}^{p}\\& -{\mu}_{\pi}\,\big( \!\not{n}_-\!\not{n}_+-1\big)\, {\phi}_{\pi}^{t} \big] \big\}_{{\beta}{\alpha}} , \end{aligned} $ | (16) |
$ {\phi}_{\psi}^{v}(x) = A\, x\,\bar{x}\, {\exp}\Bigg( -\frac{m_{c}^{2}}{8\,{\omega}^{2}\,x\,\bar{x}} \Bigg) , $ | (17) |
$ {\phi}_{\psi}^{t}(x) = B\, (\bar{x}-x)^{2}\, {\exp}\Bigg( -\frac{m_{c}^{2}}{8\,{\omega}^{2}\,x\,\bar{x}} \Bigg) , $ | (18) |
$ {\phi}_{P}^{a}(x)\, = \, 6\,x\,\bar{x}\,\big\{ 1+a_{1}^{P}\,C_{1}^{3/2}({\xi}) +a_{2}^{P}\,C_{2}^{3/2}({\xi})\big\} , $ | (19) |
$ \begin{aligned}[b] {\phi}_{P}^{p}(x) =& 1+3\,{\rho}_+^{P} -9\,{\rho}_-^{P}\,a_{1}^{P} +18\,{\rho}_+^{P}\,a_{2}^{P} \\ &+ \frac{3}{2}\,({\rho}_+^{P}+{\rho}_-^{P})\, (1-3\,a_{1}^{P}+6\,a_{2}^{P})\,{\ln}(x) \\& + \frac{3}{2}\,({\rho}_+^{P}-{\rho}_-^{P})\, (1+3\,a_{1}^{P}+6\,a_{2}^{P})\,{\ln}(\bar{x}) \\& - (\frac{3}{2}\,{\rho}_-^{P} -\frac{27}{2}\,{\rho}_+^{P}\,a_{1}^{P} +27\,{\rho}_-^{P}\,a_{2}^{P})\,C_{1}^{1/2}(\xi) \\& + ( 30\,{\eta}_{P}-3\,{\rho}_-^{P}\,a_{1}^{P} +15\,{\rho}_+^{P}\,a_{2}^{P})\,C_{2}^{1/2}(\xi) , \end{aligned} $ | (20) |
$ \begin{aligned}[b] {\phi}_{P}^{t}(x) = & \frac{3}{2}\,({\rho}_-^{P}-3\,{\rho}_+^{P}\,a_{1}^{P} +6\,{\rho}_-^{P}\,a_{2}^{P}) \\& - C_{1}^{1/2}(\xi)\big\{ 1+3\,{\rho}_+^{P}-12\,{\rho}_-^{P}\,a_{1}^{P} +24\,{\rho}_+^{P}\,a_{2}^{P} \\ & + \frac{3}{2}\,({\rho}_+^{P}+{\rho}_-^{P})\, (1-3\,a_{1}^{P}+6\,a_{2}^{P})\,{\ln}(x) \\ & + \frac{3}{2}\,({\rho}_+^{P}-{\rho}_-^{P})\, (1+3\,a_{1}^{P}+6\,a_{2}^{P})\, {\ln}(\bar{x}) \big\} \\& - 3\,(3\,{\rho}_+^{P}\,a_{1}^{P} -\frac{15}{2}\,{\rho}_-^{P}\,a_{2}^{P})\,C_{2}^{1/2}(\xi) , \end{aligned} $ | (21) |
$ {\int} {\phi}_{\psi}^{v,t}(x)\,{\rm d}x\, = \, 1 . $ | (22) |
$ \left( \begin{array}{c} {\eta} \\ {\eta}^{\prime} \end{array} \right)\, = \, \left(\begin{array}{cc} {\cos}{\phi} & -{\sin}{\phi} \\ {\sin}{\phi} & {\cos}{\phi} \end{array} \right)\, \left( \begin{array}{c} {\eta}_{q} \\ {\eta}_{s} \end{array} \right) , $ | (23) |
$ f_{q}\, = \, (1.07{\pm}0.02)\,f_{\pi} , $ | (24) |
$ f_{s}\, = \, (1.34{\pm}0.06)\, f_{\pi} , $ | (25) |
$ m_{{\eta}_{q}}^{2}\, = \, m_{\eta}^{2}\,{\cos}^{2}{\phi} +m_{{\eta}^{\prime}}^{2}\,{\sin}^{2}{\phi} -\frac{\sqrt{2}\,f_{s}}{f_{q}} (m_{{\eta}^{\prime}}^{2}- m_{\eta}^{2})\, {\cos}{\phi}\,{\sin}{\phi} , $ | (26) |
$ m_{{\eta}_{s}}^{2}\, = \, m_{\eta}^{2}\,{\sin}^{2}{\phi} +m_{{\eta}^{\prime}}^{2}\,{\cos}^{2}{\phi} -\frac{f_{q}}{\sqrt{2}\,f_{s}} (m_{{\eta}^{\prime}}^{2}- m_{\eta}^{2})\, {\cos}{\phi}\, {\sin}{\phi} . $ | (27) |
$ \begin{aligned}[b] {\cal A}(J/{\psi}{\to}{\pi}^{0}{\eta}_{q}) =& -\frac{G_{\rm F}}{2\,\sqrt{2}}\, V_{cd}\,V_{cd}^{\ast}\, \big\{ a_{2}\, \big[ {\cal A}_{ab}({\pi},{\eta}_{q}) \\&+ {\cal A}_{ab}({\eta}_{q},{\pi}) \big] + C_{1}\, \big[ {\cal A}_{cd}({\pi},{\eta}_{q}) \\&+ {\cal A}_{cd}({\eta}_{q},{\pi}) \big] \big\} , \end{aligned} $ | (28) |
$ {\cal A}(J/{\psi}{\to}{\pi}^{0}{\eta}) \, = \, {\cal A}(J/{\psi}{\to}{\pi}^{0}{\eta}_{q})\,{\cos}{\phi} , $ | (29) |
$ {\cal A}(J/{\psi}{\to}{\pi}^{0}{\eta}^{\prime}) \, = \, {\cal A}(J/{\psi}{\to}{\pi}^{0}{\eta}_{q})\,{\sin}{\phi} , $ | (30) |
$ \begin{aligned}[b] {\cal A}(J/{\psi}{\to}{\eta}_{s}{\eta}_{s}) = & \sqrt{2}\,G_{\rm F}\, V_{cs}\,V_{cs}^{\ast}\, \big\{ a_{2}\,{\cal A}_{ab}({\eta}_{s},{\eta}_{s}) \\&+C_{1}\,{\cal A}_{cd}({\eta}_{s},{\eta}_{s}) \big\} , \end{aligned} $ | (31) |
$ \begin{aligned}[b] {\cal A}(J/{\psi}{\to}{\eta}_{q}{\eta}_{q})= & \frac{G_{\rm F}}{\sqrt{2}}\, V_{cd}\,V_{cd}^{\ast}\, \big\{ a_{2}\,{\cal A}_{ab}({\eta}_{q},{\eta}_{q}) \\&+C_{1}\,{\cal A}_{cd}({\eta}_{q},{\eta}_{q}) \big\} , \end{aligned} $ | (32) |
$ \begin{aligned}[b] {\cal A}(J/{\psi}{\to}{\eta}{\eta}^{\prime}) = & \big\{ {\cal A}(J/{\psi}{\to}{\eta}_{q}{\eta}_{q})\\&-{\cal A}(J/{\psi}{\to}{\eta}_{s}{\eta}_{s}) \big\}\, {\sin}{\phi}\,{\cos}{\phi} . \end{aligned}$ | (33) |
$ \begin{aligned}[b] {\cal A}(J/{\psi}{\to}{\pi}^-K^+) = & \frac{G_{\rm F}}{\sqrt{2}}\, V_{cs}\,V_{cd}^{\ast}\, \big\{ a_{2}\,{\cal A}_{ab}({\pi},K) \\&+C_{1}\,{\cal A}_{cd}({\pi},K) \big\} , \end{aligned}$ | (34) |
$ \begin{aligned}[b] {\cal A}(J/{\psi}{\to}{\pi}^{0}K^{0}) = & -\frac{G_{\rm F}}{2}\, V_{cs}\,V_{cd}^{\ast}\, \big\{ a_{2}\,{\cal A}_{ab}({\pi},K) \\&+C_{1}\,{\cal A}_{cd}({\pi},K) \big\} , \end{aligned} $ | (35) |
$ \begin{aligned}[b]{\cal A}(J/{\psi}{\to}K^{0}{\eta}_{s}) =& \frac{G_{\rm F}}{\sqrt{2}}\, V_{cs}\,V_{cd}^{\ast}\, \big\{ a_{2}\,{\cal A}_{ab}(K,{\eta}_{s}) \\&+C_{1}\, {\cal A}_{cd}(K,{\eta}_{s}) \big\} , \end{aligned}$ | (36) |
$ \begin{aligned}[b] {\cal A}(J/{\psi}{\to}K^{0}{\eta}_{q}) =& \frac{G_{\rm F}}{2}\, V_{cs}\,V_{cd}^{\ast}\, \big\{ a_{2}\,{\cal A}_{ab}({\eta}_{q},K) \\&+C_{1}\, {\cal A}_{cd}({\eta}_{q},K) \big\} , \end{aligned}$ | (37) |
$ \begin{aligned}[b]{\cal A}(J/{\psi}{\to}K^{0}{\eta}) = & {\cal A}(J/{\psi}{\to}K^{0}{\eta}_{q})\, {\cos}{\phi} \\&-{\cal A}(J/{\psi}{\to}K^{0}{\eta}_{s})\, {\sin}{\phi} ,\end{aligned} $ | (38) |
$\begin{aligned}[b] {\cal A}(J/{\psi}{\to}K^{0}{\eta}^{\prime}) = & {\cal A}(J/{\psi}{\to}K^{0}{\eta}_{q})\, {\sin}{\phi} \\&+{\cal A}(J/{\psi}{\to}K^{0}{\eta}_{s})\, {\cos}{\phi} , \end{aligned} $ | (39) |
$ {\cal B}r \, = \, \frac{p_{\rm cm}}{24\,{\pi}\,m_{\psi}^{2}\,{\Gamma}_{\psi}}\, {\vert} {\cal A}(J/{\psi}{\to}PP) {\vert}^{2} , $ | (40) |
mass, width, and decay constants of the particles [3] | ||
Gegenbauer moments at the scale of | ||
Table1.Values of the input parameters, with their central values regarded as the default inputs, unless otherwise specified.
C parity violating decay modes | |||
mode | mode | ||
the strangeness changing decay modes | |||
mode | mode | ||
Table2.Branching ratios for the
(1) The
(2) Compared with the external W-emission induced
(3) The nonperturbative mesonic DAs are the essential parameters of the amplitudes with the pQCD approach. One of the main theoretical uncertainties emerging from participating DAs is given in Table 2. In addition, there are several other influence factors. For example, the decay constant
(4) Branching ratios for the
We take the
$ {\phi}_{\psi}^{v,t} \, = \, {\phi}_{\psi}^{v,t}(x_{1})\,{\rm e}^{-S_{\psi}} , \tag{A1}$ |
$ {\phi}_{K}^{a} \, = \, {\phi}_{K}^{a}(x_{2})\,{\rm e}^{-S_{K}} , \tag{A2} $ |
$ {\phi}_{K}^{p,t} \, = \, \frac{ {\mu}_{K} }{ m_{\psi} }\, {\phi}_{K}^{p,t}(x_{2})\,{\rm e}^{-S_{K}} , \tag{A3} $ |
$ {\phi}_{\pi}^{a} \, = \, {\phi}_{\pi}^{a}(x_{3})\,{\rm e}^{-S_{\pi}} , \tag{A4} $ |
$ {\phi}_{\pi}^{p,t} \, = \, \frac{ {\mu}_{\pi} }{ m_{\psi} }\, {\phi}_{\pi}^{p,t}(x_{3})\,{\rm e}^{-S_{\pi}} , \tag{A5} $ |
$ S_{\psi} = s(x_{1},p_{1}^+,b_{1}) +2\,{\int}_{1/b_{1}}^{t} \frac{{\rm d}{\mu}}{{\mu}}{\gamma}_{q} , \tag{A6}$ |
$ S_{K} = s(x_{2},p_{2}^+,b_{2}) +s(\bar{x}_{2},p_{2}^+,1/b_{2}) +2{\int}_{1/b_{2}}^{t} \frac{{\rm d}{\mu}}{{\mu}}{\gamma}_{q} , \tag{A7} $ |
$ S_{\pi} \!=\! s(x_{3},p_{3}^-,b_{3}) \!+\!s(\bar{x}_{3},p_{3}^-,1/b_{3}) \!+\!2{\int}_{1/b_{3}}^{t} \frac{{\rm d}{\mu}}{{\mu}}{\gamma}_{q} .\!\!\! \tag{A8} $ |
$ C_{i}\, {\cal A}_{jk}({\pi},K) \, = \, \frac{{\pi}\,C_{\rm F}}{N_{c}}\, m_{\psi}^{4}\,f_{\psi}\,f_{K}\,f_{\pi}\, \big\{ {\cal A}_{j}(C_{i}) + {\cal A}_{k}(C_{i}) \big\} , \tag{A9} $ |
$ {\cal A}_{b} = {\int}_{0}^{1}{\rm d}x_{2}\,{\rm d}x_{3} {\int}_{0}^{\infty}{\rm d}b_{2}\,{\rm d}b_{3}\, H_{ab}({\alpha}_{g},{\beta}_{b},b_{3},b_{2})\, {\alpha}_{s}(t_{b})\,C_{i}(t_{b}) S_{t}(x_{3})\, \big\{ {\phi}_{K}^{a}\,{\phi}_{\pi}^{a}\,x_{3} -2\,{\phi}_{K}^{p}\, \big[ {\phi}_{\pi}^{p}\, \bar{x}_{3} - {\phi}_{\pi}^{t}\,( 1+x_{3} ) \big] \big\} , \tag{A11}$ |
$ \begin{aligned}[b] {\cal A}_{c} =& \frac{1}{N_{c}}\, {\int}_{0}^{1}{\rm d}x_{1}\,{\rm d}x_{2}\,{\rm d}x_{3} {\int}_{0}^{\infty}{\rm d}b_{1}\,{\rm d}b_{2}\, H_{cd}({\alpha}_{g},{\beta}_{c},b_{1},b_{2})\, {\alpha}_{s}(t_{c})\,C_{i}(t_{c}) \Biggr\{ {\phi}_{\psi}^{v}\, \Big[ {\phi}_{K}^{a}\, {\phi}_{\pi}^{a}\,(x_{1}-x_{3}) +( {\phi}_{K}^{p}\, {\phi}_{\pi}^{p} -{\phi}_{K}^{t}\, {\phi}_{\pi}^{t} )\, ( \bar{x}_{2}-x_{3} ) \\ &+( {\phi}_{K}^{p}\, {\phi}_{\pi}^{t} -{\phi}_{K}^{t}\, {\phi}_{\pi}^{p} )\, ( 2\,x_{1}-\bar{x}_{2}-x_{3} ) \Big] -{\phi}_{\psi}^{t} \left[ \frac{1}{2}\, {\phi}_{K}^{a}\, {\phi}_{\pi}^{a} +2\,{\phi}_{K}^{p}\, {\phi}_{\pi}^{t} \right] \Biggr\}_{b_{2} = b_{3}} , \end{aligned} \tag{A12}$ |
$ \begin{aligned}[b] {\cal A}_{d} = & \frac{1}{N_{c}}\, {\int}_{0}^{1}{\rm d}x_{1}\,{\rm d}x_{2}\,{\rm d}x_{3} {\int}_{0}^{\infty}{\rm d}b_{1}\,{\rm d}b_{2}\, H_{cd}({\alpha}_{g},{\beta}_{d},b_{1},b_{2})\, {\alpha}_{s}(t_{d})\, C_{i}(t_{d}) \Biggr\{ {\phi}_{\psi}^{v}\, \big[ {\phi}_{K}^{a}\, {\phi}_{\pi}^{a}\,(x_{2}-x_{1}) +( {\phi}_{K}^{p}\, {\phi}_{\pi}^{p} -{\phi}_{K}^{t}\, {\phi}_{\pi}^{t} )\, ( x_{3}-\bar{x}_{2} ) \\ &+( {\phi}_{K}^{p}\, {\phi}_{\pi}^{t} -{\phi}_{K}^{t}\, {\phi}_{\pi}^{p} )\, ( 2\,\bar{x}_{1}-\bar{x}_{2}-x_{3} ) \big] -{\phi}_{\psi}^{t} \Biggr[ \frac{1}{2}\, {\phi}_{K}^{a}\, {\phi}_{\pi}^{a} -2\,{\phi}_{K}^{t}\, {\phi}_{\pi}^{p} \Biggr] \Biggr\}_{b_{2} = b_{3}} , \end{aligned} \tag{A13}$ |
$ H_{ab}({\alpha},{\beta},b_{i},b_{j}) \, = \, -\frac{{\pi}^{2}}{4}\,b_{i}\,b_{j}\, \Big\{ J_{0}(b_{j}\sqrt{{\alpha}}) +i\,Y_{0}(b_{j}\sqrt{{\alpha}}) \Big\} \Big\{ {\theta}(b_{i}-b_{j}) \Big[ J_{0}(b_{i}\sqrt{{\beta}}) +i\,Y_{0}(b_{i}\sqrt{{\beta}}) \Big] J_{0}(b_{j}\sqrt{{\beta}}) + (b_{i}{\leftrightarrow}b_{j}) \Big\} , \tag{A14}$ |
$\begin{aligned}[b] H_{cd}({\alpha},{\beta},b_{1},b_{2}) = & b_{1}\,b_{2}\, \Biggr\{ \frac{{\rm i}\,{\pi}}{2}\,{\theta}({\beta}) \big[ J_{0}(b_{1}\sqrt{{\beta}}) +{\rm i}\,Y_{0}(b_{1}\sqrt{{\beta}}) \big]+{\theta}(-{\beta}) K_{0}(b_{1}\sqrt{-{\beta}}) \Biggr\} \frac{{\rm i}\,{\pi}}{2}\, \big\{ {\theta}(b_{1}-b_{2}) \big[ J_{0}(b_{1}\sqrt{{\alpha}}) +\\&{\rm i}\,Y_{0}(b_{1}\sqrt{{\alpha}}) \big] J_{0}(b_{2}\sqrt{{\alpha}}) + (b_{1}{\leftrightarrow}b_{2}) \big\} ,\end{aligned} \tag{A15}$ |
where
$ {\alpha}_{g}\, = \, m_{\psi}^{2}\,\bar{x}_{2}\,x_{3} , $ | (A16) |
$ {\beta}_{a}\, = \, m_{\psi}^{2}\,\bar{x}_{2} , $ | (A17) |
$ {\beta}_{b}\, = \, m_{\psi}^{2}\, x_{3} , $ | (A18) |
$ {\beta}_{c}\, = \, {\alpha}_{g} -m_{\psi}^{2}\,x_{1}\,(\bar{x}_{2}+x_{3}) , $ | (A19) |
$ {\beta}_{d}\, = \, {\alpha}_{g} -m_{\psi}\,\bar{x}_{1}\,(\bar{x}_{2}+x_{3}) , $ | (A20) |
$ t_{a,b}\, = \, {\max}(\sqrt{{\beta}_{a,b}}, 1/b_{2},1/b_{3}) , $ | (A21) |
$ t_{c,d}\, = \, {\max}(\sqrt{{\alpha}_{g}}, \sqrt{{\vert}{\beta}_{c,d}{\vert}}, 1/b_{1},1/b_{2}) . $ | (A22) |