删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Hyperon weak radiative decay

本站小编 Free考研考试/2022-01-01

Peng-Yu Niu 1,2,
, Jean-Marc Richard 3,
, Qian Wang 4,
, Qiang Zhao 1,2,,
,
Corresponding author: Qiang Zhao, zhaoq@ihep.ac.cn, Corresponding author
1.Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.Université de Lyon, Institut de Physique des 2 Infinis de Lyon, UBL-IN2P3-CNRS, 4, rue Enrico Fermi, 69622 Villeurbanne, France
4.Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
Received Date:2020-07-23
Available Online:2021-01-15
Abstract:We revisit the hyperon weak radiative decays in the framework of the non-relativistic constituent quark model. This study confirms the nonlocal feature of the hyperon weak radiative transition operators, which are dominated by the pole terms, and an overall self-consistent description of the available experimental data for the Cabibbo-favored hyperon weak radiative decays is presented. It provides a natural mechanism for evading the Hara theorem, where sizeable parity-violating contributions can come from the intermediate orbital excitations. Cancellations between pole terms also explain the significant SU(3) flavor symmetry breaking manifested by the experimental data. We also discuss several interesting selection rules arising from either the electromagnetic or the weak interaction vertices. These features suggest nontrivial relations among various hyperon decays.

HTML

--> --> -->
I.INTRODUCTION
Although ground-state hyperons were discovered more than 60 years ago and have played a key role in our understanding of the weak interaction, there are still open questions concerning their weak decay mechanisms. In particular, the hyperon weak radiative decays provide a unique probe for studying the weak, strong, and electromagnetic (EM) interactions [1]. This process generally has a very small branching ratio and is difficult to measure. Recently, BESIII has collected more than 1 billion $ J/\psi $ events, which can provide a golden opportunity to investigate the properties of the hyperons produced in $ J/\psi $ decays. In particular, it is time to revisit the detailed dynamics of the hyperon weak radiative decays.
One of the long-standing questions associated with the hyperon weak radiative decays is the so-called “Hara theorem” [2]. It was shown in Ref. [2] that the parity-violating amplitudes for $ \Sigma^+ \to p \gamma $ and $ \Xi^- \to \Sigma^- \gamma $ are zero in the limit of unitary symmetry within the pole approximation [3]. However, experimental measurements did not support this prediction, and the asymmetry parameter was found to be large for $ \Sigma^+ \!\to\! p \gamma $, with a negative sign [4].
There is an abundant amount of literature regarding theoretical efforts to understand the physics behind the Hara theorem and the experimental observations. A unified theory was proposed by Zenczykowski et al. [5-12], who combined the SU(6) symmetry with the vector meson dominance for the study of the hyperon weak radiative decays. It was shown in Refs. [11, 12] that large negative values for the asymmetry parameter in $ \Sigma^+\to p \gamma $ were due to the SU(3) flavor symmetry breaking effects. In Ref. [13], Close and Rubinstein proposed a “modern pole model” and illustrated the importance of long-distance contributions arising from intermediate pole terms. By estimating the relative SU(6) spin-flavor coupling coefficients, they showed that the intermediate $ 1/2^- $ states could have sizeable contributions to the parity-violating amplitude. Various calculations based on the pole dominance scenario in the quark model can be found in the literature [14-20]. The SU(3) flavor symmetry and pole model are combined to investigate the weak electromagnetic decays of hyperons in Ref. [21]. In addition to the quark model approaches, chiral perturbation theory (ChPT) has also been applied to the hyperon decays, wherein the intermediate $ 1/2^- $ states were found to play an essential role [22-25]. In Ref. [26], the radiative decay of $ \Sigma^+\to p \gamma $ was calculated using an extended QCD sum rule approach. Unitarity and the MIT bag model have also been employed to study hyperon radiative weak decays in the literature [27, 28]. It is worth mentioning that in Refs. [18, 29], the Hara theorem was shown to result from the old-fashioned $SU(3) _{f} $ model, which cannot avoid the flavor-changing neutral current. In the framework of the Glashow-Iliopoulos-Maiani mechanism, the “penguin” transition process can evade the flavor-changing neutral current and lead to a nonvanishing asymmetry parameter for $ \Sigma^+\to p \gamma $ [30]. However, such a mechanism does not seem to be sufficient to explain the large value of the asymmetry parameter.
The recognition of the importance of the pole term contributions in the hyperon radiative decays [13] seems to be crucial for a coherent interpretation of the puzzling experimental data. Similar phenomena have also been found in the hadronic weak decays [31, 32]. A recent investigation of the Cabbibo-favored $ \Lambda_c $ hadronic weak decays also showed that the pole terms play a dominant role in the transition amplitudes [33]. There are interesting consequences arising from the pole models. First, it suggests that the hadronic or radiative weak decays are driven by nonlocal interactions, where the strong or radiative interaction and the weak interaction are connected by intermediate propagators. Second, these pole terms may undergo interference, which leads to large SU(3) flavor symmetry breaking effects. This is understandable because a relatively small SU(3) flavor symmetry breaking in each pole term can be amplified if destructive interference is involved [31, 32]. Third, the inclusion of the $ 1/2^- $ states can contribute to large parity-violating effects and thus evade the Hara theorem [13, 15, 25]. These general points will be addressed in this analysis based on the systematic study of the hyperon radiative decays.
In this work, we will revisit the hyperon weak radiative decays in the framework of the non-relativistic constituent quark model (NRCQM) and provide a coherent description of the Cabbibo-allowed weak radiative decays. The rest of this manuscript is organized as follows. The details of the framework are presented in Sec. II. Results and discussions are given in Sec. III, and a brief summary is given in Sec. IV. Conventions and analytical amplitudes are provided in the Appendix.
II.FRAMEWORK
An obvious feature of radiative decays is that the charge is conserved. This suggests that the Cabbibo-allowed weak transition processes occur at leading order, either via a single-quark transition through a penguin diagram, as shown in Fig. 1(a), or via a two-quark transition process through an internal conversion of $ su\to ud $, as shown in Figs. 1(b)-(f). The penguin transition is strongly suppressed, primarily because it involves loops; this explains the small partial width of $ \Xi^-\to \Sigma^-\gamma $. In contrast, the internal conversion processes are tree-level transitions. These are focused in this work.
Figure1. Typical weak radiative transitions, categorized as follows: (a) is the typical single-quark transition diagram. (b)-(f) are the two-quark transition diagrams, among which (c)-(f) are called pole terms. Note that every diagram actually stands for a group of diagrams, considering that the photon can be emitted by any quark.

The two-quark transition processes can be further categorized into two classes, depending on whether intermediate baryons contribute or not, i.e., the short-distance process and long-distance process. Figure 1(b) illustrates the short-distance process, which stands for a group of diagrams where the photon is radiated from any charged particle. Figures 1(c)-(f) are identified as long-distance processes because intermediate resonances (pole terms) contribute to the transition matrix element. For the hyperon weak decays, the long-distance pole terms become leading contributions because of the closeness of the intermediate baryons to either the initial or final-state baryons. A coarse estimate of the enhancement factor is $ 2\tilde{M}^2/(M_i^2-M_f^2)\simeq \tilde{M}/(M_i-M_f) $, which arises from the intermediate propagators with $ \tilde{M}\simeq (M_i+M_f)/2 $, a mass scale set by the initial and final-state hyperons. We note in advance that, in most cases, there exist cancellations among the pole terms of Figs. 1(c)-(f) [31, 32]. Still, the dominance of the pole terms is evident. We thus only consider the pole contributions in this work. Instead of trying to perfectly describe the available data, we intend to appraise the overall quality of the NRCQM approach.
2
A.Non-relativistic form of the effective Hamiltonian
-->

A.Non-relativistic form of the effective Hamiltonian

Concentrating on the transition amplitudes from the pole terms, the internal conversion via the weak interaction and photon radiation via the EM transition are connected by intermediate baryons. The weak interaction operator can be described by [13, 31, 34]
$ H_W = \frac{G_F}{\sqrt 2}\int {\rm d} {{x}} \frac12 \{ J^{-,\mu}({{x}}),J^{+}_{\mu}({{x}}) \},$
(1)
where
$ \begin{aligned} J^{+,\mu}({{x}})& = \left(\begin{array}{cc}\bar u&\bar c \end{array}\right)\cdot\gamma^\mu(1-\gamma_5)\cdot \left(\begin{array}{cc} \cos \theta_C & \sin \theta_C \\ -\sin \theta_C &\cos \theta_C \end{array}\right) \cdot\left( \begin{array}{c} d\\s \end{array}\right), \\ J^{-,\mu}({{x}})& = \left(\begin{array}{cc}\bar d &\bar s \end{array}\right)\cdot \left(\begin{array}{cc} \cos \theta_C & -\sin \theta_C \\ \sin \theta_C &\cos \theta_C \end{array}\right)\cdot \gamma^\mu(1-\gamma_5)\cdot \left( \begin{array}{c} u\\c \end{array}\right). \end{aligned} $
(2)
$ H_W $ can be separated into two parts, with either parity-conserving (PC) or parity-violating (PV) behavior, i.e.,
$ H_{W}\equiv H_W^{\rm PC}+H_W^{\rm PV} , $
(3)
where
$ H_W^{\rm PC}\equiv \frac{G_F}{\sqrt 2} \int \mathrm d {{x}} \left[ j_\mu^{(-)}({{x}})j^{(+)\mu}({{x}}) +j_{5\mu}^{(-)}({{x}})j_5^{(+)\mu}({{x}}) \right], $
(4)
$ H_W^{\rm PV}\equiv \frac{G_F}{\sqrt 2} \int \mathrm d {{x}} \left[ j_\mu^{(-)}({{x}})j_5^{(+)\mu}({{x}}) +j_{5\mu}^{(-)}({{x}})j^{(+)\mu}({{x}}) \right]. $
(5)
In the non-relativistic limit, $H_W^{\rm PC,PV}$, can be reduced to [34]
$ \begin{aligned}[b] H_W^{\rm PC} =& \frac{G_F}{\sqrt 2} V_{ud}V_{us} \sum\limits_{i\neq j}\frac{1}{(2\pi)^3} \tau^{(-)}_i \nu^{(+)}_j\\&\times\left( 1- {{{\sigma}}}_i\cdot{{{\sigma}}}_j\right)\delta({{p}}_i^\prime+{{p}}_j^\prime-{{p}}_i-{{p}}_j), \end{aligned} $
(6)
and
$ \begin{aligned}[b] H_W^{\rm PV} =& \frac{G_F}{\sqrt 2} V_{ud}V_{us} \sum\limits_{i \neq j }\frac{1}{(2\pi)^3}\delta({{p}}_i^\prime+{{p}}_j^\prime-{{p}}_i-{{p}}_j) \tau^{(-)}_i \nu^{(+)}_j \\ & \times \frac{1}{2m_q} \left\{ -({{\sigma}}_i-{{\sigma}}_j)\cdot[({{p}}_i^\prime-{{p}}_j^\prime)+({{p}}_i-{{p}}_j)]\right.\\&\left. + {\rm i} ({{\sigma}}_i\times{{\sigma}}_j)\cdot[({{p}}_i-{{p}}_j)-({{p}}_i^\prime-{{p}}_j^\prime)] \right\}, \end{aligned} $
(7)
where $ \tau^{(-)} $ and $ \nu^{(+)} $ are flavor changing operators that operate as $ \tau^{(-)}u = d $ and $ \nu^{(+)}s = u $, respectively. The subscripts $ i, j $ are the quark labels. m is the constituent quark mass. In this work, we take the SU(3) flavor symmetry limit with $ m_q = m_u = m_d = m_s $. $V_{ud}$ and $V_{us}$ are the Cabbibo-Kobayashi-Maskawa matrix elements.
The Hamiltonian for the EM interaction is written as
$ H_{\rm EM} = {\mathsf{e}} \int {\rm d} {{x}} \bar q({{x}})\gamma^\mu q(x)A_\mu({{x}}) \ , $
(8)
where $ {\mathsf{e}} $ is the charge of the quark; $ q({{x}}) $ and $ \bar q({{x}}) $ are the $j^{\rm th}$ quark fields before and after emitting the photon, respectively. In the non-relativistic limit, $H_{\rm EM}$ can be expanded in momentum space as:
$ \begin{aligned}[b] H_{\rm EM} = &\sum\limits_j {\mathsf{e}}_j \bar u({{p}}_j^f)\gamma^\mu u({{p}}_j^i)\epsilon_\mu \delta({{p}}^f_j+{{k}} -{{p}}^i_j)\\ = &\frac{1}{(2\pi)^\frac32}\frac{1}{(2k^0)^\frac12}\sum\limits_j {\mathsf{e}}_j \left \{\epsilon_0\!-\!\left[\frac{{{\epsilon}} \cdot {{p}}_j^i}{2m_j}\!+\!\frac{{{\epsilon}} \cdot {{p}}_j^f}{2m_j} \!+\!{\rm i}\frac{{{\sigma}}_j \cdot({{k}}\times {{\epsilon}}) }{2m_j}\right ] \right\}\\&\times \delta({{p}}_j^f+{{k}} -{{p}}_j^i), \\[-16pt]\end{aligned} $
(9)
where $ m_j $ and $ {\mathsf{e}}_j $ are the mass and charge of the $j^{\rm th}$ quark, respectively; $ {{p}}^i_j $ and $ {{p}}^f_j $ denote the three-vector momentum carried by the $j^{\rm th}$ quark before and after emitting the photon, respectively; $ {{k}} $ is the photon momentum, and $ (\epsilon_0,{{\epsilon}}) $ is its polarization. For a real emitted photon, only the transverse polarizations can contribute. $H_{\rm EM}$ can thus be reduced to
$ \begin{aligned}[b] H_{\rm EM} =& -\frac{1}{(2\pi)^\frac32}\frac{1}{(2k^0)^\frac12}\sum\limits_j {\mathsf{e}}_j \left[\frac{{{\epsilon}} \cdot {{p}}^i_j}{m_j}+{\rm i}\frac{{{\sigma}}_j \cdot({{k}}\times {{\epsilon}}) }{2m_j}\right] \\&\times \delta^3({{p}}_j^f+{{k}} -{{p}}_j^i). \end{aligned}$
(10)
The first term contributes to the electric-dipole transition, which could raise or decrease the orbital angular momentum by one unit, and the second term contributes to the magnetic-dipole transition, which could raise or decrease the spin of the $j^{\rm th}$ quark by one unit [13, 31, 34].
2
B.Decay width and asymmetry parameter
-->

B.Decay width and asymmetry parameter

With the operators defined in the previous subsection, we can calculate the pole terms in the NRCQM framework. We take the direction of the photon momentum as the z-axis, i.e., $ k^0 = k $ and $ {{k}} = (0, \ 0, \ k) $ are the energy and three momentum of the photon, respectively. The energy and momentum of the initial and final baryon are noted as $ (E_i, \ {{P}}_i) $ and $ (E_f, \ {{P}}_f) $, respectively. In the rest frame of the initial baryon, we have $ {{P}}_i = 0 $ and $ {{k}} = -{{P}}_f $.
The nonlocal operators for the weak and EM transitions will distinguish processes between Figs. 1(c) and (e) (or between Figs. 1(d) and (f)). With the baryon wavefunctions constructed on the basis of SU(6)$ \otimes $O(3) symmetry and by separately calculating the weak internal conversion and EM transition couplings, Figs. 1(c) and (e) together will be evaluated explicitly with the quark labels tagged to the interacting quarks, and similarly, Figs. 1(d) and (f) will be evaluated. Note that in the literature, e.g., [18], Figs. 1(c) and (d) (or Figs. 1(e) and (f)) are sometimes treated as two different transition processes according to whether or not the EM transition operator is involved in the weak internal conversion process. If the symmetry is properly accounted for regarding both wavefunctions and operators, in principle, there is no need to distinguish between Figs. 1(c) and (d), or between (e) and (f). For convenience, we label the amplitudes of Figs. 1(c)-(d) and Figs. 1(e)-(f) by the subscripts A and B, respectively.
Proceeding to the calculation of the full transition amplitudes, we separate the parity-conserving and parity-violating parts as follows:
$ {\cal M} = {\cal M}({{\epsilon}},S_f^z,S_i^z) = {\cal M}_{\rm PC}+ {\cal M}_{\rm PV}, $
(11)
where $ S_f^z $ and $ S_i^z $ are the third component of the spin of the final baryon and initial baryon, respectively, and are omitted to simplify the representation. Also omitted is the photon polarization $ {{\epsilon}} = \mp (1,\pm i,0)/\sqrt2 $. Owing to the symmetries and hermiticity of the Hamiltonian, the amplitudes corresponding to the two possible polarizations are related, and it is sufficient to perform the calculation with the polarization $ {{\epsilon}} = -(1,i,0)/\sqrt2 $, abbreviated as "+". The parity-conserving amplitude ${\cal M}_{\rm PC}$ and parity-violating amplitude ${\cal M}_{\rm PV}$ are then given by the pole terms via the process A or B, i.e.,
$ {\cal M}_{\rm PC} = {\cal M}_{{\rm PC},A}+ {\cal M}_{{\rm PC},B}, $
(12)
$ {\cal M}_{\rm PV} = {\cal M}_{{\rm PV},A}+ {\cal M}_{{\rm PV},B}, $
(13)
where
$\begin{aligned}[b] {\cal M}_{{\rm PC},A}\equiv& \sum\limits_{B_m} \left\langle B_f({{P}}_f,S_f^z) \middle| H_{\rm EM} \middle| B_m({{P}}_i,S_i^z) \right\rangle \\&\times\frac{{\rm i}}{\not\!\! p_{B_m} -M_{B_m}+\frac{\rm i}{2}\Gamma_{B_m}} \left\langle B_m({{P}}_i,S_i^z) \middle| H_W^{\rm PC} \middle| B_i({{P}}_i,S_i^z) \right\rangle,\end{aligned} $
(14)
$\begin{aligned}[b] {\cal M}_{{\rm PV},A}\equiv& \sum\limits_{B'_m} \left\langle B_f({{P}}_f,S_f^z) \middle| H_{\rm EM} \middle| B'_m({{P}}_i,S_i^z) \right\rangle \\&\times\frac{{\rm i}}{\not\!\! p_{B'_m} -M_{B'_m}+\frac{{\rm i}}{2}\Gamma_{B'_m}} \left\langle B'_m({{P}}_i,S_i^z) \middle| H_W^{\rm PV} \middle| B_i({{P}}_i,S_i^z) \right\rangle, \end{aligned}$
(15)
$\begin{aligned}[b] {\cal M}_{{\rm PC},B}\equiv& \sum\limits_{B_m} \left\langle B_f({{P}}_f,S_f^z) \middle| H_{W}^{\rm PC} \middle| B_m({{P}}_f,S_f^z) \right\rangle \\&\times\frac{{\rm i}}{\not\!\! p_{B_m} -M_{B_m}+\frac{{\rm i}}{2}\Gamma_{B_m}} \left\langle B_m({{P}}_f,S_f^z) \middle| H_{\rm EM} \middle| B_i({{P}}_i,S_i^z) \right\rangle,\end{aligned} $
(16)
$\begin{aligned}[b]{\cal M}_{{\rm PV},B}\equiv& \sum\limits_{B'_m} \left\langle B_f({{P}}_f,S_f^z) \middle| H_{W}^{\rm PV} \middle| B'_m({{P}}_f,S_f^z) \right\rangle\\&\times \frac{{\rm i}}{\not\!\! p_{B'_m} -M_{B'_m}+\frac{{\rm i}}{2}\Gamma_{B'_m}} \left\langle B'_m({{P}}_f,S_f^z) \middle| H_{\rm EM} \middle| B_i({{P}}_i,S_i^z) \right\rangle, \end{aligned}$
(17)
where a complete set of intermediate baryon states $ B_m $ ($ B_m' $) with quantum numbers $ 1/2^+ $ ($ 1/2^- $) has been included in processes A and B, respectively. $\langle B | H_{W}^{\rm PC/PV} | B'\rangle$ and $\langle B| H_{\rm EM} | B' \rangle$ are the weak and EM transition matrix elements, respectively. The weak matrix elements are calculated in a manner similar to that reported in Refs. [32, 33]. In the following, we provide some details about the calculations of the EM transition matrix elements.
Taking advantage of the fact that we use baryon wave functions that are fully symmetric with respect to the space, spin, and flavor degrees of freedom (see Appendix), $H_{\rm EM}$ can be replaced by
$\begin{aligned}[b] H^{+}_{\rm EM} =& \sum\limits_j (H_{\rm EM}^+)_j \to 3(H_{\rm EM}^+)_1\\ =& -\frac{1}{(2\pi)^\frac32}\frac{1}{(2k^0)^\frac12}\frac{3 {\mathsf{e}}_1}{\sqrt2 m_1} \\&\times\left[p_1^+ +\sigma_1^+ k \right] \delta^3({{p}}_1^f+{{k}} -{{p}}_1^i),\end{aligned} $
(18)
where
$ p^+\equiv p_x+{\rm i}p_y, \quad \sigma^+\equiv \frac{\sigma_x+{\rm i}\sigma_y}{2}. $
(19)
Taking the decay of $ \Lambda\to \gamma n $ of the A-type as an example, the EM transition amplitude can be obtained as
$ \begin{aligned}[b] & \left\langle B_f({{P}}_f,S_f^z)\middle | H_{\rm EM}^+ \middle | B_i({{P}}_i,S_i^z) \right\rangle \\ =& \left\langle \frac{1}{\sqrt2}(\phi_n^\rho\chi_{1/2,S_f^z}^\rho+\phi_n^\lambda\chi_{1/2,S_f^z}^\lambda)\Phi^{00;00}_{00}({{p}}_1^f,{{p}}_2^f,{{p}}_3^f) \Biggr| H_{\rm EM}^+ \right.\\&\times\Biggr |\left. \frac{1}{\sqrt2}(\phi_n^\rho\chi_{1/2,S_i^z}^\rho+\phi_n^\lambda\chi_{1/2,S_i^z}^\lambda)\Phi^{00;00}_{00}({{p}}_1^i,{{p}}_2^i,{{p}}_3^i) \right\rangle \\ = &C \langle\Phi^{00;00}_{00}(\{{{p}}_j^f\})|p^+_1|\Phi^{00;00}_{00}(\{{{p}}_j^i\})\rangle\\&+ D \langle\Phi^{00;00}_{00}(\{{{p}}_j^f\})|k|\Phi^{00;00}_{00}(\{{{p}}_j^i\})\rangle. \end{aligned} $
(20)
Here $ \Phi({{p}}_1,{{p}}_2,{{p}}_3) = \Psi({{P}},{{p}}_\rho,{{p}}_\lambda) $ is the wavefunction written in terms of individual momenta and spelled out in the Appendix as a function of the Jacobi coordinates, and its indices denote both the internal and global radial and orbital excitations. Accordingly, the two last brackets are the matrix elements of these spatial wave functions in momentum space, and the coefficients C and D are the factors extracted in the spin-isospin space. The first term will raise the orbital angular momentum projection of the interacting quark by one unit, and the second one will raise its spin projection by one unit. A general definition of the convolution integral is as follows:
$ \begin{split} \langle \cdots O(p) \cdots \rangle&{} = I_{n_\rho^f \ell_\rho^f;n_\lambda^f\ell_\lambda^f;L^f M^f;n_\rho^i \ell_\rho^i;n_\lambda^i \ell_\lambda^i;L^i M^i}(O(p))\\ &{} = \int {\rm d}^{(3)}{{p}}^f d^{(3)}{{p}}^i \delta^3({{p}}_1^f+{{k}} -{{p}}^i_1)\delta^3({{p}}_2^f-{{p}}_2^i)\\ &{} \quad\times \delta^3({{p}}_3^f-{{p}}_3^i)\Phi^*{\,}_{L^f M^f}^{n_\rho^f\ell_\rho^f;n_\lambda^f{}\ell_\lambda^f}({{p}}_1^f,{{p}}_2^f,{{p}}_3^f) O(p)\\&{} \quad\times \Phi_{L^i M^i}^{n_\rho^i\ell_\rho^i;n_\lambda^i{}\ell_\lambda^i}({{p}}_1^i,{{p}}_2^i,{{p}}_3^i), \\[-15pt]\end{split} $
(21)
where $ O(p) $ is a function of quark momenta, such as $ p_1^+ $ and k. For the transitions between two ground states, it is easy to verify that
$ I(p^+_1) = 0,\qquad I(k) = k {\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}.$
(22)
This indicates that only the term proportional to D, namely the magnetic-dipole part of $H^+_{\rm EM}$ in Eq. (20), can contribute to the transitions between the two ground states. With fixed spin projections in the initial and final states, i.e., $ S_i^z = -1/2 $ and $ S_f^z = 1/2 $, coefficient D can be calculated in the spin-flavor space:
$ \begin{split}D=& -\frac{3}{(2\pi)^\frac32}\frac{1}{(2k^0)^\frac12} \left\langle \frac{1}{\sqrt2}\left(\phi_n^\rho\chi_{1/2,1/2}^\rho+\phi_n^\lambda\chi_{1/2,1/2}^\lambda \right) \Biggr|\frac{ {\mathsf{e}}_1 \sigma^+_1}{\sqrt2 m_1} \right.\\&\times \Biggr|\left.\frac{1}{\sqrt2}\left(\phi_n^\rho\chi_{1/2,-1/2}^\rho+\phi_n^\lambda\chi_{1/2,-1/2}^\lambda \right) \right\rangle \\ =& \frac{ {\mathsf{e}}}{6 \sqrt{2} \pi ^{3/2} \sqrt{k^0} m_q}. \\[-13pt]\end{split} $
(23)
Finally, we have
$ \left\langle n \left({{P}}_f,\frac12 \right) \middle | H_{\rm EM}^+ \middle | n\left({{P}}_i,-\frac12\right) \right\rangle = \frac{ {\mathsf{e}} k}{6 \sqrt{2} \pi^{3/2} \sqrt{k^0} m_q} {\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}. $
(24)
Analogously, the radiative transitions between the intermediate $ 1/2^- $ baryon and final $ 1/2^+ $ baryon can be calculated. In such processes, the contributions will come from the term proportional to C in Eq. (20). The wavefunctions and detailed expressions of the transition amplitudes are provided in the Appendix.
With the explicit amplitudes for the PC and PV transitions, the partial decay width for the hyperon weak radiative decays can be obtained as follows:
$ \Gamma = 8\pi^2 \frac{|{\bf{k}}| k^0 E_f}{M_i}\frac{1}{2S_i+1}\sum\limits_{S_f^z,S_i^z} 2\left(| {\cal M}^{+,S_f^z,S_i^z}_{\rm PC}|^2 + | {\cal M}^{+,S_f^z,S_i^z}_{\rm PV}|^2\right), $
(25)
where $ {\cal M}^{+,S_f^z,S_i^z}_{\rm PC} $ and $ {\cal M}^{+,S_f^z,S_i^z}_{\rm PV} $ are the PC and PV amplitudes, respectively, with the photon polarization $ {{\epsilon}} ^+ $, and $ S_i $ and $ M_i $ are the spin and mass of the initial baryon, respectively.
The parity asymmetry parameter can be extracted in the quark model. Generally, the amplitude of the hyperon weak radiative decay at the hadron level has the following form:
$ {\cal M} = G_F \frac{ {\mathsf{e}}}{\sqrt{4\pi}}\epsilon_\mu \bar u(p')(A+B\gamma_5)\sigma^{\mu\nu}q_\nu u(p), $
(26)
where $ \epsilon_\mu $ is the polarization vector of the photon; $ u(p) $ and $ \bar u(p') $ are the spinors of the initial-state hyperon and final-state nonstrange baryon, respectively. A and B represent the PC (P-wave) and PV (S-wave) amplitudes, respectively. The asymmetry parameter is defined as follows:
$ \alpha_\gamma\equiv \frac{2 {\rm{Re}}(A^*B)}{|A|^2+|B|^2}. $
(27)
By matching A and B to the quark model amplitudes, the asymmetry parameter $ \alpha_\gamma $ can be expressed in terms of the quark model amplitudes for the PC and PV transitions, i.e.,
$ \alpha_\gamma = \frac{2 {\rm{Re}}( {\cal M}_{\rm PC}^* {\cal M}_{\rm PV})}{| {\cal M}_{\rm PC}|^2+| {\cal M}_{\rm PV}|^2}. $
(28)
With this asymmetry parameter, the angular distribution of the final-state baryon in the rest frame of the initial hyperon can be written as follows:
$\frac{{\rm d} N}{{\rm d} \Omega} = \frac{N}{4\pi}\left (1+\alpha_\gamma {{P}}_h \cdot \hat{{{p}}} \right ), $
(29)
where $ {{P}}_h $ is the polarization vector of the decaying hyperon, and $ \hat{{{p}}} $ is the direction of the three-vector momentum of the final-state baryon.
The following processes are included in this work: $ \Lambda \to n \gamma $, $ \Sigma^+\to p\gamma $, $ \Sigma^0\to n\gamma $, $ \Xi^0 \to \Lambda\gamma $, and $ \Xi^0 \to \Sigma^0 \gamma $. Although the partial width of $ \Sigma^0\to \Lambda \gamma $ is saturated by the EM interaction, we still evaluate the weak radiative decay contribution here as a comparison with the EM process.
III.RESULTS AND DISCUSSION
These weak radiative decay processes, i.e., $ \Lambda \to n \gamma $, $ \Sigma^+ \to p \gamma $, $ \Sigma^0 \to n \gamma $, $ \Xi^0 \to \Lambda\gamma $, and $ \Xi^0 \to \Sigma^0\gamma $, are all Cabbibo-favored with $ |\Delta I| = 1/2 $ and $ |\Delta s| = 1 $ transitions. The dominance of the pole terms in the transition amplitudes suggests that all the intermediate states of $ J^P = 1/2^+ $ with the proper flavor should be included for the PC amplitude, while all the states of $ 1/2^- $ should be included for the PV one. However, taking into account the propagator suppression effects when the intermediate states become highly off-shell, we only consider the first orbital excitation states for the PV amplitude. This approximation will introduce some uncertainties to the final results. Taking the $ \Lambda $ decays as an example, the upper limit of the uncertainties can be estimated by the ratios $R_{\rm PC} = |(M_\Lambda^2-M_p^2)/(M_\Lambda^2-M_{N^*(1440)}^2)|^2\simeq 0.20$ for the PC part in the branching ratio, and $R_{\rm PV} = |(M_\Lambda(1405)^2-M_p^2)/ (M_{\Lambda(L = 3)}^2-M_p^2)|^2\simeq 0.12$ for the PV part in the branching ratio. Here, $ N^*(1440) $ is the first radial excitation state of the nucleon, and $ \Lambda(L = 3) $ denotes the second negative parity orbital excitation state of $ \Lambda $. The multiplets with $ L = 3 $ have not yet been established experimentally, so we adopt $ M_{\Lambda(L = 3)} = 2 $ GeV for its mass as a conservative estimate. Theoretical calculations in the literature suggest that their masses are well above 2 GeV [35] (see also Ref. [36] for a review of baryon spectroscopy in the quark model and references therein).
The intermediate states considered in this work are listed in Table 1. These states are either ground states with $ J^P = 1/2^+ $ or first orbital excitations with $ J^P = 1/2^- $. For the $ 1/2^- $ intermediate hyperons, $ \Lambda(1405) $ is assigned as the flavor singlet in the representation $ [70,^21] $. For multiplets of representations $ [70,^28] $ and $ [70,^48] $, the corresponding states have not yet been determined experimentally. Although the quantum numbers of $ \Xi(1620) $ and $ \Xi(1690) $ have not been measured in experiments, they are considered to belong to representations $ [70,^28] $ and $ [70,^48] $, respectively.
PC $ [56,^28] $ p n $ \Lambda $ $ \Xi^0 $
$ 0.94 $ $ 0.94 $ $ 1.12 $ $ 1.31 $
$ \Sigma^+ $ $ \Sigma^0 $
$ 1.20 $ $ 1.20 $
PV $ [70,^28] $ $ N(1535) $ $ \Lambda(1670) $ $ \Sigma(1620) $ $ \Xi(1620) $
$ 1.53(0.15) $ $ 1.67(0.035) $ $ 1.62(0.05) $ $ 1.62(0.03) $
$ [70,^48] $ $ N(1650) $ $ \Lambda(1800) $ $ \Sigma(1750) $ $ \Xi(1690) $
$ 1.655(0.135) $ $ 1.8(0.3) $ $ 1.75(0.15) $ $ 1.62(0.03) $
$ [70,^{{2}}{}{{10}}] $ $ \Delta(1620) $
1.61(0.13)


Table1.Intermediate states considered in our calculation. The baryon masses and decay widths (given in the brackets) are taken from PDG [37] (in units of GeV). Only the central values of the masses and widths are listed.

With the EM and weak coupling matrix elements for the $ 1/2^+ $ and $ 1/2^- $ states calculated in the NRCQM, we can obtain the analytical amplitudes for each pole term; they are provided in Appendix C. One can see that the PC amplitudes are given by the intermediate $ 1/2^+ $ octet baryons, and the decays are given through a P wave, while the parity-violating ones are given through an S wave.
In our framework, the input parameters include the constituent quark masses and harmonic oscillator strengths. In the present calculations, we take the SU(3) flavor symmetry for the constituent quark masses, i.e., $ m_q = m_u = m_d = m_s = 0.35 $ GeV, as the leading order approximation. This simplifies the baryon wavefunctions at this moment. Because the three-vector momentum carried by the photon is rather small, this approximation does not cause significant uncertainty in the numerical results. In contrast, the numerical results are more sensitive to the harmonic oscillator strengths, i.e., $ \alpha_\rho $ and $ \alpha_\lambda $ for the $ \rho $ and $ \lambda $ degrees of freedom in the Jacobi coordinate, respectively. In the equal mass limit of $ m_u = m_d = m_s $, these two parameters satisfy $ \alpha_\rho = \alpha_\lambda\equiv \alpha $. One can see later that the analytical amplitudes will be proportional to $ \alpha^3 $. Thus, more uncertainties can arise from the harmonic oscillator strength $ \alpha $. Considering that $ \Xi $ contains two s quarks, the SU(3) flavor symmetry breaking effect should not be ignored, so we adopt a different value for the oscillator strength of the $ \Xi $ decays. Thus, in the numerical studies, we adopt $ \alpha = 0.45 $ GeV for the $ \Lambda $ and $ \Sigma $ decays and $ \beta = 0.38 $ GeV for the $ \Xi $ decays.
The numerical results of amplitudes are given in Table 2. Some general features can be understood as follows.
Process PCA PVA PCB PVB Total (PC) Total (PV)
$ \Lambda \to n\gamma $ n $ -6.68 $ $ N(1535) $ $-4.72-0.99{\rm i}$ $ \Lambda $ $ 3.97 $ $ \Lambda(1670) $ $-1.54-0.047{\rm i}$ $ 5.82 $ $-14.91-1.48{\rm i}$
$ N(1650) $ $0.22+0.032{\rm i}$ $ \Sigma^0 $ $ 8.53 $ $ \Lambda(1800) $ $0.072-0.017{\rm i}$
$ \Delta(1620) $ $ 0 $ $ \Lambda(1405) $ $-4.27-0.28{\rm i}$
$ \Sigma(1620) $ $-4.91-0.23{\rm i}$
$ \Sigma(1750) $ $ 0.24 $

$ \Sigma^+\to p\gamma $ p $ -19.06 $ $ N(1535) $ $-9.65-2.39{\rm i}$ $ \Sigma^+ $ $ 24.16 $ $ \Sigma(1620) $ $-5.75-0.27{\rm i}$ $ 5.10 $ $-15.40-2.66{\rm i}$
$ N(1650) $ $ 0 $ $ \Sigma(1750) $ $ 0 $
$ \Delta(1620) $ $ 0 $

$ \Sigma^0\to n\gamma $ n $ 8.93 $ $ N(1535) $ $7.69+1.92{\rm i}$ $ \Lambda $ $ -7.91 $ $ \Lambda(1670) $ $2.15+0.066{\rm i}$ $ 6.69 $ $1.33+1.37{\rm i}$
$ N(1650) $ $-0.68-0.15{\rm i}$ $ \Sigma^0 $ $ 5.67 $ $ \Lambda(1800) $ $-0.20-0.046{\rm i}$
$ \Delta(1620) $ $ 0 $ $ \Lambda(1405) $ $-5.58-0.36{\rm i}$
$ \Sigma(1620) $ $-2.28-0.11{\rm i}$
$ \Sigma(1750) $ $ 0.22 $

$ \Xi^0\to \Lambda\gamma $ $ \Lambda $ $ 5.79 $ $ \Lambda(1670) $ $4.73+0.26{\rm i}$ $ \Xi^0 $ $ -13.60 $ $ \Xi(1620) $ $6.33+0.22{\rm i}$ $ -7.81 $ $-4.38-3.88{\rm i}$
$ \Sigma^0 $ $ 0 $ $ \Lambda(1800) $ $-0.23-0.083{\rm i}$ $ \Xi(1690) $ $-0.46-0.014{\rm i}$
$ \Lambda(1405) $ $-14.7-4.26{\rm i}$
$ \Sigma(1620) $ $ 0 $
$ \Sigma(1750) $ $ 0 $

$ \Xi^0\to \Sigma^0\gamma $ $ \Lambda $ $ -8.15 $ $ \Lambda(1670) $ $-10.75-0.59{\rm i}$ $ \Xi^0 $ $ 0 $ $ \Xi(1620) $ $ 0 $ $ -8.15 $ $-45.65-10.67{\rm i}$
$ \Sigma^0 $ $ 0 $ $ \Lambda(1800) $ $0.21+0.074{\rm i}$ $ \Xi(1690) $ $ 0 $
$ \Lambda(1405) $ $-35.11-10.15{\rm i}$
$ \Sigma(1620) $ $ 0 $
$ \Sigma(1750) $ $ 0 $


Table2.Numerical results of amplitudes for every channel, in units of $ (10^{-10}\; {\rm{GeV}}^{-1/2}) $.

2
A.${\Lambda \to n \gamma}$, ${\Sigma^+\to p\gamma}$, and ${\Sigma^0\to n\gamma}$
-->

A.${\Lambda \to n \gamma}$, ${\Sigma^+\to p\gamma}$, and ${\Sigma^0\to n\gamma}$

For the processes $ \Sigma^+\to p\gamma $ and $ \Lambda \to n \gamma $, it appears that the A- and B-type processes have a destructive interference in the the PC channels, but become constructive in the PV channels. This results in the value of the PC amplitudes becoming smaller than the value of the PV ones for these two decays. Furthermore, this leads to a large value for the asymmetry parameter.
It is interesting to note that the PV amplitude of the $ N(1650) $, which is assigned as the SU(6) representation $ [70,^48] $ with $ J^P = 1/2^- $, vanishes in $ \Sigma^+\to p\gamma $but contributes to the neutral channels of $ \Lambda \to n \gamma $ and $ \Sigma^0\to n\gamma $. This is understandable via the EM coupling between the $ N^* $ of $ [70,^48] $ and proton $ [56,^28] $. In such an EM transition process, the so-called “Moorhouse selection rule” [38] should play a role, preventing the intermediate $ N(1650) $ from decaying into $ p\gamma $.
To be more specific, one can prove that the $ \rho $ mode decays or excitations between states of $ [70,^48] $ and $ [56,^28] $ via the EM transition operator vanish. Because the spin and orbital angular momentum operators are symmetric with respect to the quark indices of the first two quarks, the $ \rho $ mode spatial wavefunction of $ [70,^48] $ cannot orbitally decay into a symmetric spatial wavefunction of $ [56,^28] $. The $ \lambda $ mode decays or excitations between states of $ [70,^48] $ and $ [56,^28] $ are, in principle, allowed. However, for the charged channel of $ N^*([70,^48])\to p\gamma $, one has $ \langle \phi^\lambda_{N^{*+}}|\Sigma_{i = 1}^3 {\mathsf{e}}_i|\phi^\lambda_p\rangle = 3\langle \phi^\lambda_{N^{*+}} | {\mathsf{e}}_3|\phi^\lambda_p\rangle = 0 $. Thus, the $ \lambda $ mode is also forbidden.
It should be noted that representations of $ [70,^48] $ and $ [70,^28] $ in the first orbital excitations can mix, and the physical states $ N(1535) $ and $ N(1650) $ are actually mixing states of these two configurations. As a consequence, both states can actually contribute to $ \Sigma^+\to p\gamma $. This is an interesting phenomenon that may provide an alternative way to study the structure of these two resonances.
A similar relation also appears in the EM transitions of the PV B-type process, i.e., the EM transitions between $ \Sigma^+ $ of $ [56,^28] $ and $ \Sigma^{*+} $ of $ [70,^48] $. Again, one can prove that only the $ \lambda $ mode of transitions is allowed. However, with $ \langle \phi^\lambda_{\Sigma^{*+}}|\Sigma_{i = 1}^3 {\mathsf{e}}_i|\phi^\lambda_{\Sigma^+}\rangle = 3\langle \phi^\lambda_{\Sigma^{*+}}| {\mathsf{e}}_3|\phi^\lambda_{\Sigma^+}\rangle = 0 $, the $ \lambda $ mode of transitions will also be forbidden. Thus, states of $ [70,^48] $ do not contribute to the PV amplitude in $ \Sigma^+\to p\gamma $.
It is also clear that the states of $ [70,^{{2}}{}{{10}}] $ do not contribute to the octet radiative weak decays. This is due to the requirement of the $ \rho $ mode orbital excitations between the spatial wavefunctions of $ [70,^{{2}}{}{{10}}] $ and $ [56,^28] $ in association with the spin-flavor operators in Eq. (7), which are nonvanishing between $ \lambda $ and $ \rho $ modes. As a consequence, the two terms in Eq. (7) exactly cancel out. This vanishing transition was listed in Ref. [15] but was not discussed much there. Note that the transition $ \Sigma^+\to p\gamma $ does not violate the $ |\Delta I| = 1/2 $ rule. The vanishing contribution of the $ \Delta(1620) $ of representation $ [70,^{{2}}{}{{10}}] $ can be regarded as a kind of dynamic selection rule in the quark model. In fact, this selection rule also plays a role in the hadronic weak decays of $ \Sigma\to N\pi $ and $ \Lambda\to N\pi $. A recent study can be found in Ref. [33].
2
B.${\Xi^0 \to \Sigma^0 \gamma}$ and ${\Lambda \gamma}$
-->

B.${\Xi^0 \to \Sigma^0 \gamma}$ and ${\Lambda \gamma}$

The situation in $ \Xi^0\to \Sigma^0 \gamma $ and $ \Lambda \gamma $ is different from that in $ \Lambda $ and $ \Sigma $ decays. Here, the contributions from the PC processes are larger than those from the destructive PV ones.
It is noticeable that the B-type amplitudes in $ \Xi^0 \to \Sigma^0 \gamma $ vanish for both PC and PV transitions. Meanwhile, the intermediate $ \Sigma^{(*)} $ states do not contribute to the A-type transitions. These are due to the weak interaction operators. Note that the flavor transition element vanishes: $ \langle \phi_{\Sigma^0}^\rho|\tau_1^{(-)}\nu_2^{(+)}|\phi_{\Xi^0}^\rho\rangle = 0 $. In the PC B-type transition, this leaves the $ \lambda $ mode to contribute. However, one finds that the spin transition element $ \langle\chi_{\frac 12 S_z}^\lambda|(1-{{{\sigma}}}_1\cdot{{{\sigma}}}_2) |\chi_{\frac 12 S_z}^\lambda\rangle = 0 $, with the spins of the first two quarks in parallel. Therefore, the intermediate $ \Sigma^0 $ does not contribute to the PC amplitude.
For the PV A-type transitions, the intermediate $ \Sigma^{*0} $ belongs to either representation $ [70,^28] $ or $ [70,^48] $. Again, with $ \langle \phi_{\Sigma^0}^\rho|\tau_1^{(-)}\nu_2^{(+)}|\phi_{\Xi^0}^\rho\rangle = 0 $, it leaves the wavefunction component $ \phi_{\Sigma^0}^\lambda(\chi_{\frac 12 S_z}^\rho\psi_{11L_z}^\rho({{{\rho}}}, {{{\lambda}}})-\chi_{\frac 12 S_z}^\lambda\psi_{11L_z}^\lambda({{{\rho}}}, {{{\lambda}}})) $ of $ [70,^28] $ to be considered. From the PV operators in Eq. (7), one can easily prove that only the transitions between $ \rho $ and $ \lambda $ modes in the spin and spatial spaces can survive. However, the two terms in Eq. (7) have the same average values but opposite signs. They will thus cancel and lead to vanishing contributions from the intermediate $ \Sigma^{*0} $ of $ [70,^28] $. For the intermediate $ \Sigma^{*0} $ of $ [70,^48] $, one finds that the corresponding spatial transitions between the $ \rho $ mode will vanish.
For the B-type transitions, the intermediate $ \Xi^{(*)0} $ can be in either $ [56,^28] $ (PC) or $ [70,^28] $ (PV). Their transitions into the final $ \Sigma^0 $ vanish for the same reason, arising from the weak transition operators. Thus, we have the interesting result that all the $ \Xi^{(*)0} $ pole terms in the B-type processes and all the $ \Sigma^0 $ pole terms in the A-type ones vanish in $ \Xi^0 \to \Sigma^0 \gamma $.
2
C.Branching ratios and asymmetry parameters
-->

C.Branching ratios and asymmetry parameters

Proceeding to the calculation of experimental observables, the calculated branching ratios and parity asymmetry parameters are listed in the last columns of Tables 3 and 4, respectively, in comparison with other models. As shown in Table 3, the central values of the branching ratios are similar to the experimental results, except for $ \Xi^0\to \Sigma^0 \gamma $. By introducing 0.5% errors to the quark model parameters, i.e., $ \alpha,\; \beta $ and $ m_q $, we can estimate the uncertainties of our model calculations. The results show that the uncertainties with the branching ratios are approximately 40%$ \sim $50% for each channel, which means that the amplitudes are sensitive to the quark model parameters. This is understandable because the amplitudes are proportional to $ \alpha^3/m_q $ ($ \beta^3/m_q $). In contrast, the uncertainties with the asymmetry parameter are relatively smaller. As seen from the expression of Eq. (28) for $ \alpha_\gamma $, the uncertainties arising from the dependence of $ \alpha^3/m_q $ or $ \beta^3/m_q $ are largely cancelled out.
$ B_i\to B_f \gamma $ PDG data [37] Broken SU(3) [11] ChPT [25] Pole model [17] Pole model [15] Our result
$ \Sigma^+\to p\gamma $ $ (1.23\pm0.05) $ $ 0.72 $ $ \approx 16 $ $ 0.75\pm0.30 $ $ 1.15 $ $ 1.06\pm0.59 $
$ \Lambda\to n\gamma $ $ (1.75\pm0.15) $ $ 0.77 $ $ \approx 1.45 $ $ 0.16\pm0.06 $ $ 0.62 $ $ 1.83\pm0.96 $
$ \Xi^0\to\Lambda\gamma $ $ (1.17\pm0.07) $ $ 1.02 $ $ \approx 1.17 $ $ 0.72\pm0.42 $ $ 3.0 $ $ 0.96\pm0.32 $
$ \Xi^0\to\Sigma^0\gamma $ $ 3.33\pm0.1 $ $ 4.42 $ $ \approx 1.14 $ $ 2.6\pm1.2 $ $ 7.2 $ $ 9.75\pm4.18 $
$ \Sigma^0\to n\gamma $ ? ? $ \approx 10^{-9} $ $ 1.8\times10^{-9} $ $ 10^{-10} $ $ \approx 10^{-10} $


Table3.Calculated branching ratios (in units of $ 10^{-3} $) compared with experimental data and other theoretical predictions. In Ref. [25], the results are given by decay width.

Note that there are only a limited number of parameters under the NRCQM framework. The overall quality of our model calculations turns out to be reasonable. Our results indicate that the lowest lying states play an essential role through the intermediate pole terms, which is consistent with the results of ChPT [25] and previous quark model calculations [15].
In Table 4, one can see that the signs of the asymmetry parameters are quite different. Our model gives the correct signs for the $ \Sigma^+ $ and $ \Lambda $ channel and prefers a large value. However, for the $ \Xi^0 $ channels, the sign of the asymmetry parameter is opposite to that of the experimental data. The sign of the asymmetry parameter of $ \Sigma^0\to n \gamma $ is positive, which is opposite to that of the other model calculations [15, 17].
$ B_i\to B_f \gamma $ PDG [37] Broken SU(3) [11] ChPT [25] Pole model (I) [17] Pole model (II) [15] Our result
$ \Sigma^+\to p\gamma $ $ -0.76\pm0.08 $ $ -0.67 $ $ -0.49 $ $ -0.92 $ $ -0.80 $ $ -0.58\pm0.060 $
$ \Lambda\to n\gamma $ ? $ -0.93 $ $ -0.19 $ $ 0.91 $ $ -0.49 $ $ -0.67\pm0.060 $
$ \Xi^0\to\Lambda\gamma $ $ (-0.70\pm0.07) $ $ -0.97 $ $ 0.46 $ $ 0.07 $ $ -0.78 $ $ 0.72\pm0.11 $
$ \Xi^0\to\Sigma^0\gamma $ $ (-0.69\pm0.06) $ $ -0.92 $ $ 0.15 $ $ -0.75 $ $ -0.96 $ $ 0.33\pm0.036 $
$ \Sigma^0\to n\gamma $ ? ? ? $ -0.65 $ $ -0.98 $ $ 0.37\pm0.035 $


Table4.Numerical results of the asymmetry parameter compared with experimental data and other theoretical predictions.

In Table 5, we also list the partial decay widths in comparison with the PDG values [37]. Note that the calculated partial decay width of $ \Sigma^0\to n \gamma $ is comparable to those of the other channels, although its branching ratio appears to be very small. This is due to the large total width saturated by the EM transition of $ \Sigma^0\to \Lambda \gamma $. The partial width for $ \Sigma^0\to n \gamma $ has not been measured experimentally. The measurement of this quantity may be pursued at BESIII with large event samples collected for $ J/\psi $ decays.
$ B_i\to B_f \gamma $ $ \Sigma^+\to p\gamma $ $ \Lambda\to n\gamma $ $ \Xi^0\to\Lambda\gamma $ $ \Xi^0\to\Sigma^0\gamma $ $ \Sigma^0\to n\gamma $
PDG data [37] $ 10.10\pm0.41 $ $ 4.40\pm0.38 $ $ 2.66\pm0.18 $ $ 7.56\pm0.33 $ ?
Our result $ 8.73\pm4.88 $ $ 4.59\pm2.42 $ $ 2.20\pm0.73 $ $ 22.13\pm9.50 $ $ 1.59\pm0.55 $


Table5.Calculated partial decay widths (in units of $ 10^{-18} $ GeV) compared with the experimental data from PDG [37].

IV.SUMMARY
In this work, we revisit the hyperon weak radiative decays in the framework of the NRCQM. The dominance of the pole terms turns out to be crucial for achieving an overall self-consistent description of the available experimental data for hyperon weak radiative decays. This study confirms the nonlocal feature of the hyperon weak radiative transition operators, which provides a natural mechanism for evading the Hara theorem, i.e., the PV contributions can come from the intermediate orbital excitations in the NRCQM. We also discuss several interesting selection rules arising from either the EM or the weak interaction vertices. Moreover, there exist cancellations between pole terms that can significantly violate the SU(3) flavor symmetry in the observables. These features suggest nontrivial relations among various hyperon decays. It is interesting to note that the dominance of the pole terms is somewhat counterintuitive, taking into account the short-ranged property of the weak interactions. Therefore, a coherent study of the hyperon weak radiative decays and confirmation of the dominance of the pole terms are crucial for a better understanding of the underlying dynamics. Future studies of possible dynamic effects are strongly recommended. A better description of the transition operators will make the hyperons good probes for long-ranged weak-decay dynamics in nuclear few-body systems.
2
ACKNOWLEDGEMENTS
-->

ACKNOWLEDGEMENTS

J.M.R. would like to thank the hospitality provided to him at IHEP, where part of this work was completed, and the support by the Munich Institute for Astro- and Particle Physics (MIAPP) of the DFG cluster of excellence “Origin and Structure of the Universe” during the Workshop “Deciphering Strong-Interaction Phenomenology through Precision Hadron-Spectroscopy.”
APPENDIX A: CONVENTION
The following conventions are adopted for the quark and anti-quark field:
$\tag{A1} \begin{aligned}[b] q(x) =& \int \frac{{\rm d} {{p}}}{(2\pi)^{3/2}}\left(\frac{m}{p^0}\right)^{1/2} \sum\limits_s u_s({{p}})b_s({{p}}){\rm e}^{{\rm i} p\cdot x}\\&+v_s({{p}})d^\dagger_s({{p}}){\rm e}^{-{\rm i} p\cdot x}, \end{aligned}$
$\tag{A2}\begin{aligned}[b] \bar q(x) =& \int\frac{{\rm d}{{p}}}{(2\pi)^{3/2}}\left(\frac{m}{p^0}\right)^{1/2} \sum\limits_s \bar u_s({{p}})b^\dagger_s({{p}}){\rm e}^{-{\rm i} p\cdot x}\\&+\bar v_s({{p}})d_s({{p}}){\rm e}^{{\rm i} p\cdot x}.\end{aligned}$
The commutation and anticommutation relations of the creation and annihilation operators are given by
$\tag{A3}\{b_s({{p}}),b_{s'}^\dagger({{p}}') \} = \{d_s({{p}}),d_{s'}^\dagger({{p}}') \} = \delta_{ss'}\delta^3({{p}}-{{p}}'). $
The spinor normalization is $ u^\dagger_s({{p}})u_{s'}({{p}}) = v^\dagger_s({{p}})v_{s'}({{p}}) = $$ (p^0/m)\delta_{ss'} $. It should be emphasized that the convention of quark field and spinor must match with each other to keep the nonrelativistic Hamiltonian independent of any convention.
APPENDIX B: THE BARYON WAVEFUNCTION WITHIN THE NON-RELATIVISTIC CONSTITUENT QUARK MODEL
We adopt the nonrelativistic quark model wave functions for the baryons [35] in the calculation. The total wavefunction of the hadron consists of four parts: a) the color wavefunction, which is trivial and neglected here; b) the spin wavefunction; c) the flavor wavefunction; and d) the spatial wavefunction.
The spin wavefunctions for a three-quark system are written as follows:
$\tag{B1} \begin{aligned}[b] \chi^{s}_{3/2} =& {}\uparrow \uparrow \uparrow ,\\ \chi^{s}_{-1/2} =& \frac{1}{\sqrt3}\left( \uparrow\downarrow\downarrow+\downarrow\uparrow\downarrow+\downarrow\downarrow\uparrow\right) ,\\ \chi^{s}_{1/2} =& \frac{1}{\sqrt3}\left(\uparrow \uparrow \downarrow +\uparrow \downarrow \uparrow +\downarrow \uparrow \uparrow \right) , \\\chi^{s}_{-3/2} = & \downarrow\downarrow\downarrow , \end{aligned} $
$\tag{B2} \begin{aligned}[b] \chi^{\rho}_{1/2} =& \frac{1}{\sqrt2}\left(\uparrow \downarrow \uparrow -\downarrow \uparrow \uparrow \right),\\\chi^{\lambda}_{1/2} =& -\frac{1}{\sqrt6}\left( \uparrow\downarrow\uparrow+\downarrow\uparrow\uparrow-2\uparrow\uparrow\downarrow \right), \\ \chi^{\rho}_{-1/2} =& \frac{1}{\sqrt2}\left(\uparrow \downarrow \downarrow -\downarrow \uparrow \downarrow \right),\\ \chi^{\lambda}_{-1/2} =& \frac{1}{\sqrt6}\left( \uparrow\downarrow\downarrow+\downarrow\uparrow\downarrow-2\downarrow\downarrow\uparrow\right) \ , \end{aligned} $
where the superscripts s, a, $ \rho $, and $ \lambda $ are used to label the symmetry types of the corresponding wavefunctions, namely overall symmetric and antisymmetric states, and mixed symmetry states that are either antisymmetric or symmetric under the exchange of the first two quarks, respectively.
The flavor wavefunctions for the octet baryons are written as [34]
$ \begin{aligned}[b] &\phi_p^\lambda = \frac{1}{\sqrt{6}}(2 u u d-d u u-u d u), \\&\phi_p^\rho = \frac{1}{\sqrt{2}}(u d u-d u u), \\ &\phi_n^\lambda = \frac{1}{\sqrt{6}}(d u d+u d d-2 d d u), \end{aligned} $
$\tag{B3} \begin{aligned}[b] &\phi_n^\rho = \frac{1}{\sqrt{2}}(u d d-d u d), \\&\phi_{\Lambda}^\lambda = \frac{1}{2}(sud+usd-sdu-dsu),\\&\phi_{\Lambda}^\rho = \frac{1}{2\sqrt3}(usd+sdu-sud-dsu-2dus+2uds),\\ &\phi_{\Sigma^+}^\lambda = \frac{1}{\sqrt6}(suu+usu-2uus), \\&\phi_{\Sigma^+}^\rho = \frac{1}{\sqrt2}(suu-usu), \\ &\phi_{\Sigma^0}^\lambda = \frac{1}{2\sqrt3}(sdu+sud+usd+dsu-2uds-2dus), \\&\phi_{\Sigma^0}^\rho = \frac{1}{2}(sud+sdu-usd-dsu), \\ &\phi^\lambda_{\Xi^0} = \frac{1}{\sqrt6}(2ssu-sus-uss),\\& \phi^\rho_{\Xi^0} = \frac{1}{\sqrt2}(sus-uss). \end{aligned} $
A basis of spatial wavefunctions in the momentum space is given by [34]
$\tag{B4}\begin{aligned}[b] \Psi^{n_\rho\ell\rho;n_\lambda \ell_\lambda}_{LM}({{P}},{{p}}_\rho,{{p}}_\lambda) =& \delta^3({{P}}_{cm}-{{P}})\sum\limits_m \langle l_\rho,m;l_\lambda,M-m|LM \rangle \\&\times \psi_{n_\rho l_\rho m }({{p}}_\rho)\psi_{n_\lambda l_\lambda M-m }({{p}}_\lambda),\\[-15pt] \end{aligned}$
where $ {{P}} $, $ {{p}}_\rho $, and $ {{p}}_\lambda $ are the usual Jacobi coordinates, and
$\tag{B5}\begin{aligned}[b] \psi_{n,l,m}({{p}}) =& (i)^l(-1)^n \left[\frac{2n!}{(n+l+1/2)!} \right]^{1/2}\\&\times\frac{1}{\alpha^{l+3/2}}{\rm e}^{-\genfrac{}{}{}{1}{{{p}}^2}{2\alpha^2}}L_n^{l+1/2}({{p}}^2/\alpha^2) {\cal Y}_{lm}({{p}}). \end{aligned}$
$ n_\rho $ and $ n_\lambda $ count the radial excitations, and $ {{L}} $ is the total angular momentum. $ L_n^\nu(x) $ are generalized Laguerre polynomials, and $ \alpha $ is the oscillator parameter. $ {\cal Y}_{lm}({{p}}) $ is solid spherical harmonics.
The baryons are three-quark systems, and in the limit of SU(3) flavor symmetry, their total wavefunctions become totally symmetric. With the color wavefunction total antisymmetric, the rest of the total wavefunction should then be symmetric. The total wavefunction (except for the color part) of an octet baryon B is written as follows:
$\tag{B6} |56,^28,0,0,s_z\rangle = \frac{1}{\sqrt2}(\phi_B^\rho \chi^\rho_{s_z}+\phi_B^\lambda \chi^\lambda_{s_z})\Psi^{00;00}_{00}({{p}}_\rho,{{p}}_\lambda). $
The total wavefunction of the first orbital excitation states of $ [70,^28] $ ($ N(1535), \ \Lambda(1670), \ \Sigma(1620) $, and $ \Xi(1620) $) is written as follows:
$\tag{B7} \begin{aligned}[b] |70,^28,1,1,J_z\rangle =& \sum\limits_{L_z+S_z = J_z}\langle1 L_z;\frac{1}{2}S_z|\frac12 J_z\rangle \frac{1}{2}\\&\times\bigl[(\phi_B^\rho \chi_{S_z}^\lambda +\phi_B^\lambda \chi_{S_z}^\rho)\Psi^{1L_z;00}_{1L_z}({{p}}_\rho,{{p}}_\lambda)\\&+(\phi_B^\rho \chi_{S_z}^\rho-\phi_B^\lambda \chi_{S_z}^\lambda)\Psi^{0,0;1,L_z}_{1L_z}({{p}}_\rho,{{p}}_\lambda) \bigr]. \end{aligned} $
The total wavefunction of the first orbital excitation states of $ [70,^48] $ ($ N(1650),\Lambda(1800),\Sigma(1750) $, and $ \Xi(1690) $) is as follows:
$ \tag{B8}\begin{aligned}[b] |70,^48,1,1,J_z\rangle =& \sum\limits_{L_z+S_z = J_z}\langle1 L_z;\frac{3}{2}S_z|\frac12 J_z\rangle \frac{1}{\sqrt2}\left[\phi_B^\rho \chi_{S_z}^s \right.\\&\left.\times\Psi^{1 L_z;0 0}_{1L_z}({{p}}_\rho,{{p}}_\lambda)+ \phi_B^\lambda \chi_{S_z}^s\Psi^{00;1 L_z}_{1L_z}({{p}}_\rho,{{p}}_\lambda) \right]. \end{aligned}$
The total wavefunction of the first orbital excitation states of $ [70,^{{2}}{}{{10}}] $ ($ \Delta(1620) $) is as follows:
$\tag{B9}\begin{aligned}[b] |70,^{{2}}{}{{10}},1,1,J_z\rangle =& \sum\limits_{L_z+S_z = J_z}\langle1 L_z;\frac{1}{2}S_z|\frac12 J_z\rangle \frac{1}{\sqrt2}\left[\phi_B^s \chi_{S_z}^\rho \right.\\&\left.\times\Psi^{1 L_z;0 0}_{1L_z}({{p}}_\rho,{{p}}_\lambda)+ \phi_B^s \chi_{S_z}^\lambda\Psi^{00;1 L_z}_{1L_z}({{p}}_\rho,{{p}}_\lambda) \right]. \end{aligned}$
The total wavefunction of the first orbital excitation state of $ [70, \ ^21] $ ($ \Lambda(1405) $) is
$ \tag{B10}\begin{aligned}[b] |70,^21,1,1,J_z\rangle =& \sum\limits_{L_z+S_z = J_z}\langle1 L_z;\frac{1}{2}S_z|\frac12 J_z\rangle \frac{1}{\sqrt2}\left[\phi_\Lambda^a \chi_{S_z}^\lambda \right.\\&\left.\times\Psi^{1L_z;00}_{1L_z}({{p}}_\rho,{{p}}_\lambda)- \phi_\Lambda^a \chi_{S_z}^\rho\Psi^{00;1 L_z}_{1L_z}({{p}}_\rho,{{p}}_\lambda) \right], \end{aligned}$
where
$ \tag{B11} \phi_\Lambda^a = \frac{1}{\sqrt6}(uds+ dsu+sud-dus-usd -sdu).$

APPENDIX C: AMPLITUDES
The transition amplitudes with the EM operator $H_{\rm EM}^+$ are given in this section. Note that only the nonzero amplitudes are listed. The nonzero amplitudes are labeled ${\cal M}_{{\rm PC/PV},A/B}(B)$, where the spin indexes $ \epsilon $, $ S_z^f = +1/2 $, and $ S_z^i = -1/2 $ are omitted. B in the parentheses is the name of the intermediate baryon. In the following part, $ S_F(B) $ stands for the propagator of the intermediate baryon and is written as follows:
$ \tag{C1} S_F(B) = \frac{{\rm i}(\not\!\! p_B+M_{B})}{ p^2_{B} -M^2_{B}+{\rm i}\Gamma_{B}M_{B}}\approx\frac{2{\rm i} M_{B}}{ p^2_{B} -M^2_{B}+{\rm i}\Gamma_{B}M_{B}}, $
where $ M_B \ (\Gamma_B) $ is the mass (width) of the baryon, and $ p_B $ is its four momentum.
$ \Sigma^+\to p \gamma $
$ \tag{C2} {\cal M}_{{\rm PC},A}(p) = \left[\frac{3 \alpha ^3 G_F V_{ud} V_{us}}{2 \pi ^{3/2}} \right] S_F(p) \left[ -\frac{ {\mathsf{e}} k}{4 \sqrt{2} \pi ^{3/2} \sqrt{k^0} m_q} \right] {\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}, $
$\tag{C3} {\cal M}_{{\rm PV},A}(N(1535)) = \left[-\frac{3 {\rm i} \alpha ^4 G_F V_{ud} V_{us}}{2 \sqrt{2} \pi ^{3/2} m_q} \right] S_F(N(1535)) \left[\frac{{\rm i} {\mathsf{e}} \left(2 \alpha ^2-k^2\right)}{24 \pi ^{3/2} \alpha \sqrt{k^0} m_q} \right]{\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}. $
$\tag{C4} {\cal M}_{{\rm PC},B}(\Sigma^+) = {\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}\left[-\frac{ {\mathsf{e}} k }{4 \sqrt{2} \pi ^{3/2} \sqrt{k^0} m_q} \right] S_F(\Sigma^+) \left[ \frac{3 \alpha ^3 G_F V_{ud} V_{us}}{2 \pi ^{3/2}} \right], $
$\tag{C5} {\cal M}_{{\rm PV},B}(\Sigma(1620)) = {\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}} \left[ -\frac{{\rm i} {\mathsf{e}} \left(2 \alpha ^2-k^2\right)}{24 \pi ^{3/2} \alpha \sqrt{k^0} m_q} \right] S_F(\Sigma(1620)) \left[ \frac{3 {\rm i} \alpha ^4 G_F V_{ud} V_{us}}{2 \sqrt{2} \pi ^{3/2} m_q} \right]. $
$ \Lambda \to n \gamma $
$\tag{C6} {\cal M}_{{\rm PC},A}(n) = \left[-\frac{\sqrt{\frac{3}{2}} \alpha ^3 G_F V_{ud} V_{us}}{2 \pi ^{3/2}} \right] S_F(n) \left[ \frac{ {\mathsf{e}} k }{6 \sqrt{2} \pi ^{3/2} \sqrt{k^0} m_q} \right]{\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}, $
$\tag{C7} {\cal M}_{{\rm PV},A}(N(1535)) = \left[\frac{{\rm i} \sqrt{3} \alpha ^4 G_F V_{{ud}} V_{{us}}}{4 \pi ^{3/2} m_q} \right] S_F(N(1535)) \left[-\frac{{\rm i} {\mathsf{e}} \left(6 \alpha ^2-k^2\right)}{72 \pi ^{3/2} \alpha \sqrt{k^0} m_q} \right]{\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}, $
$\tag{C8} {\cal M}_{{\rm PV},A}(N(1650)) = \left[\frac{{\rm i} \sqrt{3} \alpha ^4 G_F V_{{ud}} V_{{us}}}{2 \pi ^{3/2} m_q} \right] S_F(N(1650)) \left[\frac{{\rm i} {\mathsf{e}} k^2 }{72 \pi ^{3/2} \alpha \sqrt{k^0} m_q} \right]{\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}. $
$\tag{C9} {\cal M}_{{\rm PC},B}(\Lambda) = {\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}\left[\frac{ {\mathsf{e}} k }{12 \sqrt{2} \pi ^{3/2} \sqrt{k^0} m_q} \right] S_F(\Lambda) \left[-\frac{\sqrt{\frac{3}{2}} \alpha ^3 G_F V_{\rm{ud}} V_{\rm{us}}}{2 \pi ^{3/2}} \right], $
$\tag{C10} {\cal M}_{{\rm PC},B}(\Sigma^0) = {\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}\left[-\frac{ {\mathsf{e}} k }{4 \sqrt{6} \pi ^{3/2} \sqrt{k^0} m_q} \right] S_F(\Sigma^0) \left[\frac{3 \alpha ^3 G_F V_{{ud}} V_{{us}}}{2 \sqrt{2} \pi ^{3/2}} \right], $
$\tag{C11} {\cal M}_{{\rm PV},B}(\Lambda(1670)) = {\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}\left[\frac{{\rm i} {\mathsf{e}} \left(6 \alpha ^2-k^2\right)}{144 \pi ^{3/2} \alpha \sqrt{k^0} m_q} \right] S_F(\Lambda(1670)) \left[-\frac{{\rm i} \sqrt{3} \alpha ^4 G_F V_{{ud}} V_{{us}}}{4 \pi ^{3/2} m_q} \right], $
$\tag{C12} {\cal M}_{{\rm PV},B}(\Lambda(1800)) = {\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}\left[-\frac{{\rm i} {\mathsf{e}} k^2 }{144 \pi ^{3/2} \alpha \sqrt{k^0} m_q} \right] S_F(\Lambda(1800)) \left[-\frac{{\rm i} \sqrt{3} \alpha ^4 G_F V_{{ud}} V_{{us}}}{2 \pi ^{3/2} m_q} \right], $
$\tag{C13} {\cal M}_{{\rm PV},B}(\Lambda(1450)) = {\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}\left[-\frac{{\rm i} {\mathsf{e}} \left(2 \alpha ^2-k^2\right)}{48 \pi ^{3/2} \alpha \sqrt{k^0} m_q} \right] S_F(\Lambda(1450)) \left[\frac{{\rm i} \sqrt{3} \alpha ^4 G_F V_{{ud}} V_{{us}}}{2 \pi ^{3/2} m_q} \right], $
$\tag{C14} {\cal M}_{{\rm PV},B}(\Sigma(1620)) = {\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}\left[ -\frac{{\rm i} {\mathsf{e}} \left(6 \alpha ^2-k^2\right)}{48 \sqrt{3} \pi ^{3/2} \alpha \sqrt{k^0} m_q}\right] S_F(\Sigma(1620)) \left[\frac{3 {\rm i} \alpha ^4 G_F V_{{ud}} V_{{us}}}{4 \pi ^{3/2} m_q} \right], $
$\tag{C15} {\cal M}_{{\rm PV},B}(\Sigma(1750)) = {\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}\left[ \frac{{\rm i} {\mathsf{e}} k^2 }{48 \sqrt{3} \pi ^{3/2} \alpha \sqrt{k^0} m_q} \right] S_F(\Sigma(1750)) \left[ \frac{3{\rm i} \alpha ^4 G_F V_{{ud}} V_{{us}}}{2 \pi ^{3/2} m_q}\right]. $
$ \Xi^0\to\Lambda\gamma $
$\tag{C16} {\cal M}_{{\rm PC},A}(\Lambda) = \left[ \frac{2 \sqrt{3} \alpha ^3 \beta ^3 G_F V_{{ud}} V_{{us}}}{\pi ^{3/2} \left(\alpha ^2+\beta ^2\right)^{3/2}} \right] S_F(\Lambda) \left[\frac{ {\mathsf{e}} k }{12 \sqrt{2} \pi ^{3/2} \sqrt{k^0} m_q} \right]{\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}, $
$\tag{C17} {\cal M}_{{\rm PV},A}(\Lambda(1670)) = \left[-\frac{{\rm i} \sqrt{6} \alpha ^4 \beta ^3 G_F V_{{ud}} V_{{us}}}{\pi ^{3/2} \left(\alpha ^2+\beta ^2\right)^{3/2} m_q} \right] S_F(\Lambda(1670)) \left[-\frac{{\rm i} {\mathsf{e}} \left(6 \alpha ^2-k^2\right)}{144 \pi ^{3/2} \alpha \sqrt{k^0} m_q} \right]{\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}, $
$\tag{C18} {\cal M}_{{\rm PV},A}(\Lambda(1800)) = \left[ -\frac{2 {\rm i} \sqrt{6} \alpha ^4 \beta ^3 G_F V_{{ud}} V_{{us}}}{\pi ^{3/2} \left(\alpha ^2+\beta ^2\right)^{3/2} m_q} \right] S_F(\Lambda(1800)) \left[ \frac{{\rm i} {\mathsf{e}} k^2 }{144 \pi ^{3/2} \alpha \sqrt{k^0} m_q} \right]{\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}, $
$\tag{C19} {\cal M}_{{\rm PV},A}(\Lambda(1450)) = \left[ -\frac{{\rm i} \sqrt{6} \alpha ^4 \beta ^3 G_F V_{{ud}} V_{{us}}}{\pi ^{3/2} \left(\alpha ^2+\beta ^2\right)^{3/2} m_q} \right] S_F(\Lambda(1450)) \left[ \frac{{\rm i} {\mathsf{e}} \left(2 \alpha ^2-k^2\right)}{48 \pi ^{3/2} \alpha \sqrt{k^0} m_q}\right]{\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}. $
$\tag{C20} {\cal M}_{{\rm PC},B}(\Xi^0) = {\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \beta ^2}}\left[\frac{ {\mathsf{e}} k }{6 \sqrt{2} \pi ^{3/2} \sqrt{k^0} m_q} \right] S_F(\Xi^0) \left[ \frac{2 \sqrt{3} \alpha ^3 \beta ^3 G_F V_{{ud}} V_{{us}}}{\pi ^{3/2} \left(\alpha ^2+\beta ^2\right)^{3/2}} \right], $
$\tag{C21} {\cal M}_{{\rm PV},B}(\Xi(1620)) = {\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \beta ^2}}\left[\frac{i {\mathsf{e}} \left(6 \beta ^2-k^2\right)}{72 \pi ^{3/2} \beta \sqrt{k^0} m_q} \right] S_F(\Xi(1620)) \left[ \frac{i \sqrt{6} \alpha ^3 \beta ^4 G_F V_{{ud}} V_{{us}}}{\pi ^{3/2} \left(\alpha ^2+\beta ^2\right)^{3/2} m_q} \right], $
$\tag{C22} {\cal M}_{{\rm PV},B}(\Xi(1690)) = {\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \beta ^2}}\left[ -\frac{{\rm i} {\mathsf{e}} k^2 }{72 \pi ^{3/2} \beta \sqrt{k^0} m_q} \right] S_F(\Xi(1690)) \left[ \frac{2 {\rm i} \sqrt{6} \alpha ^3 \beta ^4 G_F V_{{ud}} V_{{us}}}{\pi ^{3/2} \left(\alpha ^2+\beta ^2\right)^{3/2} m_q} \right]. $
$ \Xi^0\to\Sigma^0\gamma $
$\tag{C23} {\cal M}_{{\rm PC},A}(\Lambda) = \left[ \frac{2 \sqrt{3} \alpha ^3 \beta ^3 G_F V_{{ud}} V_{{us}}}{\pi ^{3/2} \left(\alpha ^2+\beta ^2\right)^{3/2}} \right] S_F(\Lambda) \left[ -\frac{ {\mathsf{e}} k }{4 \sqrt{6} \pi ^{3/2} \sqrt{k^0} m_q} \right]{\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}, $
$\tag{C24} {\cal M}_{{\rm PV},A}(\Lambda(1670)) = \left[ -\frac{{\rm i} \sqrt{6} \alpha ^4 \beta ^3 G_F V_{{ud}} V_{{us}}}{\pi ^{3/2} \left(\alpha ^2+\beta ^2\right)^{3/2} m_q} \right] S_F(\Lambda(1670)) \left[ \frac{{\rm i} {\mathsf{e}} \left(6 \alpha ^2-k^2\right)}{48 \sqrt{3} \pi ^{3/2} \alpha \sqrt{k^0} m_q} \right]{\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}, $
$\tag{C25} {\cal M}_{{\rm PV},A}(\Lambda(1800)) = \left[ -\frac{2 {\rm i} \sqrt{6} \alpha ^4 \beta ^3 G_F V_{{ud}} V_{{us}}}{\pi ^{3/2} \left(\alpha ^2+\beta ^2\right)^{3/2} m_q} \right] S_F(\Lambda(1800)) \left[ -\frac{{\rm i} {\mathsf{e}} k^2 }{48 \sqrt{3} \pi ^{3/2} \alpha \sqrt{k^0} m_q} \right] {\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}, $
$\tag{C26} {\cal M}_{{\rm PV},A}(\Lambda(1450)) = \left[ -\frac{{\rm i} \sqrt{6} \alpha ^4 \beta ^3 G_F V_{{ud}} V_{{us}}}{\pi ^{3/2} \left(\alpha ^2+\beta ^2\right)^{3/2} m_q} \right] S_F(\Lambda(1450)) \left[ \frac{{\rm i} {\mathsf{e}} \left(2 \alpha ^2-k^2\right)}{16 \sqrt{3} \pi ^{3/2} \alpha \sqrt{k^0} m_q} \right] {\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}. $
$ \Sigma^0\to n \gamma $
$\tag{C27} {\cal M}_{{\rm PC},A}(n) = \left[ \frac{3 \alpha ^3 G_F V_{{ud}} V_{{us}}}{2 \sqrt{2} \pi ^{3/2}} \right] S_F(n) \left[ \frac{ {\mathsf{e}} k }{6 \sqrt{2} \pi ^{3/2} \sqrt{k^0} m_q} \right] {\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}, $
$\tag{C28} {\cal M}_{{\rm PV},A}(N(1535)) = \left[ -\frac{3 {\rm i} \alpha ^4 G_F V_{{ud}} V_{{us}}}{4 \pi ^{3/2} m_q} \right] S_F(N(1535)) \left[ -\frac{{\rm i} {\mathsf{e}} \left(6 \alpha ^2-k^2\right)}{72 \pi ^{3/2} \alpha \sqrt{k^0} m_q} \right] {\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}, $
$\tag{C29} {\cal M}_{{\rm PV},A}(N(1650)) = \left[ -\frac{3 {\rm i} \alpha ^4 G_F V_{{ud}} V_{{us}}}{2 \pi ^{3/2} m_q} \right] S_F(N(1650)) \left[ \frac{{\rm i} {\mathsf{e}} k^2 }{72 \pi ^{3/2} \alpha \sqrt{k^0} m_q} \right] {\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}. $
$\tag{C30} {\cal M}_{{\rm PC},B}(\Lambda) = {\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}\left[ -\frac{ {\mathsf{e}} k }{4 \sqrt{6} \pi ^{3/2} \sqrt{k^0} m_q} \right] S_F(\Lambda) \left[-\frac{\sqrt{\frac{3}{2}} \alpha ^3 G_F V_{{ud}} V_{{us}}}{2 \pi ^{3/2}} \right], $
$\tag{C31} {\cal M}_{{\rm PC},B}(\Sigma^0) = {\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}\left[ -\frac{ {\mathsf{e}} k }{12 \sqrt{2} \pi ^{3/2} \sqrt{k^0} m_q}\right] S_F(\Sigma^0) \left[\frac{3 \alpha ^3 G_F V_{{ud}} V_{{us}}}{2 \sqrt{2} \pi ^{3/2}} \right], $
$\tag{C32} {\cal M}_{{\rm PV},B}(\Lambda(1670)) = {\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}\left[ -\frac{{\rm i} {\mathsf{e}} \left(6 \alpha ^2-k^2\right)}{48 \sqrt{3} \pi ^{3/2} \alpha \sqrt{k^0} m_q} \right] S_F(\Lambda(1670)) \left[ -\frac{{\rm i} \sqrt{3} \alpha ^4 G_F V_{{ud}} V_{{us}}}{4 \pi ^{3/2} m_q} \right], $
$\tag{C33} {\cal M}_{{\rm PV},B}(\Lambda(1800)) = {\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}\left[ \frac{{\rm i} {\mathsf{e}} k^2 }{48 \sqrt{3} \pi ^{3/2} \alpha \sqrt{k^0} m_q} \right] S_F(\Lambda(1800)) \left[ -\frac{{\rm i} \sqrt{3} \alpha ^4 G_F V_{{ud}} V_{{us}}}{2 \pi ^{3/2} m_q} \right], $
$\tag{C34} {\cal M}_{{\rm PV},B}(\Lambda(1450)) = {\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}\left[ -\frac{{\rm i} {\mathsf{e}} \left(2 \alpha ^2-k^2\right)}{16 \sqrt{3} \pi ^{3/2} \alpha \sqrt{k^0} m_q} \right] S_F(\Lambda(1450)) \left[ \frac{{\rm i} \sqrt{3} \alpha ^4 G_F V_{{ud}} V_{{us}}}{2 \pi ^{3/2} m_q} \right], $
$\tag{C35} {\cal M}_{{\rm PV},B}(\Sigma(1620)) = {\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}\left[ -\frac{{\rm i} {\mathsf{e}} \left(6 \alpha ^2-k^2\right)}{144 \pi ^{3/2} \alpha \sqrt{k^0} m_q} \right] S_F(\Sigma(1620)) \left[ \frac{3 {\rm i} \alpha ^4 G_F V_{{ud}} V_{{us}}}{4 \pi ^{3/2} m_q} \right], $
$\tag{C36} {\cal M}_{{\rm PV},B}(\Sigma(1750)) = {\rm e}^{-\genfrac{}{}{}{1}{k^2}{6 \alpha ^2}}\left[ \frac{{\rm i} {\mathsf{e}} k^2 }{144 \pi ^{3/2} \alpha \sqrt{k^0} m_q} \right] S_F(\Sigma(1750)) \left[ \frac{3 {\rm i} \alpha ^4 G_F V_{{ud}} V_{{us}}}{2 \pi ^{3/2} m_q} \right]. $

相关话题/Hyperon radiative deca

婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄С閸楁娊寮婚悢铏圭<闁靛繒濮甸悘鍫㈢磼閻愵剙鍔ゆい顓犲厴瀵鎮㈤悡搴n槶閻熸粌绻掗弫顔尖槈閵忥紕鍘介梺瑙勫劤椤曨參鍩ユ径瀣ㄤ簻妞ゆ挾鍋為崑銉╂煙閾忣偆鐭婃い鏇樺劚铻栧┑鐘辩窔閸嬫姊虹拠鈥虫灍闁挎洏鍨介獮鍐煛閸愵亞锛滃┑鈽嗗灣閸樠呮暜妤e啯鈷掑ù锝嚽归ˉ蹇涙煕鐎n亝鍣介柟骞垮灲瀹曠喖顢涘顓熜氶梻浣瑰缁诲倿藝娴煎瓨鍋傛繛鍡樺灍閸嬫挾鎲撮崟顒傤槬濠电偛鐪伴崐婵嬪春閵忋倕閱囬柍鍨涙櫅娴滈箖鎮峰▎蹇擃仾缂佲偓閸愵亞纾兼い鏃囧亹鏁堝Δ鐘靛仜缁绘ê鐣烽妸鈺佺骇闁瑰鍋涚粊鑸典繆閻愵亜鈧牠骞愭ィ鍐ㄧ獥闁逛即鍋婇弫濠囩叓閸ャ劎鈯曢柍閿嬪浮閺屾稓浠﹂幑鎰棟闂侀€炲苯澧柛銏$叀濠€渚€姊洪幖鐐插姶闁诲繑绋戦埥澶愬閻樻妲规俊鐐€栭崝鎴﹀磹閺嵮€鏋旈柟顖嗗本瀵岄梺闈涚墕濡宕告繝鍥ㄧ厱閻庯綆鍋呯亸浼存煏閸パ冾伃妞ゃ垺娲熼弫鎰板炊閳哄啯婢栨繝鐢靛Х椤d粙宕滃┑瀣畺闁稿瞼鍋涢弰銉╂煃閳轰礁鏆炲┑顖涙尦閺屟嗙疀閺囩喎娈屽Δ鐘靛亹閸嬫挸鈹戦悩娈挎殰缂佽鲸娲熷畷鎴﹀箣閿曗偓绾惧綊鏌″搴″箺闁稿顑嗘穱濠囧Χ閸涱喖娅ら梺绋款儜缁绘繈寮婚弴銏犻唶婵犻潧娲ㄩ埞娑欑節濞堝灝鏋熷┑鐐诧躬瀵鍩勯崘銊х獮婵犵數濮寸€氼參鎯冮幋婵冩斀闁斥晛鍟徊濠氭煟濡や焦宕岀€殿喖顭烽弫鎾绘偐閼碱剦妲伴梻浣瑰缁诲倿骞婂鍡欑彾闁哄洨鍠撶弧鈧梺姹囧灲濞佳嗏叿闂備焦鎮堕崝宥咁渻娴犲鏋侀柛鎰靛枛椤懘鏌eΟ铏逛粵婵炲牓绠栧娲川婵犲嫮鐣甸柣搴㈠嚬閸o絽顕i幎钘夊耿婵炴垶鐟ч崢閬嶆⒑閸濆嫭鍌ㄩ柛鏂挎湰閺呭爼顢欓悾宀€顔曢梺鍓插亝缁诲嫰鎮為崨濠冨弿濠电姴鍟妵婵堚偓瑙勬磸閸斿秶鎹㈠┑瀣<婵絾瀵уú妯兼崲濞戞埃鍋撳☉娆嬬細闁活厼鐭傞弻娑氣偓锝冨妼閳ь剚娲熼幃鎯х暋閹冲﹥妞介、鏃堝礋椤撴繄绀堥梻鍌欑閹碱偊宕愰崼鏇炵?闁哄被鍎荤紞鏍偓骞垮劚椤︿即鍩涢幋锔藉仭婵炲棗绻愰鈺呮煕閺傝鈧繈寮婚敐鍡楃疇闂佸憡鏌ㄧ€涒晝绮嬪澶婄濞撴艾娲﹂弲婵嬫⒑闂堟稓澧曟繛灞傚姂閺佸秴饪伴崘锝嗘杸闁圭儤濞婂畷鎰板即閵忕姷鏌堝銈嗗姧缁犳垿宕欓悩缁樼厸闁告劑鍔庢晶娑㈡煟閹惧鎳冩い顏勫暟閳ь剨缍嗘禍顏堫敁濡ゅ懏鐓冮悹鍥皺婢ф稒銇勯妸锝呭姦闁诡喗鐟╁鍫曞箣閻樿京绀夊┑掳鍊楁慨鐑藉磻濞戞◤娲敇閳ь兘鍋撴担绯曟瀻闁规儳鍘栫槐鍫曟⒑閸涘﹥澶勫ù婊愮秮瀹曟椽宕ㄧ€涙ǚ鎷婚梺绋挎湰閼归箖鍩€椤掑嫷妫戠紒顔肩墛缁楃喖鍩€椤掑嫮宓侀柡宥庡弾閺佸啴鏌ㄩ弴妤€浜剧紒鐐劤濠€閬嶅箟閹间焦鍋嬮柛顐g箘閻熸煡姊虹粙娆惧劀缂佺粯绻傞锝夊醇閺囩偤鍞跺┑顔斤供閸樹粙鎮甸弴鐑嗘富闁靛牆楠告禍婵囩箾閼碱剙鏋涚€殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹
2婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄У婢瑰棛妲愰幒鏂哄亾閿濆骸浜剧紒鎵佹櫆缁绘稑顔忛鑽ょ泿闁诡垳鍠栧娲礃閸欏鍎撳銈嗗灥濞层劎鍒掑▎鎺旂杸婵炴垶鐟㈤幏娲⒑闂堚晛鐦滈柛妯恒偢瀹曟繄鈧綆鍋佹禍婊堟煏婵炲灝鍔滄い銉e灮閳ь剝顫夊ú婊堝极婵犳艾鏄ラ柍褜鍓氶妵鍕箳閹存繍浠鹃梺鎶芥敱閸ㄥ潡寮诲☉妯锋婵鐗嗘导鎰節濞堝灝娅欑紒鐘冲灴濠€浣糕攽閻樿宸ラ柟鍐插缁傛帗娼忛埞鎯т壕閻熸瑥瀚粈鍐╀繆閻愭壆鐭欑€殿噮鍋婇獮妯肩磼濡桨姹楅柣搴ゎ潐濞叉牕煤閵堝宓佹俊銈呮噺閳锋帒銆掑锝呬壕濠电偘鍖犻崨顔煎簥闂佸壊鍋侀崕杈╁瑜版帗鐓涚€规搩鍠掗崑鎾翠繆閹绘帞澧㈤柟鍙夋倐瀵噣宕煎┑濠冩啺闂備焦瀵х换鍌炈囬鐐村€挎繛宸簼閻撴洟鏌熼弶鍨倎缂併劌銈搁弻娑㈡晲鎼粹€崇缂備浇椴搁幐濠氬箯閸涙潙绀堥柟缁樺笒婢瑰牓姊绘担鐟邦嚋婵炶闄勭粋宥夘敂閸曢潧娈ㄥ銈嗗姧缁犳垹澹曟總鍛婄厽闁归偊鍘界紞鎴炵箾閸喎濮嶆慨濠冩そ瀹曟﹢宕f径瀣壍闂備礁鎽滄慨鐢告嚌閹冪カ闂備礁鎲¢〃鍫ュ磻閹版澘缁╁ù鐘差儐閻撳啴鏌﹀Ο渚Ч妞ゃ儲绮岄湁婵犲﹤鎳庢禒婊勩亜椤撯€冲姷妞わ箒娅曢妵鍕Ω閵夘垵鍚悗娈垮櫘閸嬪棝鍩€椤掑﹦绉甸柛鎾寸〒婢规洟鎸婃竟婵嗙秺閺佹劖寰勭€n偊鏁┑鐘愁問閸犳牠宕愰幖浣圭畳婵犵數濮撮敃銈呂涘Δ鍛亗闁归偊鍎惔銊ョ倞鐟滄繈宕濋悢鍏肩厓鐟滄粓宕滃杈╃煓闁圭儤娲橀幊灞解攽閻樻剚鍟忛柛銊ゅ嵆椤㈡岸顢橀悩鎰佹綗闂佸湱鍎ら崹鐔肺i崼鐔稿弿婵°倐鍋撴俊顐n殜瀹曟粍娼忛埡鍐紳闂佺ǹ鏈銊ョ摥闂備焦瀵уú蹇涘磿閼碱剛鐭氶弶鍫涘妿缁♀偓闂佹悶鍎撮崺鏍疾濠靛鈷戦梻鍫熺〒婢ф洟鏌熷畡閭﹀剶鐎殿喗濞婇、姗€濮€閳锯偓閹锋椽姊洪崨濠冨磩閻忓繑鐟╁畷銏犫槈閵忥紕鍘遍梺闈浨归崕鎶藉春閿濆洠鍋撶憴鍕婵$偘绮欏畷娲焵椤掍降浜滈柟鍝勭Ч濡惧嘲霉濠婂嫮鐭掗柡宀€鍠愬ḿ蹇涘礈瑜忚摫缂備胶铏庨崣鈧柛鈺傜墵婵$敻宕熼娑欐珕闂佸吋绁撮弲婵嬪汲閵堝鈷戦柛婵嗗濠€鎵磼鐎n偄鐏撮柛鈹垮灪閹棃濡堕崶鈺傛緫闂備礁鎼ú銊﹀垔椤撱垹鑸归柛锔诲幘绾句粙鏌涚仦鍓ф噮缂佹劖姊荤槐鎾诲磼濞戞粌顥濋柧鑽ゅ仱閺屾盯寮撮妸銉︾亾婵炲瓨绮嶉悷鈺侇潖缂佹ɑ濯撮柛娑橈工閺嗗牆鈹戦悙棰濆殝缂佺姵鎸搁悾鐑藉閿濆啩姹楅梺鍦劋閸ㄥ綊鏁嶅☉銏♀拺闁革富鍘奸崝瀣亜閵娿儲顥㈤柛鈺傜洴楠炲鏁傞悾灞藉箞婵犵數濞€濞佳兾涘Δ鍜佹晜闁冲搫鎳忛悡鍐喐濠婂牆绀堟繛鍡樺灩缁€濠傗攽閻樺弶鎼愮紒鐘崇墵濮婃椽宕归鍛壉缂傚倸绉村ú顓㈠蓟瀹ュ浼犻柛鏇ㄥ亗缁ㄨ棄鈹戦悙璺轰汗闁哥姴閰i崺鐐哄箣閿旂粯鏅╅柣鐔哥懄鐢偤骞婇幘璇茬厺闁哄倸绨卞Σ鍫ユ煏韫囧ň鍋撻崘鎻掝棗濠电姴鐥夐弶搴撳亾閹版澘纾婚柟鍓х帛閻撳啴鎮峰▎蹇擃仼闁诲繑鎸抽弻鐔碱敊鐟欏嫭鐝氬Δ鐘靛仦閹瑰洭鐛幒妤€骞㈡俊鐐村劤椤ユ岸姊绘担鍝ョШ婵☆偉娉曠划鍫熺瑹閳ь剟寮婚妸鈺佄ч柛娑变簼閺傗偓闂備胶绮摫鐟滄澘鍟村鎼佸Χ閸℃瑧顔曢梺鍓插亝缁酣鎯屽▎鎾寸厸鐎光偓鐎n剛袦濡ょ姷鍋涘ú顓€€佸Δ浣瑰闁告瑥顦辨禍鐐烘⒒閸屾瑧鍔嶉柟顔肩埣瀹曟劕螖閸涱厾鐛ラ梺褰掑亰閸犳鐣烽崣澶岀瘈闂傚牊渚楅崕蹇涙煟閹烘垹浠涢柕鍥у楠炴帡骞嬪┑鎰偅闂備胶绮敮妤€顪冩禒瀣摕婵炴垯鍨圭粻娑欍亜閺嶃劎銆掗柕鍡楋躬濮婂搫煤鐠囨彃绠哄銈冨妼閹虫﹢宕洪悙鍝勭闁挎梻绮弲鈺冪磽娴e湱鈽夋い鎴濇閹箖宕奸弴鐔叉嫼缂傚倷鐒﹂敃鈺佲枔閺冨倻纾肩紓浣姑粭褔鏌涢幒鎾虫诞鐎规洖銈搁幃銏☆槹鎼达絿宓侀梻浣筋嚙閸戠晫绱為崱娑樼婵炴垯鍩勯弫濠囨煛閸ャ儱鐏柍閿嬪灴閺岋綁鎮㈤悡搴濆枈闂佹悶鍊楅崰搴ㄥ煘閹达富鏁婇柣鎰靛墯濮e牓鎮楀▓鍨灍濠电偛锕畷娲晸閻樿尙锛滃┑鐘诧工閹峰宕惔銊︹拺闁煎鍊曞瓭濠电偛锛忛崶褏顦板銈嗗姦閸嬪倻妲愰敓锟�547闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗霉閿濆浜ら柤鏉挎健濮婃椽顢楅埀顒傜矓閺屻儱鐒垫い鎺嗗亾闁稿﹤婀辩划瀣箳閺傚搫浜鹃柨婵嗙凹缁ㄤ粙鏌ㄥ☉娆戞创婵﹥妞介幃鐑藉级鎼存挻瀵栫紓鍌欑贰閸n噣宕归崼鏇炴槬婵炴垯鍨圭粻铏繆閵堝嫯鍏岄柛姗€浜跺娲传閸曨剙顦╁銈冨妼濡鍩㈠澶婂窛閻庢稒岣块崢浠嬫椤愩垺绁紒鎻掋偢閺屽洭顢涢悙瀵稿幐閻庡厜鍋撻悗锝庡墮閸╁矂鏌х紒妯煎⒌闁诡喗顨婇弫鎰償閳ヨ尙鐩庢俊鐐€曟蹇涘箯閿燂拷4婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄У婢瑰棛妲愰幒鏂哄亾閿濆骸浜剧紒鎵佹櫆缁绘稑顔忛鑽ゅ嚬闂佸搫鎳忛悡锟犲蓟濞戙垹唯闁靛繆鍓濋悵鏍ь渻閵堝繐鐦滈柛銊ㄦ硾椤繐煤椤忓懎浠梻渚囧弿缁犳垵鈻撻崼鏇熲拺缂佸顑欓崕鎴︽煕閻樺磭澧电€规洘妞芥慨鈧柕鍫濇噽閻嫰姊洪柅鐐茶嫰婢ф潙鈹戦敍鍕毈鐎规洜鍠栭、娆撳礈瑜庡鎴︽⒒娴g瓔娼愰柛搴㈠▕椤㈡岸顢橀埗鍝勬喘閺屽棗顓奸崱蹇斿缂傚倷绀侀鍡涱敄濞嗘挸纾块柟鎵閻撴瑩鏌i悢鍝勵暭闁瑰吋鍔欓弻锝夋晲閸涱厽些濡炪値鍋呯划鎾诲春閳ь剚銇勯幒鎴濐仴闁逞屽厸缁舵艾顕i鈧畷鐓庘攽閸℃埃鍋撻崹顔规斀閹烘娊宕愰弴銏犵柈妞ゆ劧濡囧畵渚€鏌熼幍顔碱暭闁抽攱甯¢弻娑氫沪閸撗勫櫘濡炪倧璁g粻鎾诲蓟濞戞﹩娼╂い鎺戭槸閸撴澘顪冮妶搴″箹闁诲繑绻堥敐鐐测堪閸繄鍔﹀銈嗗坊閸嬫捇鏌i敐鍥у幋妞ゃ垺鐩幃婊堝幢濡粯鐝栭梻鍌欑窔濞佳呮崲閸儱鍨傞柛婵嗗閺嬫柨螖閿濆懎鏆為柍閿嬪灴濮婂宕奸悢鍓佺箒濠碉紕瀚忛崘锝嗘杸闂佺偨鍎村▍鏇㈠窗濮椻偓閺屾盯鍩為崹顔句紙閻庢鍣崳锝呯暦婵傚憡鍋勯柛婵嗗缁犮儵姊婚崒娆掑厡妞ゃ垹锕敐鐐村緞閹邦剛顦梺鍝勬储閸ㄦ椽宕曞鍡欑鐎瑰壊鍠曠花濂告煟閹捐泛鏋涢柡宀嬬秮瀵噣宕奸悢鍛婃闂佽崵濮甸崝褏妲愰弴鐘愁潟闁圭儤鎸荤紞鍥煏婵炲灝鍔ら柣鐔哥叀閹宕归锝囧嚒闁诲孩鍑归崳锝夊春閳ь剚銇勯幒鎴姛缂佸娼ч湁婵犲﹤鎳庢禒锔剧磼閸屾稑娴柟顔瑰墲閹柨螣缂佹ɑ婢戦梻鍌欒兌缁垶宕濆Ο琛℃灃婵炴垶纰嶉~鏇㈡煥閺囩偛鈧綊鎮¢弴鐔剁箚闁靛牆鎳庨顏堟煟濠垫劒绨婚懣鎰版煕閵夋垵绉存慨娑㈡⒑闁偛鑻晶顖滅磼鐎n偄绗╅柟绛嬪亝缁绘繂鈻撻崹顔句画闂佺懓鎲℃繛濠囩嵁閸愩劎鏆嬮柟浣冩珪閻庤鈹戦悙鍙夘棡闁搞劎鏁诲畷铏逛沪閸撗咁啎闁诲孩绋掑玻鍧楁儗閹烘梻纾奸柣妯虹-婢х數鈧鍠涢褔鍩ユ径鎰潊闁绘ḿ鏁搁弶鎼佹⒒娴e懙鍦崲閹版澘绠烘繝濠傜墕閺嬩線鏌″搴″箺闁抽攱鍨圭槐鎺楊敍濞戞瑧顦ㄥ┑鐐叉噺濮婅崵妲愰幒鏃傜<婵☆垵鍋愰悿鍕倵濞堝灝鏋︽い鏇嗗洤鐓″璺号堥崼顏堟煕濞戝崬鐏℃繝銏″灴濮婄粯鎷呴悷閭﹀殝缂備浇顕ч崐鍧楃嵁婵犲啯鍎熸い顓熷笧缁嬪繘姊洪崘鍙夋儓闁瑰啿绻橀崺娑㈠箣閿旂晫鍘卞┑鐐村灦閿曨偊宕濋悢鍏肩厵闁惧浚鍋呯粈鍫㈢磼鏉堛劌绗氭繛鐓庣箻婵℃悂鏁傜紒銏⌒у┑掳鍊楁慨鐑藉磻濞戞碍宕叉慨妞诲亾妤犵偛鍟撮崺锟犲礃閳轰胶褰撮梻浣藉亹閳峰牓宕滈敃鍌氱柈閻庯綆鍠楅埛鎺懨归敐鍛暈闁哥喓鍋涢妴鎺戭潩椤撗勭杹閻庤娲栫紞濠囩嵁鎼淬劌绀堥柛顭戝枟閸犳﹢鏌涢埡瀣瘈鐎规洏鍔戦、娆戞喆閸曨偒浼栭梻鍌欐祰瀹曠敻宕戦悙鐢电煓闁割偁鍎遍悞鍨亜閹哄棗浜鹃梺鍛娚戦悧妤冪博閻旂厧鍗抽柕蹇婃閹风粯绻涙潏鍓у埌闁硅绱曢幏褰掓晸閻樻彃鍤戝銈呯箰濡稓澹曟總鍛婄厪濠电偛鐏濇俊鐓幟瑰⿰鍐╄础缂佽鲸甯¢、姘跺川椤撶偟顔戦柣搴$仛濠㈡ḿ鈧矮鍗抽悰顕€宕堕澶嬫櫍闂佺粯蓱瑜板啰绮绘繝姘拻闁稿本鐟чˇ锕傛煙绾板崬浜為柍褜鍓氶崙褰掑礈濞戙垹绠查柕蹇嬪€曠粻鎶芥煛閸愩劍鎼愮亸蹇涙⒒娴e憡璐¢弸顏嗙磼閵娧冨妺缂佸倸绉撮オ浼村醇閻斿搫骞愰梻浣规偠閸庢椽鎮℃笟鈧、鏃堝醇閻斿皝鍋撻崼鏇熺厾缁炬澘宕崢鎾煕鐎n偅灏柍缁樻崌瀹曞綊顢欓悾灞借拫闂傚倷鑳舵灙妞ゆ垵鎳橀弫鍐Χ婢舵ɑ鏅梺鎸庣箓濞诧箑鐣锋径鎰仩婵炴垶甯掓晶鏌ユ煟鎼粹槅鐓兼慨濠呮閹风娀鍨惧畷鍥e亾婵犳碍鐓曢煫鍥ч鐎氬酣鏌涙繝鍐畵妞ゎ偄绻掔槐鎺懳熺拠宸偓鎾绘⒑閼姐倕鏋涢柛瀣躬瀹曠數鈧綆鍓涚壕钘壝归敐鍛棌闁稿孩鍔欓弻娑㈠Ω閵娿儱濮峰┑鈽嗗亞閸犲酣鈥旈崘顔嘉ч柛鈩兠拕濂告⒑閹肩偛濡肩紓宥咃躬楠炲啴鎮欓崫鍕€銈嗗姉婵磭鑺辨繝姘拺闁革富鍘奸崝瀣煕閳轰緤韬€殿喓鍔嶇换婵嗩潩椤撶偐鍋撻崹顐e弿婵☆垳鍘ф禍楣冩倵濮樼偓瀚�40缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛闂佽姤蓱缁诲啴濡甸崟顖氬唨闁靛ě鍛帓闂備焦妞块崢浠嬪箰妤e啫鐒垫い鎺戝枤濞兼劖绻涢崣澶屽ⅹ閻撱倝鏌曟繛褍鎳嶇粭澶愭⒑閸濆嫬鏆欓柣妤€锕幃鈥斥枎閹惧鍘靛銈嗙墪濡鎳熼姘f灁闁割偅娲橀埛鎴犫偓瑙勬礀濞层劎鏁☉娆愬弿濠电姴鍊荤粔鐑橆殽閻愯尙澧﹀┑鈩冩倐婵$兘顢欓挊澶岀处闂傚倷绶氶埀顒傚仜閼活垱鏅堕悧鍫㈢闁瑰濮甸弳顒侇殽閻愬澧柟宄版嚇瀹曘劍绻濋崟銊ヤ壕妞ゆ帒瀚悡鐔煎箹閹碱厼鐏g紒澶愭涧闇夋繝濠傚暟閸╋綁鏌熼鍝勭伈鐎规洖宕埥澶娾枎韫囧骸瀵查梻鍌欑劍閹爼宕曢懡銈呯筏婵炲樊浜滅壕濠氭煙閹规劦鍤欑紒鈧崒鐐寸厱婵炴垵宕鐐繆椤愶絿鐭岀紒杈ㄦ崌瀹曟帒顫濋钘変壕鐎瑰嫭鍣磋ぐ鎺戠倞闁靛⿵绲肩划鎾绘⒑瑜版帗锛熼柣鎺炵畵瀹曟垿鏁撻悩宕囧帗闂佸憡绻傜€氼參宕宠ぐ鎺撶參闁告劦浜滈弸鏃堟煃瑜滈崜娆撳储濠婂牆纾婚柟鍓х帛閻撴洟鏌¢崶銉ュ濞存粎鍋為妵鍕箻鐎涙ǜ浠㈠┑顔硷攻濡炰粙鐛幇顓熷劅闁挎繂娲ㄩ弳銈嗙節閻㈤潧浠╅悘蹇旂懄缁绘盯鍩€椤掑倵鍋撶憴鍕闁搞劌娼¢悰顔嘉熼懖鈺冿紲濠碘槅鍨甸褔宕濋幒妤佲拺闁煎鍊曢弸鎴︽煟閻旀潙鍔ら柍褜鍓氶崙褰掑礈閻旈鏆﹂柕蹇ョ祷娴滃綊鏌熼悜妯诲皑闁归攱妞藉娲川婵犲嫮鐣甸柣搴㈠嚬閸樺ジ顢欒箛鎾斀閻庯綆鍋嗛崢閬嶆煙閸忚偐鏆橀柛銊ョ秺閹﹢鍩¢崒娆戠畾闂佸憡鐟ラˇ顖涙叏閸ヮ煈娈版い蹇撳暙瀹撳棛鈧娲栭妶鎼佸箖閵忋倕浼犻柛鏇ㄥ亜椤╊剟姊婚崒姘偓鐑芥嚄閸撲焦鍏滈柛顐f礀缁€鍫熺節闂堟稒鐏╂繛宸簻閸愨偓濡炪倖鍔戦崕鍗炵毈缂傚倸鍊风欢锟犲磻閸曨厸鍋撳▓鍨⒋婵﹤顭峰畷鎺戭潩椤戣棄浜惧瀣椤愯姤鎱ㄥ鍡楀幊缂傚倹姘ㄩ幉绋款吋閸澀缃曢梻鍌欑閹碱偊宕锕€纾瑰┑鐘崇閸庢鏌涢埄鍐炬▍鐟滅増甯楅弲鏌ユ煕椤愵偄浜滄繛鍫熺懇濮婃椽鎳¢妶鍛€鹃柣搴㈣壘閻楁挸顕i鈧畷鐓庘攽閸℃瑧宕哄┑锛勫亼閸婃牕螞娓氣偓閿濈偞寰勭仦绋夸壕闁割煈鍋嗘晶鍨叏婵犲嫮甯涢柟宄版嚇瀹曘劍绻濋崒娑欑暭婵犵數鍋為幐鑽ゅ枈瀹ュ鈧啯绻濋崒婊勬闂侀潧绻堥崐鏍偓鐢靛Т椤法鎹勯悜姗嗘!闂佽瀛╁浠嬪箖濡ゅ懎绀傚璺猴梗婢规洟姊绘担鍛婂暈婵炶绠撳畷婊冣槈閵忕姴鍋嶉梻渚囧墮缁夌敻鍩涢幋锔界厱婵犻潧妫楅鈺呮煛閸℃瑥浠遍柡宀€鍠撶划娆撳垂椤旇瀵栧┑鐘灱椤煤閻旇偐宓侀柟閭﹀幗閸庣喐绻涢幋鐑嗘畼闁烩晛閰e缁樼瑹閳ь剙岣胯椤ㄣ儴绠涢弴鐕佹綗闂佸搫娲犻崑鎾诲焵椤掆偓閸婂潡骞婇悩娲绘晢闁稿本绮g槐鏌ユ⒒娴e憡鎯堥柛鐕佸亰瀹曟劙骞栨担绋垮殤濠电偞鍨堕悷锝嗙濠婂牊鐓忛煫鍥э工婢ц尙绱掗埀顒傗偓锝庡枟閻撴瑦銇勯弮鍥舵綈婵炲懎锕ラ妵鍕閳╁啰顦伴梺鎸庣箘閸嬨倝銆佸鈧幃婊堝幢濮楀棙锛呭┑鐘垫暩婵兘寮幖浣哥;闁绘ǹ顕х粻鍨亜韫囨挻顥犵紒鈧繝鍥ㄧ厓鐟滄粓宕滃璺何﹂柛鏇ㄥ灱閺佸啴鏌曡箛濠冩珕闁宠鐗撳铏规嫚閳ヨ櫕鐝紓浣虹帛缁诲牆鐣峰ú顏勭劦妞ゆ帊闄嶆禍婊堟煙閻戞ê鐏ユい蹇d邯閺屽秹鏌ㄧ€n亝璇為梺鍝勬湰缁嬫挻绂掗敃鍌氱闁归偊鍓﹀Λ鐔兼⒒娓氣偓閳ь剛鍋涢懟顖炲储閸濄儳纾兼い鏃傛櫕閹冲洭鏌曢崱鏇狀槮闁宠閰i獮鍥敊閸撗勵潓闂傚倷绀侀幉鈥趁洪敃鍌氱闁挎洍鍋撳畝锝呮健閹垽宕楃亸鏍ㄥ闂備礁鎲¢幐鏄忋亹閸愨晝顩叉繝闈涙川缁犻箖鏌涘▎蹇fШ濠⒀嗕含缁辨帡顢欓崹顔兼優缂備浇椴哥敮鎺曠亽闂傚倵鍋撻柟閭﹀枤濞夊潡姊婚崒娆愮グ妞ゎ偄顦悾宄拔熺悰鈩冪亙濠电偞鍨崺鍕极娴h 鍋撻崗澶婁壕闂佸憡娲﹂崜娑㈠储閸涘﹦绠鹃弶鍫濆⒔閸掓澘顭块悷甯含鐎规洘娲濈粻娑㈠棘鐠佸磭鐩庢俊鐐€栭幐鎾礈濠靛牊鍏滈柛顐f礃閻撴瑥顪冪€n亪顎楅柍璇茬墦閺屾盯濡搁埡鍐毇閻庤娲橀〃濠傜暦閵娾晩鏁嶆繛鎴炨缚濡棝姊婚崒姘偓鎼佸磹妞嬪孩顐芥慨妯挎硾閻掑灚銇勯幒鎴濃偓鍛婄濠婂牊鐓犳繛鑼额嚙閻忥妇鈧娲忛崹浠嬬嵁閺嶃劍濯撮柛锔诲幖楠炴﹢姊绘担鍛婂暈闁告梹岣挎禍绋库枎閹捐櫕妲梺鎸庣箓閹冲寮ㄦ禒瀣叆婵炴垶锚椤忣亪鏌¢崱鈺佸⒋闁哄瞼鍠栭、娆撴偩鐏炴儳娅氶柣搴㈩問閸犳牠鎮ユ總鍝ュ祦閻庯綆鍣弫鍥煟閹邦厽鍎楅柛鐔锋湰缁绘繈鎮介棃娴讹絾銇勯弮鈧悧鐘茬暦閺夎鏃堝川椤旇姤鐝栭梻浣稿暱閹碱偊骞婃惔锝囩焼闁稿本绋撶粻楣冩煙鐎电ǹ浠фい锝呭级閵囧嫰顢曢敐鍡欘槹闂佸搫琚崝宀勫煘閹达箑骞㈡俊顖濇〃閻ヮ亪鏌i悢鍝ョ煂濠⒀勵殘閺侇喖螖閸涱厾鏌ч梺鍝勮閸庢煡鎮¢弴銏$厓闁宠桨绀侀弳鐔兼煙閸愬弶鍤囬柡宀嬬秮楠炴﹢宕樺ù瀣壕闁归棿璁查埀顒佹瀹曟﹢顢欓崲澹洦鐓曢柟鎵虫櫅婵″灝霉閻樻彃鈷旂紒杈ㄥ浮閹瑩顢楁担鍝勫殥缂傚倷绀侀ˇ顖涙櫠鎼淬劌绀嗛柟鐑橆殔閻撴盯鏌涘☉鍗炴灈濞存粍绮庣槐鎺楁倷椤掆偓椤庢粌顪冪€涙ɑ鍊愮€殿喗褰冮埞鎴犫偓锝庡亐閹锋椽姊婚崒姘卞缂佸鎸婚弲鍫曞即閻旇櫣顔曢柣鐘叉厂閸涱垱娈兼俊銈囧Х閸嬫稑螞濠靛鏋侀柟閭﹀幖缁剁偤鎮楅敍鍗炲椤忓綊姊婚崒娆戭槮婵犫偓鏉堛劎浠氭繝鐢靛仜椤曨參宕楀鈧畷娲Ψ閿曗偓缁剁偤鎮楅敐鍐ㄥ缂併劌顭峰娲箰鎼淬埄姊垮銈嗘肠閸愭儳娈ㄥ銈嗘磵閸嬫捇鏌$仦鍓ф创闁糕晝鍋ら獮鍡氼槺濠㈣娲栭埞鎴︽晬閸曨偂鏉梺绋匡攻閻楁粓寮鈧獮鎺懳旀担瑙勭彇闂備線娼ч敍蹇涘焵椤掑嫬纾婚柟鐐墯濞尖晠鏌i幇闈涘妞ゅ骏鎷�28缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亜顒㈡い鎰矙閺屻劑鎮㈤崫鍕戙垻鐥幑鎰靛殭妞ゎ厼娼¢幊婊堟濞戞鏇㈡⒑鏉炴壆顦︽い鎴濇喘楠炲骞栨担鍝ョ潉闂佸壊鍋侀崹鍦矈閿曞倹鈷戦柛娑橈工婵箓鏌涢悩宕囧⒈缂侇喚绮换婵嗩潩椤撶姴骞堥梻浣筋潐瀹曟ḿ浜稿▎鎴犵幓闁哄啫鐗婇悡鍐煟閻旂ǹ顥嬬紒鐘哄皺缁辨帞绱掑Ο鑲╃杽婵犳鍠掗崑鎾绘⒑閹稿海绠撴俊顐g洴婵℃挳骞囬鈺傛煥铻栧┑鐘辫兌閸戝綊姊洪崷顓€褰掑疮閸ф鍋╃€瑰嫭澹嬮弨浠嬫倵閿濆簼绨荤紒鎰洴閺岋絾鎯旈姀鈶╁鐎光偓閿濆懏鍋ョ€规洏鍨介弻鍡楊吋閸″繑瀚奸梻浣告啞缁诲倻鈧凹鍓熷铏節閸ャ劎鍘遍柣搴秵閸嬪懐浜搁悽鐢电<閺夊牄鍔岀粭褔鏌嶈閸撱劎绱為崱娑樼;闁告侗鍘鹃弳锔锯偓鍏夊亾闁逞屽墴閸┾偓妞ゆ帊绶¢崯蹇涙煕閿濆骸娅嶇€规洘鍨剁换婵嬪炊瑜忛悾鐑樼箾鐎电ǹ孝妞ゆ垵鎳樺畷褰掑磼濞戞牔绨婚梺瑙勫閺呮盯鎮橀埡鍌ゆ闁绘劖娼欓悘瀛樻叏婵犲嫮甯涢柟宄版嚇瀹曘劍绻濋崘銊ュ濠电姷鏁搁崑鐘活敋濠婂懐涓嶉柟杈捐缂嶆牗绻濋棃娑卞剰閹喖姊洪崘鍙夋儓闁稿﹤鎲$粋鎺楊敇閵忊檧鎷洪柣搴℃贡婵敻濡撮崘顔藉仯濞达絿鎳撶徊濠氬础闁秵鐓曟い鎰Т閸旀粓鏌i幘瀵告噰闁哄矉缍侀獮鍥濞戞﹩娼界紓鍌氬€哥粔鐢稿垂閸ф钃熼柣鏃傚帶缁€鍌炴煕韫囨洖甯堕柍褜鍓氶崝娆撳蓟閿涘嫪娌柣锝呯潡閵夛负浜滅憸宀€娆㈠璺鸿摕婵炴垯鍨圭粻濠氭煕濡ゅ啫浠滄い顐㈡搐铻栭柣姗€娼ф禒婊呯磼缂佹﹫鑰跨€殿噮鍋婇獮妯肩磼濡粯顏熼梻浣芥硶閸o箓骞忛敓锟�1130缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛闂佽姤蓱缁诲啴濡甸崟顖氬唨闁靛ě鍛帓闂備焦妞块崢浠嬪箲閸ヮ剙钃熸繛鎴欏灩缁犲鏌ょ喊鍗炲⒒婵″樊鍣e娲箹閻愭彃顬夌紓浣筋嚙閻楁挸顕f繝姘╅柍鍝勫€告禍婊堟⒑閸涘﹦绠撻悗姘嚇婵偓闁靛繈鍨婚敍婊堟⒑闁偛鑻晶瀵糕偓瑙勬礃鐢繝骞冨▎鎴斿亾閻㈢櫥褰掔嵁閸喓绡€闁汇垽娼ф禒锕傛煕閵娿儳鍩i柡浣稿暣椤㈡洟鏁冮埀顒傜磼閳哄啰纾藉ù锝堢柈缂傛氨绱掗悩鑽ょ暫闁哄本鐩、鏇㈡晲閸モ晝鏆梻浣虹帛鐢骞冮崒鐐茶摕闁挎稑瀚▽顏嗙磼鐎n亞浠㈤柍宄邦樀閹宕归锝囧嚒闁诲孩鍑归崳锝夊春閳ь剚銇勯幒鎴姛缂佸娼ч湁婵犲﹤瀚惌鎺楁煥濠靛牆浠辩€规洖鐖奸、妤佹媴閸欏顏归梻鍌氬€风欢锟犲磻閸℃稑纾绘繛鎴欏灪閸ゆ劖銇勯弽銊р姇婵炲懐濮磋灃闁挎繂鎳庨弳鐐烘煟閹惧鎳囬柡灞剧洴楠炲鈻庤箛濠備壕闁哄稁鍋€閸嬫挸顫濋悙顒€顏�