HTML
--> --> --> $ \langle P''(p{''})|\bar q''_1 \sigma^{\mu\nu}q'_1|P'(p{'}) \rangle =i(P^{\mu}q^{\nu}-P^{\nu}q^{\mu})\dfrac{F_T(q^2)}{M'+M''}\,, $ | (1) |
$ \langle S''(p'')|\bar q''_1 \sigma^{\mu\nu}\gamma_5q'_1|P'(p{'}) \rangle = i(P^{\mu}q^{\nu}-P^{\nu}q^{\mu})\dfrac{U_T(q^2)}{M'+M''}\,, $ | (2) |
$ \begin{split} & \langle V(p'',\epsilon) | \bar{q}''_1 \sigma^{\mu\nu} \ q'_1 |P(p') \rangle \\= &-\varepsilon^{\mu\nu\alpha\beta}\left\{ -\epsilon_{\alpha }^*P_\beta T_1(q^2)+\dfrac{M'^2-M''^2}{q^2}\epsilon_{\alpha }^*q_\beta\left[ T_1(q^2)- T_2(q^2)\right] \right.\\&\left.-\dfrac{\epsilon^{ *}\cdot q}{q^2} P_\alpha q_\beta\left[T_1(q^2)- T_2(q^2)-\dfrac{q^2}{M'^2-M''^2} T_3(q^2) \right]\right\}\,,\\[-18pt] \end{split} $ | (3) |
$ \begin{split} &\langle \,^{i}\!A(p'',\epsilon) | \bar{q}''_1 \sigma^{\mu\nu}\gamma_5 \ q'_1 |P(p') \rangle \\= &\varepsilon^{\mu\nu\alpha\beta}\left\{ -\epsilon_{\alpha }^*P_\beta T_1^{(i)}(q^2)+\dfrac{M'^2-M''^2}{q^2}\epsilon_{\alpha }^*q_\beta\left[ T_1^{(i)}(q^2)- T_2^{(i)}(q^2)\right]\right.\\ &\left.-\dfrac{\epsilon^{ *}\cdot q}{q^2} P_\alpha q_\beta\left[T_1^{(i)}(q^2)- T_2^{(i)}(q^2)-\dfrac{q^2}{M'^2-M''^2} T_3^{(i)}(q^2) \right]\right\}\,, \end{split} $ | (4) |
$ \langle V(p'',\epsilon) | \bar{q}''_1 \sigma^{\mu\nu} q_\nu \ q'_1 |P(p') \rangle = \varepsilon^{\mu\nu\alpha\beta}\epsilon_{\nu}^* P_\alpha q_\beta T_1(q^2)\,, $ | (5) |
$ \begin{split} & \langle V(p'',\epsilon) | \bar{q}''_1 \sigma^{\mu\nu}\gamma_5 q_\nu \ q'_1 |P(p') \rangle \\= &-i\left[ (M'^2-M''^2)\epsilon^{\mu *} -\epsilon^*\cdot q P^\mu \right]T_2(q^2)\\ &-i\epsilon^*\cdot q\left[ q^\mu-\dfrac{q^2}{M'^2-M''^2}P^\mu \right]T_3(q^2)\,, \end{split} $ | (6) |
$ \langle \,^{i}\! A(p'',\epsilon) | \bar{q}''_1 \sigma^{\mu\nu}\gamma_5 q_\nu \ q'_1 |P(p') \rangle = -\varepsilon^{\mu\nu\alpha\beta}\epsilon_{\nu}^* P_\alpha q_\beta T_1^{(i)}(q^2)\,, $ | (7) |
$ \begin{split} &\langle \,^{i}\!A(p'',\epsilon) | \bar{q}''_1 \sigma^{\mu\nu} q_\nu \ q'_1 |P(p') \rangle \\= &i\left[ (M'^2-M''^2)\epsilon^{\mu *} -\epsilon^*\cdot q P^\mu \right]T_2^{(i)}(q^2)\\ &+i\epsilon^*\cdot q\left[ q^\mu-\dfrac{q^2}{M'^2-M''^2}P^\mu \right]T_3^{(i)}(q^2)\,, \end{split} $ | (8) |
The main function of LF approaches is to evaluate the current matrix element of the
$ {\cal B} \equiv \langle M''(p'') | \bar{q}''_1 (k_1'')\Gamma q'_1(k_1') |M'(p') \rangle \,,\quad \Gamma = \sigma_{\mu\nu},\,\sigma_{\mu\nu}\gamma_5,\,... $ | (9) |
2
2.1.Theoretical results in SLF QM
The SLF and CLF QMs were fully illustrated in e.g., Refs. [5, 6, 12, 13, 29] and Refs. [9, 59, 60, 84], respectively. One may refer to these literatures for detail. In this study, we assume the same notations and conventions as Refs. [85–87].In the framework of the SLF QM, the matrix element, Eq. (9), can be written as [85–87]
$\begin{split} {\cal B}_{\rm {SLF}} = &\sum\limits_{h'_1,h''_1,h_2} \int \frac{{{\rm{d}}} x \,{{\rm{d}}}^2{ {\bf k}_\bot'}}{(2\pi)^3\,2x} {\psi''}^{*}(x,{\bf k}_{\bot}''){\psi'}(x,{\bf k}_{\bot}') S''^{\dagger}_{h''_1,h_2}(x,{\bf k}_{\bot}'')\,\\& \times C_{h''_1,h'_1}(x,{\bf k}_{\bot}',{\bf k}_{\bot}'')\,S'_{h'_1,h_2}(x,{\bf k}_{\bot}')\,, \\[-16pt] \end{split}$ | (10) |
$ k_1'^+ = xp'^+\,,\;\;\, {\bf k}_{1\bot}' = x{\bf p}_{\bot}'+{\bf k}_{\bot}' \,;\quad k_2^+ = \bar{x}p'^+ \,,\;\;\, {\bf k}_{2\bot} = \bar{x}{\bf p}_{\bot}'-{\bf k}_{\bot}'\,,\\ $ | (11) |
$ k_1''^+ = xp''^+ = xp'^+\,,\quad\, {\bf k}_{1\bot}'' = x{\bf p}_{\bot}''+{ \bf k}_\bot'' = -x{ \bf q}_\bot+{ \bf k}_\bot''\,, $ | (12) |
In Eq. (10),
$ \psi_s(x,{ \bf k}_\bot) = 4\dfrac{\pi^{\frac{3}{4}}}{\beta^{\frac{3}{2}}} \sqrt{ \dfrac{\partial k_z}{\partial x}}\exp\left[ -\dfrac{k_z^2+{ \bf k}_\bot^2}{2\beta^2}\right]\,, $ | (13) |
$ \psi_{p}(x,{ \bf k}_\bot) = \dfrac{\sqrt{2}}{\beta}\psi_s(x,{ \bf k}_\bot) \,, $ | (14) |
$ k_z = \left(x-\dfrac{1}{2}\right)M_0+\dfrac{m_2^2-m_1^2}{2 M_0}\,, $ | (15) |
$ M_0^2 = \dfrac{m_1^2+{\bf k}_{\bot}^2}{x}+\dfrac{m_2^2+{\bf k}_{\bot}^2}{\bar{x}}\,. $ | (16) |
$ S_{h_1,h_2} = \dfrac{\bar{u}(k_1,h_1)\Gamma_M v(k_2,h_2)}{\sqrt{2} \hat{M}_0}\,, $ | (17) |
$\Gamma_P =\gamma_5\,, $ | (18) |
$ \Gamma_V = -\not\!\hat{\epsilon}+\dfrac{\hat{\epsilon}\cdot (k_1-k_2)}{D_{V,{\rm {LF}}}}\,, $ | (19) |
$ \Gamma_S = \dfrac{\hat{M}_0^2}{2\sqrt{3}M_0}\,, $ | (20) |
$ \Gamma_{ ^1\!A} = -\dfrac{1}{D_{1,{\rm {LF}}}}\hat{\epsilon}\cdot (k_1-k_2) \gamma_5\,, $ | (21) |
$ \Gamma_{ ^3\!A} = -\dfrac{\hat{M}_0^2}{2\sqrt{2} M_0}\left[ \not\!\hat{\epsilon}+\dfrac{\hat{\epsilon}\cdot (k_1-k_2)}{D_{3,{\rm {LF}}}} \right]\gamma_5 \,, $ | (22) |
$ \hat{\epsilon}^{\mu}_{\lambda = 0} = \dfrac{1}{M_0}\left(p^+,\dfrac{-M_0^2+{\bf p}_{\bot}^2}{p^+},{\bf p}_{\bot}\right)\,, $ | (23) |
$ \hat{\epsilon}^{\mu}_{\lambda = \pm} = \left(0,\dfrac{2}{p^+}{ \epsilon}_{\bot}\cdot {\bf p}_{\bot}, { \epsilon}_{\bot}\right)\,, \quad { \epsilon}_{\bot}\equiv \mp \dfrac{(1,\pm i)}{\sqrt{2}}\,. $ | (24) |
$ \left[{\cal F}(q^2)\right]_{\rm {SLF}} = \int\dfrac{{{\rm{d}}} x\,{{\rm{d}}}^2{\bf k_\bot'}}{(2\pi)^3\,2x}\dfrac{{\psi''}^*(x,{\bf k''_\bot})\,{\psi'}(x,{\bf k_\bot'})}{2\hat {M}'_0\hat {M}''_0}\,{\cal \widetilde{F}}^{\rm {SLF}}(x,{\bf k}_\bot',q^2)\,. $ | (25) |
$ \widetilde{ F}_T^{\rm {SLF}} = -\dfrac{2(M'+M'')(m'_{1}{\bf k}_{\perp}''\cdot{\bf q}_{\perp}-m''_{1}{\bf k}_{\perp}'\cdot{\bf q}_{\perp} -xm_{2}{\bf q}^{2}_{\bot})}{{\bf q}^{2}_{\bot}}\,, $ | (26) |
$ \widetilde{ U}_T^{\rm{ SLF}} = \dfrac{\hat M''^2_0}{2\sqrt3M''_0}\widetilde{F}_T^{\rm {SLF}}[m''_1\rightarrow -m''_1]\,, $ | (27) |
$ \begin{split} \widetilde{ T}_1^{\rm {SLF}} = &\dfrac{1}{(M'^{2}-M''^{2}+{\bf q}^{2}_{\bot})}\dfrac{1}{x\bar{x}} \bigg\{ 2x(xm_{2}+\bar{x}m'_{1})(xm_{2}+\bar{x}m''_{1})(M'^{2}-M''^{2})+2x^{2}(M'^{2}-M''^{2}){\bf k}_{\bot}'\cdot{\bf k}_{\bot}''\\ &+(xm_{2}+\bar{x}m'_{1})\left[xm_{2}+\bar{x}(x-\bar{x})m'_{1}+2x\bar{x}m_1'' \right]{\bf q}^{2}_{\bot}-[2x^{2}m^{2}_{2}+\bar{x}(x-\bar{x})m'^{2}_{1}-\bar{x}m''^{2}_{1}]{\bf k}_{\bot}'\cdot{\bf q}_{\bot}\\ &+ 2(\bar{x}-x) {\bf k}_{\bot}''\cdot{\bf q}_{\bot} {\bf k}_{\bot}'\cdot{\bf k}_{\bot}'' +(1-2x\bar{x}){\bf k}_{\bot}'\cdot {\bf k}_{\bot}''{\bf q}^{2}_{\bot}+\dfrac{2}{D''_{V}}\Big[ x\bar{x}(M'^{2}-M''^{2}) \left[(m'_{1}+m''_{1}){\bf k}_{\bot}'\cdot {\bf k}_{\bot}'' -(xm_2+\bar{x}m_1'){\bf k}_{\bot}''\cdot{\bf q}_{\bot} \right]\\ &-(m'_{1}+m''_{1})(\bar{x}m_1'+xm_2)(\bar{x}m_1''-xm_2){\bf k}_{\bot}''\cdot{\bf q}_{\bot}+\bar{x}(xm_{2} +\bar{x}m'_1) ({\bf k}_{\bot}''\cdot{\bf q}_{\bot})^2 -x\bar{x}\left(m'_{1}+m''_{1}\right)({\bf k}_{\bot}'\cdot{\bf q}_{\bot})^{2} \\ &+x\bar{x}\left(m'_{1}+m''_{1}\right) {\bf k}_{\bot}'^{2}{\bf q}^{2}_{\bot} +(x-\bar{x})(m'_{1}+m''_{1}) {\bf k}_{\bot}''\cdot{\bf q}_{\bot} {\bf k}_{\bot}'\cdot {\bf k}_{\bot}'' -\bar{x}(\bar{x}m''_{1}-xm_2) {\bf k}_{\bot}'\cdot{\bf q}_{\bot}{\bf k}_{\bot}''\cdot{\bf q}_{\bot} \Big] \bigg\}\,, \\ \widetilde{ T}_2^{\rm {SLF}} = &\widetilde{ T}_1^{\rm {SLF}}+\dfrac{q^2}{\left(M'^2-M''^2\right)\left(M'^{2}-M''^{2}+{ \bf q}_\bot^2\right)}\dfrac{1}{x^2\bar x}\Bigg\{ 4\bar x ({ \bf k}_\bot'\cdot{ \bf k}_\bot'')^2-x(1-2x\bar{x}){ \bf k}_\bot'\cdot{ \bf k}_\bot''{ \bf q}_\bot^2 +4\bar{x}{ \bf k}_\bot'\cdot{ \bf q}_\bot{ \bf k}_\bot''^2\\ &+2(x -2\bar{x}){ \bf k}_\bot'\cdot { \bf k}_\bot'' { \bf k}_\bot''\cdot{ \bf q}_\bot-x^2(\bar xm'_1+xm_2)(m_2-2\bar xm''_1){ \bf q}_\bot^2 +4\bar xm''_1\left(xm_2+m''_1\right){ \bf k}_\bot'^2+(x^2+3x\bar x-4\bar x) m'_1(\bar xm'_1+xm_2){ \bf k}_\bot''\cdot{ \bf q}_\bot\\ &+\Big[3x\bar xm''^2_1-x^2m'_1(4\bar xm''_1-\bar xm_2+xm_2)+8\bar xx^2m''_1m_2+2x^3m^2_2\Big]{ \bf k}_\bot'\cdot{ \bf q}_\bot-2x^3\left(M'^2+M''^2\right){ \bf k}_\bot'\cdot{ \bf k}_\bot'' \\ &+4m_1'(\bar x^2m_1'+x^2m''_1+x\bar xm_2){ \bf k}_\bot'\cdot{ \bf k}_\bot'' -2(\bar xm'_1+xm_2)(\bar xm''_1+xm_2)\Big[x^2\left(M'^2+M''^2\right)-2m_1'm_1''\Big]\\ &+\dfrac{2x}{D''_V}\bigg[4m'_1({ \bf k}_\bot'\cdot{ \bf k}_\bot'')^2+\bar x{ \bf k}_\bot'\cdot{ \bf k}_\bot''{ \bf q}_\bot^2(xm''_1+2m_2-m'_1+3\bar xm'_1)-2{ \bf k}_\bot'\cdot{ \bf k}_\bot''{ \bf k}_\bot'^2(m'_1-m''_1)-2x\bar xm_2{ \bf k}_\bot'\cdot{ \bf q}_\bot{ \bf k}_\bot''\cdot{ \bf q}_\bot \\ &-\bar x^2{ \bf k}_\bot''\cdot{ \bf q}_\bot{ \bf q}_\bot^2(\bar xm'_1+xm_2)+{ \bf k}_\bot'^2{ \bf k}_\bot''\cdot{ \bf q}_\bot\Big(m'_1-m''_1-2\bar xm_2\Big)+2{ \bf k}_\bot'\cdot{ \bf k}_\bot''{ \bf k}_\bot''\cdot{ \bf q}_\bot(xm''_1-m'_1+2\bar xm_2)\\ &-x\bar x{ \bf k}_\bot'\cdot{ \bf k}_\bot''\left(m'_1+m''_1\right)\left(M'^2+M''^2\right)+x\bar x{ \bf k}_\bot''\cdot{ \bf q}_\bot(\bar xm'_1+xm_2)(M'^2+M''^2)+2{ \bf k}_\bot'\cdot{ \bf k}_\bot''\left(m'_1+m''_1\right)\left[\bar x(m'_1-m_2)(m''_1+m_2)+m^2_2\right]\\ &+{ \bf k}_\bot''\cdot{ \bf q}_\bot\left(\bar xm'_1+xm_2\right)\left[\left(m'_1+m''_1\right)\left(xm_2-\bar xm''_1\right)-2m'_1m_2\right] \bigg]\Bigg\}\,,\\[-15pt] \end{split} $ | (28) |
$ \begin{split} \widetilde{ T}_3^{\rm{ SLF}} = &\frac{M'^{2}-M''^{2}}{q^2}\left[\widetilde{\cal T}_1^{\rm{ SLF}}-\widetilde{\cal T}_2^{\rm{ SLF}}\right]+\frac{2\left(M'^{2}-M''^{2}\right)}{x\bar x\left(M'^{2}-M''^{2}+{ \bf q}_\bot^2\right){ \bf q}_\bot^2} \bigg\{ \bar xm''^2_1{ \bf k}_\bot'\cdot{ \bf q}_\bot-x^2m^2_2{ \bf q}_\bot^2 +{ \bf k}_\bot''\cdot{ \bf q}_\bot\left[(1-2x)\bar xm'^2_1-2x^2m^2_2\right]\\ &+ (1-2x){ \bf k}_\bot'\cdot{ \bf k}_\bot''(2{ \bf k}_\bot''\cdot{ \bf q}_\bot+{ \bf q}_\bot^2)+\frac{2}{D''_V}{ \bf k}_\bot''\cdot{ \bf q}_\bot\Big[(2x-1)(m'_1+m''_1){ \bf k}_\bot'\cdot{ \bf k}_\bot''+(\bar x-x)(\bar xm'_1+xm_2){ \bf k}_\bot''\cdot{ \bf q}_\bot\\ &-{ \bf k}_\bot'\cdot{ \bf q}_\bot(\bar xm''_1-xm_2)+\left(\bar xm'_1+xm_2\right)(xm_2-\bar xm''_1)(m'_1+m''_1) \Big]\bigg\}\,; \end{split} $ | (29) |
$ \widetilde{ T}_{1,2,3}^{(1)\,,\rm{ SLF}} = \widetilde{T}_{1,2,3}^{\rm{ SLF}}\left[{D''-{\rm{terms}}\; {\rm{only}}}\,, D''_V\to D''_1\,, m''_1\to-m''_1\right]\,; $ | (30) |
$ \widetilde{ T}_{1,2,3}^{(3)\,,\rm{ SLF}} = \frac{\hat M''^2_0}{2\sqrt2M''_0}\widetilde{T}_{1,2,3}^{\rm{ SLF}}\left[ D''_V\to D''_3\,, m''_1\to-m''_1\right]\,. $ | (31) |
2
2.2.Theoretical results in CLF QM
To maintain manifest covariance and explore the zero-mode effects, a CLF approach is presented in Refs. [9, 59, 60] with the help of a manifestly covariant BS approach as a guide to the calculation. In the CLF QM, the matrix element forFigure1. Feynman diagram for matrix element
$ {\cal B}_{\rm {CLF}} = N_c \int \dfrac{{{\rm{d}}}^4 k_1'}{(2\pi)^4} \dfrac{H_{M'}H_{M''}}{N_1'\,N_1''\,N_2}iS\cdot (E_{M'}\, E_{M''}^*)\,, $ | (32) |
$ S = {\rm {Tr}}\left[\Gamma\, (\not\!k'_1+m'_1)\,(i\Gamma_{M'})\,(-\!\not\!k_2+m_2)\,(i\gamma^0{\Gamma}_{M''}^{\dagger}\gamma^0) (\not\!k_1''+m_1'')\right]\,, $ | (33) |
$ i\Gamma_P = -i\gamma_5\,, $ | (34) |
$ i\Gamma_S = -i\,, $ | (35) |
$ i\Gamma_V = i\left[\gamma^\mu-\dfrac{ (k_1-k_2)^\mu}{D_{ V,{\rm {con}}}}\right]\,, $ | (36) |
$ i\Gamma_{^1\!{A}} = i\dfrac{(k_1-k_2)^\mu}{D_{1,{\rm {con}}}}\gamma_5\,, $ | (37) |
$ i\Gamma_{^3\!{A}} = i\left[\gamma^\mu+\dfrac{(k_1-k_2)^\mu}{D_{3,{\rm {con}}}}\right]\gamma_5\,, $ | (38) |
Integrating out the minus component of loop momentum, the covariant calculation becomes the LF calculation. By closing the contour in the upper complex
$ N_1 \to \hat{N}_1 = x \left(M^2-M_0^2\right) $ | (39) |
$ \chi_M \equiv H_M/N\to h_M/\hat{N}\,,\quad D_{\rm {con}} \to D_{\rm {LF}}\,,\quad {({\rm{type-I}})} $ | (40) |
$ h_P/\hat{N} = h_V/\hat{N} = \dfrac{1}{\sqrt{2N_c}}\sqrt{\dfrac{\bar{x}}{x}}\dfrac{\psi_s}{\hat{M}_0}\,, $ | (41) |
$ h_S/\hat{N} = \dfrac{1}{\sqrt{2N_c}}\sqrt{\dfrac{\bar{x}}{x}}\dfrac{\hat M'^2_0}{2\sqrt3M'_0}\dfrac{\psi_p}{\hat{M}_0}\,, $ | (42) |
$ h_{^1\!{A}}/\hat{N} = \dfrac{1}{\sqrt{2N_c}}\sqrt{\dfrac{\bar{x}}{x}}\dfrac{\psi_p}{\hat{M}_0}\,, $ | (43) |
$ h_{^3\!{A}}/\hat{N} = \dfrac{1}{\sqrt{2N_c}}\sqrt{\dfrac{\bar{x}}{x}}\dfrac{\hat M'^2_0}{2\sqrt2M'_0}\dfrac{\psi_p}{\hat{M}_0}\,. $ | (44) |
$ \chi_M \equiv H_M/N\to h_M/\hat{N}\,,\qquad M\to M_0\,,\qquad {({\rm{type-II}})} $ | (45) |
After integrating out
$ \hat{\cal B}_{\rm {CLF}} = N_c \int \dfrac{{{\rm{d}}} x {{\rm{d}}}^2 {\bf k}_{\bot}'}{2(2\pi)^3}\dfrac{h_{M'}h_{M''}}{\bar{x} \hat{N}_1'\,\hat{N}_1''\,}\hat{S}\cdot (E_{M'}\, E_{M''}^*)\,. $ | (46) |
$ \hat{k}_1'^{\mu} \to P^\mu A_1^{(1)}+q^\mu A_2^{(1)} \,, $ | (47) |
$ \begin{split} &\hat{k}_1'^{\mu}\hat{k}_1'^{\nu} \to g^{\mu\nu}A_1^{(2)}+P^\mu P^\nu A_2^{(2)}+(P^\mu q^\nu+q^\mu P^\nu)A_3^{(2)}\\&\quad+q^\mu q^\nu A_4^{(2)} +\dfrac{P^\mu\omega^\nu+\omega^\mu P^\nu}{\omega\cdot P}B_1^{(2)}\,, \end{split} $ | (48) |
$ \hat{k}_1'^{\mu}\hat{N}_2\to q^\mu\left(A_2^{(1)}Z_2+\dfrac{q\cdot P}{q^2}A_1^{(2)} \right) \,, $ | (49) |
$ A_1^{(1)} = \dfrac{x}{2}\,,\quad A_2^{(1)} = \dfrac{x}{2} -\dfrac{{ \bf k}_\bot' \cdot { \bf q}_\bot }{q^2}\,; $ | (50) |
$ \begin{split} A_1^{(2)}& = -{ \bf k}_\bot'^2 -\dfrac{({ \bf k}_\bot' \cdot { \bf q}_\bot)^2}{q^2}\,,\;\; A_2^{(2)} = \left(A_1^{(1)}\right)^2\,,\;\; A_3^{(2)} = A_1^{(1)}A_2^{(1)}\,,\\ A_4^{(2)}& = \left(A_2^{(1)}\right)^2-\dfrac{1}{q^2}A_1^{(2)}\,,\;\; B_1^{(2)} = \dfrac{x}{2}Z_2-A_1^{(2)}\,;\\[-15pt] \end{split} $ | (51) |
$ Z_2 = \hat{N}_1'+m_1'^2-m_2^2+(\bar{x}-x)M'^2+\left(q^2+q\cdot P\right)\frac{{ \bf k}_\bot' \cdot { \bf q}_\bot}{q^2}\,. $ | (52) |
In the CLF QM, the tensor form factors are obtained directly by matching
$ [{\cal F}(q^2)]_{\rm {CLF}} = N_c\int\dfrac{{{\rm{d}}} x{{\rm{d}}}^2{\bf k'_\bot}}{2(2\pi)^3}\dfrac{\chi_{M'}\chi_{M''}}{\bar x}{\cal \widetilde{\cal F}}^{\rm {CLF}}(x,{\bf k'_\bot},q^2)\,, $ | (53) |
$ \widetilde{F}_T^{\rm{CLF}} = 2(M'+M'')\left[m'_1-(m'_1+m''_1-2m_2)A^{(1)}_1-(m'_1-m''_1)A^{(1)}_2\right]\,; $ | (54) |
$ \widetilde{U}_T^{\rm {CLF}} = \widetilde{F}_T^{\rm{CLF}}[m''_1\rightarrow-m''_1]\,; $ | (55) |
$ \begin{split}\quad\quad \widetilde{T}_1^{\rm {CLF}} = &\left(2\bar x-1\right)\left(m'^2_1+\hat N'_1\right)+m''^2_1+\hat N''_1+{ \bf q}_\bot^2+2\left(\bar xm'_1m''_1+xm'_1m_2+xm''_1m_2\right)-8A^{(2)}_1+2\left(M'^2-M''^2\right)\left(A^{(1)}_1+2A^{(2)}_2-2A^{(2)}_3\right)\\ &+2{ \bf q}_\bot^2\left(A^{(1)}_1-2A^{(1)}_2-2A^{(2)}_3+2A^{(2)}_4\right)-\frac{4}{D''_{V,{\rm {con}}}}(m'_1+m''_1)A^{(2)}_1\,, \end{split} $ | (56) |
$ \begin{split}\quad\quad \widetilde{T}_2^{\rm {CLF}} = &-(m'_1-m''_1)^2-\hat N'_1-\hat N''_1+\bar xq^2+x\left[M'^2+M''^2+2(m'_1-m_2)(m_2-m''_1)\right]-\frac{q^2}{M'^2-M''^2}\bigg\{ 2M'^2+(m''_1-m'_1)^2\\ &-2(m'_1-m_2)^2-\hat N'_1+\hat N''_1-q^2-2Z_2+4Z_2A^{(1)}_2-4A^{(2)}_1-2\left[M'^2+M''^2-q^2+2(m'_1-m_2)(m_2-m''_1)\right]A^{(1)}_2\bigg\}\\ &-\frac{4}{D''_{V,{\rm {con}}}}A^{(2)}_1\left[m'_1+m''_1+\frac{{ \bf q}_\bot^2}{M'^2-M''^2}(m'_1-m''_1-2m_2)\right]\,, \end{split} $ | (57) |
$ \begin{split}\quad\quad \widetilde{T}_3^{\rm {CLF}} = &2M'^2-2(m'_1-m_2)^2+(m'_1-m''_1)^2-\hat N'_1+\hat N''_1-q^2-2Z_2-4A^{(2)}_1+4\left(M'^2-M''^2\right)\left(A^{(1)}_1-A^{(2)}_2+A^{(2)}_4\right)\\ &+\dfrac{4\left(M'^2-M''^2\right)}{q^2}A^{(2)}_1+2\left[M''^2-3M'^2+q^2+2Z_2+2(m'_1-m_2)(m''_1-m_2)\right]A^{(1)}_2\\ &+\dfrac{4}{D''_{V,{\rm {con}}}}\times\bigg\{\left(M'^2-M''^2\right)\Big[m'_1\left(2A^{(1)}_1+2A^{(1)}_2-A^{(2)}_2-2A^{(2)}_3-A^{(2)}_4-1\right)\\ &-m''_1\left(A^{(1)}_1-A^{(1)}_2-A^{(2)}_2+A^{(2)}_4\right)-2m_2\left(A^{(1)}_1-A^{(2)}_2-A^{(2)}_3\right)\Big]+(m''_1-m'_1+2m_2)A^{(2)}_1\bigg\}\,; \end{split} $ | (58) |
$ \widetilde{T}_{1,2,3}^{(1)\,,\rm{CLF}} = \widetilde{T}_{1,2,3}^{\rm {CLF}}\left[{D''-{\rm{terms}}\; {\rm{only}}}\,, D''_{V,{\rm {con}}}\to D''_{1,{\rm {con}}}\,,m''_1\rightarrow-m''_1\right]\,; $ | (59) |
$ \widetilde{T}_{1,2,3}^{(3)\,,\rm{CLF}} = \widetilde{T}_{1,2,3}^{\rm {CLF}}[D''_{V,{\rm {con}}}\to D''_{3,{\rm {con}}}\,,m''_1\rightarrow-m''_1]\,. $ | (60) |
In the CLF QM, for a given quantity (
$ \widetilde{F}_T^{\rm{val.}} = \widetilde{F}_T^{\rm{CLF}}\,; $ | (61) |
$ \widetilde{U}_T^{\rm {val.}} = \widetilde{U}_T^{\rm{CLF}}\,; $ | (62) |
$ \begin{split} \quad\quad \widetilde{T}_1^{\rm {val.}} = &\frac{1}{\bar x\left(M'^2-M''^2+{ \bf q}_\bot^2\right)}\bigg\{-2{ \bf k}_\bot'\cdot{ \bf q}_\bot{ \bf k}_\bot''^2+{ \bf k}_\bot'\cdot{ \bf k}_\bot''{ \bf q}_\bot^2-\bar x(2x-1){ \bf k}_\bot''\cdot{ \bf q}_\bot M'^2+2x(M'^2-M''^2)({ \bf k}_\bot'\cdot{ \bf k}_\bot''+m^2_2)\\ &+{ \bf k}_\bot'\cdot{ \bf q}_\bot(\bar xM''^2-2m^2_2)+2\bar x\left[m'_1m''_1-x(m'_1-m_2)(m''_1-m_2)\right](M'^2-M''^2+{ \bf q}_\bot^2)+m^2_2{ \bf q}_\bot^2\\ &+\frac{2}{D''_{V,{\rm {con}}}}(m'_1+m''_1)\Big[{ \bf k}_\bot'\cdot{ \bf q}_\bot{ \bf k}_\bot''^2+{ \bf k}_\bot''\cdot{ \bf q}_\bot(m^2_2-\bar x^2M'^2)+\bar x{ \bf k}_\bot'\cdot{ \bf k}_\bot''(M'^2-M''^2)\Big]\bigg\}\,, \end{split} $ | (63) |
$ \begin{split}\quad\quad \widetilde{T}_2^{\rm {val.}} = &\widetilde{T}_1^{\rm {val.}}-\frac{q^2}{\left(M'^2-M''^2\right)\left(M'^{2}-M''^{2}+{ \bf q}_\bot^2\right)}\frac{1}{\bar x}\Bigg\{2{ \bf k}_\bot'\cdot{ \bf k}_\bot''{ \bf k}_\bot'\cdot{ \bf q}_\bot-2\bar x{ \bf k}_\bot'\cdot{ \bf q}_\bot{ \bf k}_\bot''\cdot{ \bf q}_\bot+{ \bf k}_\bot'\cdot{ \bf k}_\bot''{ \bf q}_\bot^2+2{ \bf k}_\bot'\cdot{ \bf k}_\bot''[(1+\bar x)M'^2\\ &+xM''^2+2(m'_1-m_2)(m_2-m''_1)]+2{ \bf k}_\bot''\cdot{ \bf q}_\bot(m^2_2-\bar x^2M'^2)-2\bar x({ \bf k}_\bot'\cdot{ \bf q}_\bot+{ \bf k}_\bot''\cdot{ \bf q}_\bot)(m'_1-m_2)(m_2-m''_1)\\ &-\bar xM'^2{ \bf k}_\bot''\cdot{ \bf q}_\bot-3\bar xM''^2{ \bf k}_\bot'\cdot{ \bf q}_\bot+m^2_2{ \bf q}_\bot^2+2\bar xm_2(m'_1-m''_1)(M'^2-M''^2+{ \bf q}_\bot^2)+2(M'^2+M''^2)\\ &\times\left[\bar x^2(m'_1-m_2)(m''_1-m_2)+m^2_2\right]-4\bar x^2M'^2M''^2+4m^2_2(m'_1-m_2)(m_2-m''_1)+\frac{2}{D''_{V,{\rm {con}}}}(m'_1-m''_1-2m_2)\\ &\times\bigg[{ \bf k}_\bot'\cdot{ \bf q}_\bot{ \bf k}_\bot''^2+\bar x{ \bf k}_\bot'\cdot{ \bf k}_\bot''(M'^2-M''^2)+{ \bf k}_\bot''\cdot{ \bf q}_\bot(m^2_2-\bar x^2M'^2) \bigg]\Bigg\} \,, \end{split} $ | (64) |
$ \begin{split} \quad\quad \widetilde{T}_3^{\rm {val.}} = &\frac{M'^{2}-M''^{2}}{q^2}\left[\widetilde{T}_1^{\rm {val.}}-\widetilde{T}_2^{\rm {val.}}\right]+\frac{2\left(M'^{2}-M''^{2}\right)}{\bar x\left(M'^{2}-M''^{2}+{ \bf q}_\bot^2\right){ \bf q}_\bot^2}\bigg\{(\bar x-x){ \bf k}_\bot'\cdot{ \bf k}_\bot''{ \bf q}_\bot^2-2{ \bf k}_\bot'\cdot{ \bf q}_\bot\cdot{ \bf k}_\bot''^2\\ &+\bar x(\bar x-x)M'^2{ \bf k}_\bot''\cdot{ \bf q}_\bot+{ \bf k}_\bot'\cdot{ \bf q}_\bot(\bar xM''^2-2m^2_2)+(\bar x-x)m^2_2{ \bf q}_\bot^2+\frac{2}{D''_{V,{\rm {con}}}}{ \bf k}_\bot''\cdot{ \bf q}_\bot\\ &\times\Big[(m'_1+m''_1)({ \bf k}_\bot'^2-2\bar x{ \bf k}_\bot'\cdot{ \bf q}_\bot+m^2_2)+\bar x(xm_2-\bar xm''_1)M'^2-\bar x(xm_2+\bar xm'_1)(M''^2-{ \bf q}_\bot^2) \Big]\bigg\}\,; \end{split} $ | (65) |
$ \widetilde{T}_{1,2,3}^{(1)\,,\rm{val.}} =\widetilde{T}_{1,2,3}^{\rm {val.}}[{D''-{\rm{terms}}\; {\rm{only}}}\,, D''_{V,{\rm {con}}}\to D''_{1,{\rm {con}}}, m''_1\to-m''_1]\,; $ | (66) |
$\widetilde{T}_{1,2,3}^{(3)\,,\rm{val.}} = \widetilde{T}_{1,2,3}^{\rm {val.}}[D''_{V,{\rm {con}}}\to D''_{3,{\rm {con}}}, m''_1\to -m''_1]\,. $ | (67) |
$ [{\cal B}]_{ B} = N_c\int\frac{{{\rm{d}}} x{{\rm{d}}}^2{\bf k'_\bot}}{2(2\pi)^3}\frac{\chi_V'\chi_V''}{\bar x}{\cal \widetilde{\cal B}}_{ B} $ | (68) |
$ \begin{split} \widetilde{\cal B}_B^\mu(\Gamma = \sigma^{\mu\nu}q_\nu) = &4\frac{B_1^{(2)}}{\omega\cdot P}\bigg[ -\epsilon^{\delta\nu\alpha\beta}P_\delta q_\nu\omega_\alpha\epsilon^*_{\beta} P^\mu +\epsilon^{\mu\nu\alpha\beta}P_\nu\omega_\alpha\epsilon^{*}_{\beta}\left(M'^2-M''^2\right)\\ &+\epsilon^{\mu\nu\alpha\beta}q_\nu\omega_\alpha\epsilon^{*}_\beta\left(M'^2-M''^2\right) -\epsilon^{\mu\nu\alpha\beta}P_\nu q_\alpha\omega_\beta(q\cdot \epsilon^*)\frac{m'_1+m''_1}{D_{V,{\rm {con}}}''}\bigg]\,, \end{split} $ | (69) |
$ \begin{split} \widetilde{\cal B}_B^\mu(\Gamma = \sigma^{\mu\nu}\gamma_5q_\nu) = &4i\frac{B_1^{(2)}}{\omega\cdot P}\Bigg\{ -P^\mu(\omega\cdot\epsilon^*)q^2\left(1+\frac{m'_1-m''_1-2m_2}{D_{V,{\rm {con}}}''}\right)+q^\mu(\omega\cdot\epsilon^*)\left(M'^2-M''^2\right)\left(1+\frac{m'_1-m''_1-2m_2}{D_{V,{\rm {con}}}''}\right)\\ &-\omega^\mu(q\cdot\epsilon^*)\bigg[q^2\left(1+\frac{m'_1-m''_1-2m_2}{D_{V,{\rm {con}}}''}\right)+\left(M'^2-M''^2\right)\left(1+\frac{m'_1-m''_1}{D_{V,{\rm {con}}}''}\right)\bigg]\Bigg\}\,. \end{split} $ | (70) |
$ [{\cal F}]^{\rm {full}} = [{\cal F}]^{\rm {CLF}}+[{\cal F}]^{ B}\,. $ | (71) |
● In Eq. (69), the first term would introduce a spurious unphysical form factor, and thus is expected to vanish. Unfortunately, it is equal to zero for
$ {{\widetilde T}_1}^B = \left\{ {\begin{array}{*{20}{l}}{\left[ - 2({{M'}^2} - {{M''}^2}) + ({{M'}^2} - {{M''}^2} + {\bf{q}}_ \bot ^2)\dfrac{{{m_{1'}} + {m_{1''}}}}{{{D_{V,{\rm{co}}{{\rm{n}}^{\prime \prime }}}}}}\right]\dfrac{1}{{{{M''}^2}}}B_1^{(2)} ,}&{\quad\qquad \lambda = 0}\\{\left[2({{M'}^2} - {{M''}^2}) - {\bf{q}}_ \bot ^2\dfrac{{{m_{1'}} + {m_{1''}}}}{{{D_{V,{\rm{co}}{{\rm{n}}^{\prime \prime }}}}}}\right]\dfrac{2}{{{{M'}^2} - {{M''}^2} + {\bf{q}}_ \bot ^2}}B_1^{(2)} ,}&{\quad\qquad \lambda = + }\\{\left[1 + \dfrac{{{m_{1'}} + {m_{1''}}}}{{{D_{V,{\rm{co}}{{\rm{n}}^{\prime \prime }}}}}}\right]\dfrac{{2{\bf{q}}_ \bot ^2}}{{{{M'}^2} - {{M''}^2} + {\bf{q}}_ \bot ^2}}B_1^{(2)} .}&{\qquad\quad \lambda = - }\end{array}} \right. $ | (72) |
type-I | |||||||
type-II | |||||||
type-I | |||||||
type-II | |||||||
type-I | |||||||
type-II | |||||||
type-I | |||||||
type-II | |||||||
type-I | |||||||
type-II | |||||||
type-I | |||||||
type-II |
Table1.Numerical results of
$ \Delta_{B}(x) \equiv \dfrac{{{\rm{d}}} [{\cal F}]^{\rm B}_{\lambda}}{ {{\rm{d}}} x} = N_c\int\dfrac{{{\rm{d}}}^2{\bf k'_\bot}}{2(2\pi)^3}\dfrac{\chi_V'\chi_V''}{\bar x} \widetilde {\cal F}^{ B}_{\lambda}\,, $ | (73) |
Figure2. (color online) Dependences of
$ [T_1]^{\rm {full}}_{\lambda = 0}\dot{ = } [T_1]^{\rm {full}}_{\lambda = +}\dot{ = } [T_1]^{\rm {full}}_{\lambda = -}\,.\; \quad {({\rm{type-II}})} $ | (74) |
$ {\widetilde{T}_3}^{ B} = -4\dfrac{M'^2-M''^2}{ \epsilon^{*}\cdot q}\,\dfrac{\omega\cdot \epsilon^{*} }{\omega\cdot P}B_1^{(2)}\left(1+\frac{m_1'-m_1''-2m_2}{D_{V,{\rm {con}}}''}\right)\,, $ | (75) |
$ {{\widetilde T}_3^{\rm{B}}} = \left\{ {\begin{split}&{ - 4\dfrac{{{{M'}^2}\! -\! {{M''}^2}}}{{{{M'}^2} \!-\! {{M''}^2}\! +\! q_ \bot ^2}}B_1^{(2)}\left( {1 + \dfrac{{{m_{1'}}\! -\! {m_{1''}}\! -\! 2{m_2}}}{{{D_{V,{\rm{co}}{{\rm{n}}^{\prime \prime }}}}}}} \right) , }\!&\!{\lambda = 0}\\&{0. }\!&\!{\lambda = \pm }\end{split}} \right.$ | (76) |
● The covariance of the matrix element of tensor operators in the Type-I scheme is violated due to the non-zero
● Taking
Figure3. (color online) The dependences of
● Comparing
$ [T_{1,2,3}]^{\rm {SLF}} = [T_{1,2,3}]^{\rm {val.}}\dot{ = }[T_{1,2,3}]^{\rm {CLF}}\,.\quad {({\rm{type-II}})} $ | (77) |
The analyses and findings mentioned above confirm again the main conclusion obtained in our previous studies [85, 86] and Ref. [84]. In addition to above-mentioned self-consistency problem of CLF QM caused by the contributions associated with B function, we note a new inconsistency problem, which is discussed in the following.
The tensor form factors
$ {\cal B}_{\rm {CLF}}^{P\to V}[\Gamma = \sigma^{\mu\nu}\gamma_5] = N_c \int \frac{{{\rm{d}}}^4 k_1'}{(2\pi)^4} \frac{H_{P}H_{V}}{N_1'\,N_1''\,N_2}iS^{\mu\nu\lambda}\epsilon^*_\lambda \,. $ | (78) |
$ S^{\mu\nu}_{\lambda} = \frac{i}{2}\varepsilon^{\mu\nu\rho\sigma} S'_{\rho\sigma\lambda} \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\;\;\qquad$ | (79) |
$ \begin{split} = &i\varepsilon^{\mu\nu\rho\sigma}\bigg\{ \varepsilon_{\rho\sigma\lambda\alpha}\left[2(m'_1m_2+m''_1m_2-m'_1m''_1)k'^\alpha_1+m'_1m''_1P^{\alpha}+(m'_1m''_1-2m'_1m_2)q^{\alpha}\right]\\ &-\varepsilon_{\rho\sigma\alpha\beta}\frac{(4k'_{1}-3q-P)_\lambda}{D''_V}\left[(m'_1+m''_1)k'^{\alpha}_1P^\beta+(m''_1-m'_1+2m_2)k'^{\alpha}_1q^\beta+m'_1P^\alpha q^\beta\right]\\ &+\varepsilon_{\rho\sigma\lambda\alpha}\left[2(k'_1\cdot k_2-k''_1\cdot k_2-k'_1\cdot k''_1)k'^{\alpha}_1+k'_1\cdot k''_1P^\alpha+(k'_1\cdot k''_1-2k'_1\cdot k_2)q^\alpha\right]\\ &+(g^{\sigma}_{\lambda}\varepsilon_{\rho\alpha\beta\gamma}-g^{\rho}_{\lambda}\varepsilon_{\sigma\alpha\beta\gamma})P^{\alpha}q^{\beta}k'^{\gamma}_1+\varepsilon_{\sigma\rho\alpha\beta}(P^\alpha q^\beta k'_{1\lambda}+k'^\alpha_1P^\beta q_{\lambda}+q^\alpha k'^\beta_1P_{\lambda})\\ &+\varepsilon_{\rho\lambda\alpha\beta}\left[ k'_{1\sigma}P^\alpha q^\beta+q_\sigma P^\alpha k'^\beta_1 +(P+2q)_\sigma q^\alpha k'^\beta_1+2k'_{1\sigma} k'^\alpha_1 (P+q)^\beta \right]\\ &-\varepsilon_{\sigma\lambda\alpha\beta} \left[k'_{1\rho}P^\alpha q^\beta+q_\rho P^\alpha k'^\beta_1+(P+2q)_\rho q^\alpha k'^\beta_1+2k'_{1\rho}k'^\alpha_1(P+q)^\beta\right] \bigg\}\,. \end{split} $ | (80) |
In the CC's calculation [82], the obtained result for
$ \begin{split} \varepsilon^{\mu\nu\rho\sigma}\varepsilon_{\sigma\lambda\alpha\beta} = &\left[g_\lambda^\mu(g_\alpha^\nu g_\beta^\rho-g_\alpha^\rho g_\beta^\nu)+g_\lambda^\nu(g_\alpha^\rho g_\beta^\mu-g_\alpha^\mu g_\beta^\rho)\right.\\&\left.+g_\lambda^\rho(g_\alpha^\mu g_\beta^\nu-g_\alpha^\nu g_\beta^\mu)\right]\,, \end{split}$ | (81) |
$ \begin{split} \left[\hat{S}^{\mu\nu}_{\lambda}\right]_{{\rm{last}}\;{ \rm{term}}}^{\rm{CC}} = &2i g_\lambda^\nu g_\alpha^\mu g_\beta^\rho\left[g^\alpha_\rho A^{(2)}_1+P^\alpha P_\rho A^{(2)}_2+(P_\rho q^\alpha+q_\rho P^\alpha)A^{(2)}_3+q^\alpha q_\rho A^{(2)}_4\right](P+q)^\beta\,+\,...\\ = &2ig_\lambda^\nu\left\{P^\mu\left[A^{(2)}_1+(3M'^2-M''^2-q^2)A^{(2)}_2+(M'^2-M''^2+q^2)A^{(2)}_3\right]\right.\\ &\left.+q^\mu\left[A^{(2)}_1+\left(3M'^2-M''^2-q^2\right)A^{(2)}_3+\left(M'^2-M''^2+q^2\right)A^{(2)}_4\right] \right\}\,+\,...\,, \end{split} $ | (82) |
In our calculation, we employ the standard procedure of the CLF calculation instead of directly using the obtained result for
$ \begin{split} \left[S^{\mu\nu}_{\lambda}\right]_{{\rm{last}}\;{ \rm{term}}}& = -2i g_\lambda^\nu k'^\mu_{1} k'_1\cdot(P+q)+...\\ & = -2i g_\lambda^\nu k'^\mu_{1} \left(M'^2+m'^2_1+m'^2_1-m^2_2- N_2 + N'_1 \right)+...\,, \end{split} $ | (83) |
$ k'_1\cdot q = \frac{1}{2}\left(N'_1+m'^2_1- N''_1-m''^2_1-{ \bf q}_\bot^2\right)\,, $ | (84) |
$ k'_1\cdot P = \frac{1}{2}\left(2M'^2+ N'_1+m'^2_1+ N''_1+m''^2_1-2 N_2-2m^2_2+{ \bf q}_\bot^2\right)\,. $ | (85) |
$ \begin{split} \left[\hat{S}^{\mu\nu}_{\lambda}\right]_{{\rm{last}}\;{ \rm{term}}}^{\rm{ours}} = &2ig_\lambda^\nu\Bigg\{P^\mu\left(M'^2+m'^2_1-m_2^2{+}\hat N'_1\right)A^{(1)}_1\\ &+q^\mu\left\Bigg[\left(M'^2+m'^2_1-m_2^2{+}\hat N'_1-Z_2\right)A^{(1)}_2\right.\\&\left.-\frac{M'^2-M''^2}{q^2}A^{(2)}_1\right\Bigg] \Bigg\}+...\,. \end{split} $ | (86) |
$ \Delta^{\cal F}_{\rm {CLF}}(x,{ \bf q}_\bot^2)\equiv \frac{{{\rm{d}}} [{\cal F}]^{\rm {CLF}}_{\rm ours}}{{{\rm{d}}} x}-\frac{{{\rm{d}}} [{\cal F}]^{\rm {CLF}}_{\rm CC}}{{{\rm{d}}} x}\,, \;\; {\cal F} = T_2\;{\rm{ and }}\; T_3 $ | (87) |
Figure4. (color online)
From above analyses and discussions, it can be concluded that the Type-II scheme provides a feasible solution to the covariance and self-consistency problems of the CLF QM. Therefore, we update the CLF predictions for the tensor form factors of some
$ {\cal F}(q^2) = \dfrac{{\cal F}(0)}{1-a(q^2/M_{B,D}^2)+b(q^2/M_{B,D}^2)^2}\,, $ | (88) |
$ {\cal F}(q^2) = \dfrac{{\cal F}(0)}{\left( 1-q^2/M_{B,D}^2 \right)\left[1-a\left(q^2/M_{B,D}^2\right)+b\left(q^2/M_{B,D}^2\right)^2\right]}\,, $ | (89) |
$ {\cal F}(q^2) = {\cal F}(0)\left[1+a\left(q^2/M_{B,D}^2\right)+b\left(q^2/M_{B,D}^2\right)^2\right]\,. $ | (90) |
a | b | a | b | |||||
Table2.Numerical results of tensor form factors for
a | b | a | b | |||||
Table3.Same as Table 2 except for
a | b | a | b | |||||
Table4.Same as Table 2 except for
a | b | a | b | |||||
Table5.Same as Table 2 except for
Figure5. (color online)
a | b | a | b | |||||
Table6.Same as Table 2 except for
Figure6. (color online) Same as Fig. 5 except for
Figure7. (color online) Same as Fig. 5 except for
Figure8. (color online) Same as Fig. 5 except for
Figure9. (color online) Same as Fig. 5 except for
$\tag{A1} \begin{split} \widetilde{T}_1^{\rm{ CLF}} = &2A_1^{(1)}\left[M'^2-M''^2-2m'^2_1-2\hat N'_1+q^2+2\left(m'_1m_2+m''_1m_2-m'_1m''_1\right)\right]-8A_1^{(2)}+(m'_1+m''_1)^2+\hat N'_1+\hat N''_1-q^2+4\left(M'^2-M''^2\right)\left(A_2^{(2)}-A_3^{(2)}\right)\\ &+4q^2\left(-A_1^{(1)}+A_2^{(1)}+A_3^{(2)}-A_4^{(2)}\right)-\frac{4}{D''_{V,{\rm {con}}}}\left(m'_1+m''_1\right)A_1^{(2)}\,, \end{split} $ |
$\tag{A2} \begin{split} \widetilde{T}_2^{\rm{ CLF}} = &\widetilde{T}_1^{\rm{ CLF}}+\frac{q^2}{M'^2-M''^2}\bigg\{2A_2^{(1)}\left[M'^2-M''^2-2m'^2_1-2\hat N'_1+q^2+2\left(m'_1m_2+m''_1m_2-m'_1m''_1\right)\right]\\ &-8A_1^{(2)}-2M'^2+2m'^2_1+\left(m'_1+m''_1\right)^2+2(m_2-2m'_1)m_2+3\hat N'_1+\hat N''_1-q^2+2Z_2\\ &+4\left(q^2-2M'^2-2M''^2\right)\left(A_2^{(2)}-A_3^{(2)}\right)-4\left(M'^2-M''^2\right)\left(-A_1^{(1)}+A_2^{(1)}+A_3^{(2)}-A_4^{(2)}\right)-\frac{4}{D''_{V,{\rm {con}}}}\left(m''_1-m'_1+2m_2\right)A_1^{(2)} \bigg\}\,, \end{split} $ |
$\tag{A3} \begin{split} \widetilde{T}_3^{\rm{ CLF}} = &-2A_2^{(1)}\left[M'^2-M''^2-2m'^2_1-2\hat N'_1+q^2+2\left(m'_1m_2+m''_1m_2-m'_1m''_1\right)\right]+8A_1^{(2)}\\ &+2M'^2-2m'^2_1-(m'_1+m''_1)^2-2(m_2-2m'_1)m_2-3\hat N'_1-\hat N''_1+q^2-2Z_2-4\left(q^2-M'^2-3M''^2\right)\left(A_2^{(2)}-A_3^{(2)}\right)\\ &+\frac{4}{D''_{V,{\rm {con}}}}\bigg\{\left(m''_1-m'_1+2m_2\right)\left[A_1^{(2)}+\left(M'^2-M''^2\right)\left(A_2^{(2)}+A_3^{(2)}-A_1^{(1)}\right)\right]\\ &+\left(m'_1+m''_1\right)\left(M'^2-M''^2\right)\left(A_2^{(1)}-A_3^{(2)}-A_4^{(2)}\right)+m'_1\left(M'^2-M''^2\right)\left(A_1^{(1)}+A_2^{(1)}-1\right) \bigg\}\,. \end{split} $ |
$\tag{B1} \begin{split} m_q& = 230\pm40\,{\rm {MeV}}\,,\quad m_s = 430\pm60\,{\rm {MeV}}\,,\\ m_c& = 1600\pm300\,{\rm {MeV}}\,,\quad m_b = 4900\pm400\,{\rm {MeV}}\,, \end{split} $ |
P (S) | |||||
V (A) | |||||
P (S) | |||||
V (A) |
TableB1.Gaussian parameters