Alternative approach to thermodynamic phase transitions
本站小编 Free考研考试/2022-01-01
<script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.2-beta.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type='text/x-mathjax-config'>MathJax.Hub.Config({tex2jax: {inlineMath: [['$', '$'], ['\\(', '\\)']]}});</script>
Seyed Hossein Hendi1,2, , Shahram Panahiyan1,3,4, , Behzad Eslam Panah1,2,5, , Mubasher Jamil6,7, , 1.Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454, Iran 2.Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P. O. Box 55134-441, Maragha, Iran 3.Physics Department, Shahid Beheshti University, Tehran 19839, Iran 4.Helmholtz-Institut Jena, Fr?belstieg 3, Jena 07743, Germany 5.ICRANet, Piazza della Repubblica 10, I-65122 Pescara, Italy 6.School of Natural Sciences (SNS), National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan 7.Institute for Theoretical Physics and Cosmology, Zhejiang University of Technology, Hangzhou, 310023, China Received Date:2018-08-28 Accepted Date:2019-03-15 Available Online:2019-11-01 Abstract:One of the major open problems in theoretical physics is the lack of a consistent quantum gravity theory. Recent developments in our knowledge on thermodynamic phase transitions of black holes and their van der Waals-like behavior may provide an interesting quantum interpretation of classical gravity. Studying different methods of investigating phase transitions can extend our understanding of the nature of quantum gravity. In this paper, we present an alternative theoretical approach for finding thermodynamic phase transitions in the extended phase space. Unlike the standard methods based on the usual equation of state involving temperature, our approach uses a new quasi-equation constructed from the slope of temperature versus entropy. This approach addresses some of the shortcomings of the other methods and provides a simple and powerful way of studying the critical behavior of a thermodynamical system. Among the applications of this approach, we emphasize the analytical demonstration of possible phase transition points and the identification of the non-physical range of horizon radii for black holes.
HTML
--> --> --> -->
2.1.The usual method: heat capacity and extended phase space
In the canonical ensemble, discontinuities of the heat capacity indicate the phase transition points. The heat capacity in the context of the canonical ensemble is given by
The main application of heat capacity is for studying thermal stability. Positivity of $ C_{Q} $ can guarantee the thermal stability of a system, while its negativity is regarded as an instability. On the other hand, to study the critical behavior of a thermodynamical system, one is required to obtain an equation of state, $P = P(T,V)$. In the context of black hole thermodynamics, one may find the temperature of a typical black hole in the presence of the cosmological constant $ T = T(m,r_{+},\Lambda ,Q, {\rm other\;hairs}) $. We can consider the cosmological constant as a dynamical pressure and take into account the relation between the event horizon radius ($ r_{+} $) and the volume to find an equation of state, $ P = P(T,V) $. Applying the properties of a critical point in an isothermal $ P-V $ diagram (inflection point), one may obtain ${\left( {\displaystyle\frac{{\partial P}}{{\partial V}}} \right)_T} = {\left( {\displaystyle\frac{{{\partial ^2}P}}{{\partial {V^2}}}} \right)_T} = 0$. This relation helps us to find the critical points and possible phase transitions. This method very much depends on the temperature value. It is worth noting that this method is not practical for black holes with non-spherical horizons in most gravitational theories. To avoid such a restriction, we should use an alternative method for obtaining the critical values in the extended phase space. 22.2.Van der Waals liquid-gas system -->
2.2.Van der Waals liquid-gas system
The van der Waals system is one of the important models for describing a real liquid–gas system and its critical behavior. The equation of state of this model is a modification of the ideal gas equation and considers the non-zero sizes of molecules and the attraction between molecules. The van der Waals equation of state is given by [18]
where P and T are the pressure and temperature, respectively. Also, v is the specific volume $ v = \displaystyle\frac{V}{N} $, b is a free parameter related to the non-zero size of the molecules of a fluid, and a represents the strength of attraction between the molecules. Here, k is a constant that can be set to unity without loss of generality. Note that setting $ a = b = 0 $ yields the familiar ideal gas law. Due to the van der Waals-black hole correspondence, one can use the analogy between the temperature (and hence equation of state) of the fluid and the temperature of the black hole. The existence of critical behavior can be determined by examining the properties of the inflection point, which satisfy
Using the inflection point of the equation of state of the van der Waals system in Eq. (2), it is straightforward to find the following critical values:
Inserting $ T = T_{c} $ into the equation of state, we find two inseparable liquid-gas phases with a possible phase transition between them. For the case of $ T<T_{c} $, we have a phase transition between two phases of liquid and gas. However, there exists a region of specific volume in which no physical system exists and the phase transition takes place over it. In other words, for this case, two specific volumes with the same pressure exist, and the phase transition takes place between them. In order to obtain all of these critical behaviors and their specific critical values, all temperatures smaller than $ T_{c} $ must be considered, which is practically impossible. The method proposed introduced in this paper provides the possibility of obtaining all of these critical points analytically. We will demonstrate this possibility in the remainder of this paper. The Gibbs free energy of this system can be expressed in the following form:
where $ \Phi $ is a constant characterizing the gas. The entropy of the system can be obtained from the differential equation $ {\rm d}G = -S{\rm d}T+v{\rm d}P $, which leads to
To use the proposed method, one must determine the enthalpy of the system. This quantity can be calculated using different methods, and the following relation is one of them:
$H = G + TS = \frac{3}{2}kT - \frac{a}{v} + Pv,$
(8)
The above is known as the enthalpy of the van der Waals system. Using the equation of state, it is easy to find the following relation for $ H(v,P) $:
where, in principle, one may remove $ v $ from Eqs. (7) and (9) to obtain $ H = H(S,P) $. -->
3.1.Van der Waals liquid/gas system
We are now in a position to use our method for the case of a van der Waals system. Because both the entropy $ S(v) $ and enthalpy $ H(v) $ are volume dependent at constant pressure (see Eqs. (7) and (9)), we can use the following relation:
From the above relation, one can find that enthalpy changes during a phase transition. In other words, the increasing/decreasing behavior of enthalpy is different before and after a phase transition as well as and after a critical point. By solving $ {\left( {\displaystyle\frac{{{\partial ^2}H}}{{\partial {S^2}}}} \right)_P}=0$ with respect to P, one can obtain the following new relation for pressure, which differs from the usual equation of state:
which are identical to those obtained previously in Eq. (4). By replacing the new pressure in the equation of state, Gibbs free energy, and enthalpy, one can obtain new relations for these thermodynamical quantities (as well as for other), which are pressure independent:
These new relations enable us to extract all possible critical temperatures, Gibbs free energies and enthalpies that a system can have. To highlight this aspect of our method, we refer you to the plot in Fig. 1. Figure1. (color online) Application of the proposed method to the case of a van der Waals system. Top panel: $P_{\rm new}$ (dash-dotted line) and P versus v for $T = 0.9T_{c}$ (continuous line), $T = T_{c}$ (dotted line) and $T = 1.1T_{c}$ (dashed line). Bottom panel: $T_{\rm new}$ (dash-dotted line) and T versus v for $P = 0.9P_{c}$ (continuous line), $P = P_{c}$ (dotted line) and $P = 1.1P_{c} $ (dashed line). In both diagrams, we chose b = 1, a = 4 and k = 1.
It is evident that the maxima of the new relations for the temperature $ T_{\rm new} $ and pressure $ P_{\rm new} $ are where the system undergoes a phase transition. Note that in the $ P-v $ picture, the temperature is kept constant, while in the $ T-v $ picture, the pressure is kept constant. In addition, for pressures (temperatures) smaller than the critical one, the new relation gives a single pressure (temperature) with two related volumes. The phase transition takes place between these two volumes at a specific pressure. As one can see, all possible critical points and the corresponding ranges of phase transitions are included in this method. This is one of the important features of our method that was not possible with previous methods. It is interesting to note that the minima of T (P) coincide with the maxima of $ T_{\rm new} $ ($ P_{\rm new} $). We continue with another example in the context of black holes.
4.Phase transition in higher dimensional Reissner-Nordstr?m AdS black holeThe main motivation to study asymptotically AdS black holes stems from the hypothesis of AdS/CFT correspondence. Using the thermal field theoretic approaches, it has been deduced that AdS black holes undergo certain phase transitions. The first sign of such phase transitions was observed by Page and Hawking for the Schwarzschild AdS black hole [19]. With the addition of parameters, such as electric charge and spin, the phase transition process is more elaborate and enhanced. It is quite interesting to note that the pressure-volume picture of the ideal gas for constant temperature is also mimicked by AdS black holes (see top panel of Fig. 1). This analogy between a gravitational system (AdS black hole) and a non-gravitational thermal system (such as an ideal gas or a van der Waals fluid) is established by identifying a correspondence between their parameters, i.e., mass with enthalpy, temperature with surface gravity, entropy with area, and cosmological constant with pressure. Thus, in the first law of thermodynamics, the cosmological constant appears as pressure, which is conjugate to the volume of a black hole [20]. Besides, using the reverse isoperimetric inequality, it has been deduced that entropy inside the horizon of a given volume is maximized for the Schwarzschild AdS black hole [21]. In black hole systems, it has been shown that one can take the negative cosmological constant as thermodynamical pressure [22] with the following relation:
$P = - \frac{\Lambda }{{8\pi }}.$
(14)
On a complimentary note, we should mention that for specific black holes in modified general relativity, such as dilatonic gravity and gravity rainbow, one has to use a modified proportionality relation instead of Eq. (14) [23, 24]. Although in this paper we consider a well-known Reissner-Nordstr?m AdS black hole, our technique is consistent with the other black holes in modified theories of gravity. Replacing the cosmological constant with thermodynamical pressure (working in the extended phase space thermodynamics) leads to the following important results: I) The resulting temperature for the black hole is the equation of state. II) The total mass of the black hole is no longer the internal energy. In fact, it is replaced by the enthalpy in such a scenario, which results in the following relation for the Gibbs free energy:
$G = M - TS.$
(15)
We now demonstrate the validity of our approach and its consistency with previous methods in the context of black hole systems. For this purpose, we study the critical behavior of the $ d- $dimensional Reissner-Nordstr?m AdS black hole. Previously, the results for this specific black hole were derived using the usual method in Ref. [18]. The metric of this black hole in spherically symmetric spacetime is given as
The temperature, entropy, and total finite mass of this black hole are calculated using the surface gravity, area law, and ADM approach, respectively, which lead to
where $ r_{+} $ is the outer horizon of the black hole. By evaluating the metric function on the outer horizon ($ \psi \left( r = r_{+}\right) = 0 $), we obtain
Another interesting method for calculating the thermodynamic potentials (such as Gibbs free energy) in a gravitational system is based on the Euclidean on-shell action. Because bulk action of the theory diverges, we use the counter-term action to remove the divergency. In addition, we should add the Gibbons-Hawking and electromagnetic boundary terms to the bulk action to obtain a well-defined action. The well-behaved finite action can be written as (see [25])
where $ I_{b} $ and $ I_{ct} $ are the bulk and counter-term actions of the Einstein-Maxwell gravity, respectively. Also, $ \gamma _{ij} $ and $ K $ are the induced metric and extrinsic curvature of the boundary, respectively. Using Eq. (23), it is straightforward to calculate the total on-shell action with respect to the volume of the unit $ d_{2}$sphere
which is the same as Eq. (22), as expected. We are now in a position to calculate the critical values with the usual method. First, we calculate the volume conjugate to the pressure as
Because the volume depends on the horizon radius, one can use the horizon radius to investigate the thermodynamic behavior of the black hole proportionally (linearly) to its specific volume [18]. Using Eqs. (14) and (18), one can obtain the equation of state as
We now employ the proprieties of the inflection point, ${\left( {\displaystyle\frac{{\partial P}}{{\partial {r_ + }}}} \right)_T} = {\left( {\displaystyle\frac{{{\partial ^2}P}}{{\partial r_ + ^2}}} \right)_T} = 0$, to obtain the critical horizon radius (volume) $ r_{c} $ , which leads to
Let us now determine the critical values using our approach. Using Eqs. (19) and (21) and replacing the cosmological constant with the pressure in Eq. (14), one can obtain (because at constant pressure both $ S = S(r_{+}) $ and $ M = M(r_{+}) $ are independent of temperature, the equation of state for removing T, which was used is not required as it was before in the van der Waals liquid/gas system)
Solving $ {\left( {\displaystyle\frac{{{\partial ^2}M}}{{\partial {S^2}}}} \right)_{q,P}} =0 $ with respect to P, we obtain a new relation for the pressure:
Replacing the pressure in the relations for temperature in Eq. (18), mass in Eq. (21), and Gibbs free energy in Eq. (22) with the new pressure relation in Eq. (33), one can obtain new relations for these thermodynamical quantities in the following form:
It is evident that the relation for pressure in Eq. (33) is different from the usual equation of state in Eq. (27). To obtain the maximum of this relation, we use the mathematical nature of the extremum,
which are exactly the same as the previously calculated critical temperature in Eq. (30) and pressure in Eq. (31), respectively. These results show that the critical values calculated in our approach are consistent with those calculated with the usual method in extended phase space. Using the critical radius in Eq. (38) with the new relations for mass (Eq. (35)) and Gibbs free energy (Eq. (36)), we can also obtain the critical mass (enthalpy) and critical Gibbs free energy:
To illustrate the results of our approach in more detail, Fig. 2 shows plots of the obtained relations for temperature and pressure. It is clear that for pressures (temperatures) larger than the critical one, no phase transition is observed for the van der Waals-like diagram (dashed lines in top and middle panels of Fig. 2). If no phase transition occurs in a black hole, this implies that the black hole remains physically intact, i.e., its mass and other physical parameters remain the same. The black hole remains stable and does not radiate thermally. This may correspond to a state of thermal equilibrium. If the equilibrium becomes unstable, the heat capacity of the black hole become negative, causing the black hole to radiate. In this case, a phase transition does take place. Similarly, under the same conditions, no critical pressure is observed in our approach. On the contrary, for pressures (temperatures) smaller than the critical value, two critical horizons are observed for any pressure (temperature), which is in agreement with the results of our approach (continuous lines in top and middle panels of Fig. 2). Finally, we observe that the critical pressure (critical temperature) and the critical horizon radius calculated by the usual method, coincide with the maximum of the new relation for pressure and its related horizon radius. This also indicates that the results of our method are completely in agreement with those of the previous method. Figure2. (color online) Top panel: $P_{\rm new}$ (dash-dotted line) and P versus $r_{+}$, for sub-critical case $T=0.9T_{c}$ (continuous line), critical case $T=T_{c}$ (dotted line) and super-critical case $T=1.1T_{c}$ (dashed line). Middle panel: $T_{\rm new}$ (dash-dotted line) and T versus $r_{+}$, for sub-critical $P=0.9P_{c}$ (continuous line), critical $P=P_{c}$ (dotted line) and super-critical $P=1.1P_{c}$ (dashed line). Bottom panel: $P_{\rm new}$ (dash-dotted line) and $C_{Q}$ versus $r_{+}$, for sub-critical $P=0.9P_{c}$ (continuous line), critical $P=P_{c}$ (dotted line) and super-critical $P=1.1P_{c}$ (dashed line). In all three panels, q = 1 and d = 4.
Finally, we plot the heat capacity (bottom panel in Fig. 2) to demonstrate the consistency of the new pressure. It is evident that for $ P<P_{c} $, two points of discontinuity exist for the heat capacity, which are coincident with the phase transition points observed in the other methods. If the pressure is equal to the critical pressure, only one discontinuity is observed in the heat capacity, as in the other methods. For $ P>P_{c} $, no discontinuity is observed for the heat capacity. This behavior indicates that all methods give consistent results. In the top panel of Fig. 2, one can see the so-called saturation curve (dash-dotted line). Taking into account the $ P-V $ isothermal diagram with $ T<T_{c} $ (continuous line), we can decrease the horizon radius to find two points of intersection with the saturation curve ($ r_{+1} $ and $ r_{+2} $ with $ r_{+1}<r_{+2} $). The black hole system is unstable for $ r_{+1}<r_{+}<r_{+2} $. In other words, there is a phase transition between a small and a large black hole (between $ r_{+1} $ and $ r_{+2} $). This phase transition may occur with a sudden burst of thermal Hawking radiation, i.e., the size of the black hole suddenly shrinks from $ r_{+2} $ to $ r_{+1} $ without changing the black hole temperature. Black hole solutions are not physical between these two points. This can be explained by the fact that the heat capacity is negative (see bottom panel of Fig. 2) and also by the fact that the speed of sound is higher than the speed of light [26]. Note that similar discontinuities in specific heat capacity occur in Born-Infeld black holes [11]. It is worth noting that for $ T = T_{c} $, the intersection points meet and are equal to the critical horizon radius $ r_{+1} = r_{+2} = r_{c} $. The same statement could be made for the temperature in the middle panel of Fig. 2 . Before finishing the paper, it is worth pointing out the significance of our approach. First, our method provides the possibility of obtaining different thermodynamical quantities that are independent of each other. In other words, as one can see from Eqs. (34)-(36), they only depend properties such as dimension, electric charge, and horizon radius. If we generalize the action to other gravitational theories or include other matter fields, the resultant new temperature, pressure, mass, and Gibbs free energy obtained using our method will have the same properties (they are only a function of black hole properties). Secondly, the new relations include only critical points that a black hole could acquire in different conditions. In the usual methods, to obtain all points between which phase transitions take place, one must consider all pressures equal to or smaller than the critical pressure. Technically, such a task is impossible. Using our method, one can find all possible phase transitions, horizon radii, and corresponding pressures that a system could acquire. The same could be said for the new relations for temperature, mass, and Gibbs free energy. In other words, by using our approach, one can obtain all phase transition points and the corresponding critical temperature, pressure, mass, and Gibbs free energy that system can acquire in analytical form. Thirdly, using our method, one can determine the range of horizon radii that depend on the critical values in which the black hole solutions do not exist. For clarification, refer to the diagram of new pressure in the top panel of Fig. 2 (dashed-dotted line). Clearly, the phase transition takes place between two points with the same pressures. The prohibited range of horizon radii for the black hole is between these points. Taking a closer look, one can see that by using our approach, the maximum range of horizon radii in which the black hole solutions do not exist can be found. Such a maximum could not be obtained easily with the usual methods. In addition, by using our approach, one can determine the rate of increase of the prohibited range of horizon radii by studying the behavior of its diagram. Such a procedure may encounter significant problems for the usual method. Finally, we should point out that these three features are also valid for usual thermodynamical systems.