1.Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming 650216, China 2.Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China 3.Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming 650216, China 4.Center for Astronomical Mega-Science, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012, China 5.University of Chinese Academy of Sciences, Beijing 100049, China Received Date:2020-02-25 Accepted Date:2020-04-16 Available Online:2020-08-01 Abstract:Rastall gravity is a modification of Einstein's general relativity in which the energy-momentum conservation is not satisfied and depends on the gradient of the Ricci curvature. It is currently in dispute whether Rastall gravity is equivalent to general relativity (GR). In this work, we constrain the theory using the rotation curves of low surface brightness (LSB) spiral galaxies. By fitting the rotation curves of LSB galaxies, we obtain parameter $\beta$ of the Rastall gravity. The $\beta$ values of LSB galaxies satisfy the weak energy condition (WEC) and strong energy condition (SEC). Combining the $\beta$ values of type Ia supernovae and the gravitational lensing of elliptical galaxies on Rastall gravity, we conclude that Rastall gravity may be equivalent to general relativity.
HTML
--> --> --> -->
2.1.Perfect fluid dark matter in GR
Kiselev [8] obtained the black hole solution of perfect fluid matter in GR. They assumed that the equation of state defined by the ratio of pressure to the density of perfect fluid matter $ \omega = p/\rho $ is a constant, where $ p $ and $ \rho $ are the pressure and density of perfect fluid matter, respectively. The expression of the black hole solution is
$ M $ represents the mass of a black hole, and $ \alpha $ is the intensity parameter of perfect fluid matter around a black hole. If the equation of state is given by $ \omega = -1/3 $, the black hole solution represents a Schwarzschild black hole with a perfect fluid dark matter background [9-12]. In general, perfect fluid dark matter (PFDM) is quintessence matter, because only for this type of matter, the equation of state is possibly equal to -1/3. At the same time, the solution can also be understood as a black hole solution under the PFDM model. In this situation, the flatness of the rotation curves of spiral galaxies at a long distance can be explained naturally. Here, we assume that this property continues to be valid in Rastall gravity. 22.2.Perfect fluid dark matter in Rastall gravity -->
2.2.Perfect fluid dark matter in Rastall gravity
Heydarzade & Darabi [13] generalized Kiselev's [8] solution from GR to Rastall gravity and obtained a spherically symmetric black hole solution in perfect fluid matter. This solution has the form of
where $ \kappa\lambda $ is a parameter of the Rastall gravity, which determines the distribution of perfect fluid matter. For convenience, we write $ \kappa\lambda $ as $ \beta $ throughout this article, i.e. $ \beta = \kappa\lambda $. For PFDM ($ \omega = -1/3 $), the energy density $ \rho_{DM} $ can be derived from the Einstein equation. Because the motion velocity of a dark matter particle is much smaller than the speed of light, the energy density of PFDM can approximate the mass density. Here, from Kamada et al. [14], the baryon matter can be treated as an index disk, i.e. $\rho_{b} = \Sigma_{0}\exp[-r/r_{d}]\delta(z)$, where $ \Sigma_{0} $ and $ r_{d} $ are the central surface density and scale radius of the disk, respectively. In this space-time metric, using the mass density of the PFDM halo and baryon disk, we can calculate the total mass function, described as $M(r) = 4\pi\int_{0}^{r}\rho_{DM}r^{2}{\rm d}r+ 2\pi\int_{0}^{r}\rho_{b}r{\rm d}r$. We then obtain the rotation velocity of stars on the equatorial plane, written as [15]
Where G is the gravitational constant. Here, we have neglected the contributions of the gas and bulge, because the potentials of gas and bulge are very small compared with those of DM halo and baryonic matter. This is a good approximation for fitting the rotation curves of LSB galaxies (similar reason can be found in [14] on the third page). We will use this equation to fit the rotation curves of LSB galaxies, and determine the $ \beta $ values of the Rastall gravity. The parameter $ r_{d} $ is $ 2 kpc $ [14] in Section 3. 22.3.Energy condition in Rastall gravity -->
2.3.Energy condition in Rastall gravity
In the theory of gravity, it is extremely difficult to solve the equation of a gravitational field. Through the Einstein field equation, we know that the distribution of the energy-momentum tensor determines the structure of space-time. Due to the complexity of the matter distribution, the energy-momentum tensor cannot be expressed in a specific form. Therefore, certain conditions, i.e. that the energy density is greater than or equal to zero, were used to study the gravitational field equation. In 1955, Raychaudhuri formally proposed the basic equation of the energy conditions, such as the weak energy condition and strong energy condition. Under these energy conditions, the fundamental properties of gravity are satisfied. In references [13] and [15], they presented a specific study on the energy conditions of Rastall gravity, and found that the constraint of the weak energy condition and strong energy condition on the Rastall parameter $ \beta $ are equal under the assumption of a perfect fluid. They can be given by
If $ \omega = -1/3 $, the perfect fluid matter is described by the PFDM model, and the range of the Rastall parameter $ \beta $ is $ -1/2<\beta<1/4 $. If the $ \beta $ obtained by fitting the observation data is within this range and is a constant on the scale of a spiral galaxy, elliptical galaxy and cosmology, Rastall gravity is supported. If the opposite is true, the model will be excluded.
3.Constraints from rotation curves of LSB galaxiesIn this section, we choose LSB galaxies dominated by dark matter to limit the Rastall parameter. Now, according to Eq. (4), we adopt the Bayesian method [16] to fit the rotation curves of 16 LSB spiral galaxies, and obtain good fits overall, with $ \chi^{2}/dof<1 $ for 15 galaxies (F563-1, F568-3, F583-1, F571-8, F579-v1, F583-4, F730-v1, U5750, U11454, U11616, U11648, U11819, ESO0140040, ESO2060140, ESO3020120), and $ \chi^{2}/dof<2 $ for one galaxy (ESO4250180). Here, the predicted velocity $\upsilon_{\rm pre}$ is taken from Eq. (4) as $ \upsilon(r) $, and the observed velocity $\upsilon_{\rm obs}$ is taken from an astronomical website (http://astroweb.case.edu/ssm/data/RCsmooth.0701.dat). For each galaxy, we assume that it has $ i $ data points. Therefore, the likelihood function can be expressed as
and $ \delta $ is the intrinsic scatter between $\upsilon_{\rm pre}$ and $\upsilon_{\rm obs}$, which is considered to be a free parameter in our Bayesian analysis (see [16] for a detailed explanation). As it is not a model parameter, it is unrelated to Eq. (4). $\upsilon_{\rm err}$ is the measurement error of $\upsilon_{\rm obs}$. Now, the posterior probability function can be written as
Here, for each LSB galaxy, we choose a flat prior $ p(\alpha, \beta, \Sigma_{0}, \delta) $ and use a Python implementation named Emcee [17] along with four free parameters $ \alpha, \beta, \Sigma_{0}, \delta $ to fit the rotation curves. Our results are shown in Table 1.
Galaxy (1)
$ \beta $ (2)
$ \chi^{2}/dof $ (3)
F563-1
0.053
0.877
F568-3
0.155
0.857
F583-1
0.15
0.893
F571-8
0.143
0.877
F579-v1
0.047
0.125
F583-4
0.141
0.216
F730-v1
0.096
0.53
U5750
0.148
0.821
U11454
0.118
0.823
U11616
0.122
0.778
U11648
0.132
0.361
U11819
0.147
0.951
ESO0140040
0.084
0.778
ESO2060140
0.1
0.813
ESO3020120
0.136
0.405
ESO4250180
0.124
1.756
Table1.Best fitting results of the rotation curves for 16 LSB spiral galaxies using Eq. (4). The corresponding rotation curves and the joint constraint plots of the parameters are presented in Figs. 1, 2, 3, 4 in the appendix. Columns (1), (2) and (3) are the name of the galaxy, the fitting values of Rastall parameter $ \beta $ and the $ \chi^{2} $ values, respectively.