HTML
--> --> -->For the one-loop amplitude, a variety of reduction methods has been developed [1–10]. The amplitude can be efficiently expressed as a linear combination of one-loop master integrals. After decades of effort, the one-loop reduction can now be carried out with various automated programs [11–18].
At the multi-loop level, the reduction procedure is much harder than for the one-loop case. To improve the efficiency, the reduction of the multi-loop amplitude is conventionally separated into two steps, i.e. the tensor reduction and the reduction of the scalar integrals using integration by parts (IBP). For the IBP reduction, many algorithms and codes have been developed [19–38]. On the other hand, tensor reduction is also important, and during the past decades many algorithms for tensor reduction have been proposed [39–47]. For some complicated processes, such as the full next-to-next-to-leading order QCD correction of the single-top production [48], the increasing number of form factors makes the coefficients difficult to obtain. For the two-loop five-gluon or six-gluon amplitude, the system of equations for the coefficients can be very complicated [49, 50]. Moreover, in some complicated processes, e.g.
The projection method [39, 40] is one of the most popular approaches for tensor reduction. Many important studies have been performed using this method, such as the high order QCD corrections of the Higgs production [51–54] and vector boson production [55, 56]. However, for some processes containing a fermion chain with two massive spinors, the projection method could be problematic due to the inconsistency between helicity and chirality, as is explicitly shown in next Section.
In this paper, based on the massive spinor decomposition [57–59], we propose to extend the projection method for the reduction of the loop amplitude for any process including the production of massive fermions. The massive spinor can be decomposed by defining a “null spinor” and a “reference spinor”, which have completely different equations-of-motion and polarization summation than the regular spinor. As a result, the projection method can be used for processes containing massive spinors.
The paper is organized as follows. In Section 2, we briefly review the standard projection method and demonstrate the problems due to the lack of a massless spinor. In Section 3, based on the massive spinor decomposition, we introduce the “null spinor” and the “reference spinor”, which can be used to extend the projection method for all processes. In Sections 4 and 5, we take the one-loop and two-loop diagrams for a virtual Z boson decaying into a top-quark pair to demonstrate the effectiveness of our approach. The conclusions are presented in the last section.
$ {\cal A} = \sum\limits_{p,X} C_{p,X} {\cal M}_{p,X}, $ ![]() | (1) |
For convenience, we can define a map for each primitive amplitude from the helicity state
$ f_p: H \mapsto X, {\; s.t.\; } {\mathbb P}_H {\cal M}_{p,X} \neq 0, $ ![]() | (2) |
$ \bar u(k_1) {\not\!\! q} v(k_2), $ ![]() | (3) |
$ f_p(+-) = LR, \quad f_p(-+) = RL. $ ![]() | (4) |
$ \bar u(k_1) {\not\!\! q} v(k_2), $ ![]() | (5) |
$ f_p(--) = f_p(+-) = LR, \quad f_p(++) = f_p(-+) = RL. $ ![]() | (6) |
Therefore we can obtain
$ {\cal M}_{p,X} = \sum\limits_H {\mathbb P}_H {\cal M}_{p,X} = \sum\limits_{H = f_p^{-1}(X)} \delta_{X,f_p(H)}{\cal M}_{p,H}, $ ![]() | (7) |
Consequently, the amplitude
$ {\cal A} = \sum\limits_{p,H}C_{p,X = f(H)} ( {\mathbb P}_H {\cal M}_{p} ). $ ![]() | (8) |
$ {\cal A}_H = \sum\limits_{p}C_{p,X = f(H)} ( {\mathbb P}_H {\cal M}_{p} ). $ ![]() | (9) |
$ {\cal M}_p = \sum\limits_{i} d_{i,p} F_i. $ ![]() | (10) |
$ M_{ij}\equiv F_iF_j^\dagger. $ ![]() | (11) |
$ d_{i,p} = \sum\limits_{j} (M^{-1})_{ij}{\cal M}_p F_j^\dagger. $ ![]() | (12) |
$ {\cal A} = \sum\limits_{i,H} c_{i,H}({\mathbb P}_{H} F_i), $ ![]() | (13) |
$ c_{i,H} = \sum\limits_{p}d_{i,p}C_{p,X = f(H)}. $ ![]() | (14) |
$ k = k_0+\dfrac{m^2_k}{2 k_{0}\cdot k_{r}}k_{r}, $ ![]() | (15) |
$ \begin{split} u^+(k,m_k)& = \left|k_{0} \right \rangle+\dfrac{m_k}{\left[k_{0}k_{r}\right]}\left|k_{r}\right],\\ u^-(k,m_k)& = \left|k_{0} \right ]+\dfrac{m_k}{\left\langle k_{0}k_{r}\right\rangle}\left|k_{r}\right\rangle,\\ v^+(k,m_k)& = \left|k_{0} \right ]-\dfrac{m_k}{\left\langle k_{0}k_{r}\right\rangle}\left|k_{r}\right\rangle,\\ v^-(k,m_k)& = \left|k_{0} \right \rangle-\dfrac{m_k}{\left[k_{0}k_{r}\right]}\left|k_{r}\right]. \end{split} $ ![]() | (16) |
$ \begin{split} u(k,m_k)& = u_{0}(k_0)+ u_{r}(k_{r}),\\ v(k,m_k)& = v_{0}(k_0)+ v_{r}(k_{r}). \end{split} $ ![]() | (17) |
$ \begin{split} u^+_{0}(k_0) &\equiv \left|k_{0} \right \rangle,\quad u^+_{r}(k_{r}) \equiv \dfrac{m_k}{\left[k_{0}k_{r}\right]}\left|k_{r}\right],\\ u^-_{0}(k_0) &\equiv \left|k_{0} \right ],\quad u^-_{r}(k_{r}) \equiv \dfrac{m_k}{\left\langle k_{0}k_{r}\right\rangle}\left|k_{r}\right\rangle,\\ v^+_{0}(k_0) &\equiv \left|k_{0} \right ],\quad v^+_{r}(k_{r}) \equiv -\dfrac{m_k}{\left\langle k_{0}k_{r}\right\rangle}\left|k_{r}\right\rangle,\\ v^-_{0}(k_0) &\equiv \left|k_{0} \right \rangle,\quad v^-_{r}(k_{r}) \equiv -\dfrac{m_k}{\left[k_{0}k_{r}\right]}\left|k_{r}\right]. \end{split} $ ![]() | (18) |
$ \begin{split} u^+_{0}(k_0) \bar{u}^+_{0}(k_0) + u^-_{0}(k_0) \bar{u}^-_{0}(k_0) & = {{\not\! k}_0},\\ v^+_{0}(k_0) \bar{v}^+_{0}(k_0) + v^-_{0}(k_0) \bar{v}^-_{0}(k_0) & = {{\not\! k}_0},\\ u^+_{r}(k_r) \bar{u}^+_{r}(k_r) + u^-_{r}(k_r) \bar{u}^-_{r}(k_r) & = \dfrac{m^2_k}{2 k_0 \cdot k_r} {{\not\! k}_r}, \\ v^+_{r}(k_r) \bar{v}^+_{r}(k_r) + v^-_{r}(k_r) \bar{v}^-_{r}(k_r) & = \dfrac{m^2_k}{2 k_0 \cdot k_r} {{\not\! k}_r}, \end{split} $ ![]() |
$ \begin{split} u^+_{0}(k_0) \bar{u}^+_{r}(k_r) + u^-_{0}(k_0) \bar{u}^-_{r}(k_r) & = \dfrac{1}{m_k}{{\not\! k}_0}{{\not\! k}},\\ u^+_{r}(k_r) \bar{u}^+_{0}(k_0) + u^-_{r}(k_r) \bar{u}^-_{0}(k_0) & = \dfrac{1}{m_k}{{\not\! k}}{{\not\! k}_0},\\ v^+_{0}(k_0) \bar{v}^+_{r}(k_r) + v^-_{0}(k_0) \bar{v}^-_{r}(k_r) & = -\dfrac{1}{m_k}{{\not\! k}_0}{{\not\! k}},\\ v^+_{r}(k_r) \bar{v}^+_{0}(k_0) + v^-_{r}(k_r) \bar{v}^-_{0}(k_0) & = -\dfrac{1}{m_k}{{\not\! k}}{{\not\! k}_0}. \end{split} $ ![]() | (19) |
$ \begin{split} {{\not\! k}}u_{0}(k_0) & = m_k\, u_{r}(k_r),\quad {{\not\! k}}u_{r}(k_r) = m_k\, u_{0}(k_0),\\ {{\not\! k}}v_{0}(k_0) & = -m_k\, v_{r}(k_r),\quad {{\not\! k}}v_{r}(k_r) = -m_k\, v_{0}(k_0). \end{split} $ ![]() | (20) |

The relevant amplitude can be written as
$ {\cal A} = \int {\rm d}^D q \dfrac{N(q,k_1,k_2,k_3)}{ {\cal D}_1 {\cal D}_2 {\cal D}_3 }, $ ![]() | (21) |
$ \begin{split} {\cal D}_1 & = q^2 -m_t^2,\\ {\cal D}_2 & = (q-k_1)^2 -m_t^2,\\ {\cal D}_3 & = (q-k_3)^2. \end{split} $ ![]() | (22) |
$ \begin{split} N_R(q,k_1,k_2,k_3) = & -g^2_s \, \bar{u}(k_2,m_t)\gamma^a({{\not\! k}_1}-{\not\!\! q}+m_t)\\&\times{\not\! {\varepsilon}}P_R({\not \!\!q}+m_t)\gamma^a{v}(k_3,m_t). \end{split} $ ![]() | (23) |
$ \begin{split} {v}({k_3,m_t}) & = {v}_0(k_{30})+{v}_r(k_{3r}),\\ k_3& = k_{30}+\dfrac{m^2_t}{2k_{30}\cdot k_{3r}}k_{3r}. \end{split} $ ![]() | (24) |
$ \begin{split} s_1 &\equiv k_{3r}\cdot k_{30}, \\ s_2 &\equiv k_{3r}\cdot k_{1}. \end{split} $ ![]() | (25) |
$ \begin{split} {\cal M}_1 & = \int {\rm d}^D q \dfrac{\bar{u}(k_2,m_t){\not\! {\varepsilon}} v_{0}(k_{30})}{ {\cal D}_1 {\cal D}_2 {\cal D}_3 },\\ {\cal M}_{2} & = \int {\rm d}^D q \dfrac{\bar{u}(k_2,m_t){\not\! {\varepsilon}} v_{r}(k_{3r})}{ {\cal D}_1 {\cal D}_2 {\cal D}_3 },\\ {\cal M}_{3} & = \int {\rm d}^D q \dfrac{\bar{u}(k_2,m_t){\not\! {\varepsilon}}{\not\!\! q}v_{0}(k_{30})}{ {\cal D}_1 {\cal D}_2 {\cal D}_3 },\\ {\cal M}_{4} & = \int {\rm d}^D q \dfrac{\bar{u}(k_2,m_t){\not\! {\varepsilon}}{\not\!\! q}v_{r}(k_{3r})}{ {\cal D}_1 {\cal D}_2 {\cal D}_3 },\\ {\cal M}_{5}& = \int {\rm d}^D q \dfrac{(k_3\cdot\varepsilon)\bar{u}(k_2,m_t)v_{0}(k_{30})}{ {\cal D}_1 {\cal D}_2 {\cal D}_3 },\\ {\cal M}_{6}& = \int {\rm d}^D q \dfrac{(k_3\cdot\varepsilon)\bar{u}(k_2,m_t)v_{r}(k_{3r})}{ {\cal D}_1 {\cal D}_2 {\cal D}_3 },\\ {\cal M}_{7}& = \int {\rm d}^D q \dfrac{(k_3\cdot\varepsilon)\bar{u}(k_2,m_t){\not\!\! q}v_{0}(k_{30})}{ {\cal D}_1 {\cal D}_2 {\cal D}_3 },\\ {\cal M}_{8}& = \int {\rm d}^D q \dfrac{(k_3\cdot\varepsilon)\bar{u}(k_2,m_t){\not\!\! q}v_{r}(k_{3r})}{ {\cal D}_1 {\cal D}_2 {\cal D}_3 },\\ {\cal M}_{9}& = \int {\rm d}^D q \dfrac{(q\cdot\varepsilon)\bar{u}(k_2,m_t)v_{0}(k_{30})}{ {\cal D}_1 {\cal D}_2 {\cal D}_3 },\\ {\cal M}_{10}& = \int {\rm d}^D q \dfrac{(q\cdot\varepsilon)\bar{u}(k_2,m_t)v_{r}(k_{3r})}{ {\cal D}_1 {\cal D}_2 {\cal D}_3 },\\ {\cal M}_{11}& = \int {\rm d}^D q \dfrac{(q\cdot\varepsilon)\bar{u}(k_2,m_t){\not\!\! q}v_{0}(k_{30})}{ {\cal D}_1 {\cal D}_2 {\cal D}_3 },\\ {\cal M}_{12}& = \int {\rm d}^D q \dfrac{(q\cdot\varepsilon)\bar{u}(k_2,m_t){\not\!\! q}v_{r}(k_{3r})}{ {\cal D}_1 {\cal D}_2 {\cal D}_3 }. \end{split} $ ![]() | (26) |
$ \begin{split} F_{1} & = \bar{u}(k_2,m_t){\not \!\!{\varepsilon}} v_{0}(k_{30}),\\ F_{2} & = \bar{u}(k_2,m_t){\not\!\! {\varepsilon}} v_{r}(k_{3r}),\\ F_{3} & = (k_3\cdot\varepsilon)\bar{u}(k_2,m_t)v_{0}(k_{30}),\\ F_{4} & = (k_3\cdot\varepsilon)\bar{u}(k_2,m_t)v_{r}(k_{3r}). \end{split} $ ![]() | (27) |
$ \begin{align} {\cal M}_{p} = d_{1,p}F_{1}+d_{2,p}F_{2}+d_{3,p}F_{3}+d_{4,p}F_{4}. \end{align} $ ![]() | (28) |
$ \begin{split} {\cal M}_{3} & = \int {\rm d}^D q \dfrac{\bar{u}(k_2,m_t){\not \!\!{\varepsilon}}{\not\!\! q}v_{0}(k_{30})}{ {\cal D}_1 {\cal D}_2 {\cal D}_3 },\\ {\cal M}_{4} & = \int {\rm d}^D q \dfrac{\bar{u}(k_2,m_t){\not \!\!{\varepsilon}}{\not\!\! q}v_{r}(k_{3r})}{ {\cal D}_1 {\cal D}_2 {\cal D}_3 }. \end{split} $ ![]() | (29) |
$ \begin{split} {{\not\! k}_3}v_{0}(k_{30}) = -m_t v_{r}(k_{3r}),\quad {{\not\! k}_3}v_{r}(k_{3r}) = -m_t v_{0}(k_{30}), \end{split} $ ![]() | (30) |
$ d_{3,1} = d_{4,2},\quad d_{3,2} = d_{4,1},\quad d_{3,3} = d_{4,4},\quad d_{3,4} = d_{4,3}. $ ![]() | (31) |
$ \begin{split} {k_{3r}} \cdot {{q}} = &\dfrac{2}{Q^4-4 {m^2_t} {Q^2}}\Big \{({k_2}\cdot {{q}} ) ({Q^2} {s_1}-2 {m^2_t} {s_2})\\ &+({k_3}\cdot {{q}} )({Q^2} ({s_2}-{s_1})-2 {m^2_t} {s_2})\Big\}. \end{split} $ ![]() | (32) |
$ \begin{split} {u}({k_2,m_t}) & = {u}_0(k_{20})+{u}_r(k_{2r}),\\ k_2& = k_{20}+\dfrac{m^2_t}{2k_{20}\cdot k_{2r}}k_{2r}. \end{split} $ ![]() | (33) |
$ \begin{split} {\mathbb P}_{-+} F_1 & = \left\langle k_{20}|{\not\!\! {\varepsilon}}|k_{30}\right],\\ {\mathbb P}_{++} F_1 & = \dfrac{m_t}{\left\langle k_{2r}|k_{20}\right\rangle}\left\langle k_{2r}|{\not\!\! {\varepsilon}}|k_{30}\right],\\ {\mathbb P}_{++} F_2 & = -\dfrac{m_t}{\left\langle k_{30}|k_{3r}\right\rangle} \left[k_{20}|{\not\!\! {\varepsilon}}|k_{3r}\right\rangle,\\ {\mathbb P}_{-+} F_2 & = -\dfrac{m_t^2}{\left[k_{2r}|k_{20}\right]\left\langle k_{30}|k_{3r}\right\rangle} \left[k_{2r}|{\not\!\! {\varepsilon}}|k_{3r}\right\rangle,\\ {\mathbb P}_{++} F_3 & = (k_3\cdot\varepsilon)\left[k_{20}|k_{30}\right],\\ {\mathbb P}_{-+} F_3 & = (k_3\cdot\varepsilon)\dfrac{m_t}{\left[k_{2r}|k_{20}\right]}\left[k_{2r}|k_{30}\right],\\ {\mathbb P}_{-+} F_4 & = -(k_3\cdot\varepsilon) \dfrac{m_t}{\left\langle k_{30}|k_{3r}\right\rangle} \left\langle k_{20}|k_{3r}\right\rangle,\\ {\mathbb P}_{++} F_4 & = -(k_3\cdot\varepsilon) \dfrac{m_t^2}{\left\langle k_{2r}|k_{20}\right\rangle\left\langle k_{30}|k_{3r}\right\rangle}\left\langle k_{2r}|k_{3r}\right\rangle,\\ {\mathbb P}_{+-} F_1 & = \left[k_{20}|{\not \!\!{\varepsilon}}| k_{30} \right\rangle ,\\ {\mathbb P}_{--} F_1 & = \dfrac{m_t}{\left[ k_{2r}|k_{20}\right]} \left[k_{2r}|{\not\!\! {\varepsilon}} |k_{30}\right\rangle,\\ {\mathbb P}_{--} F_2 & = -\dfrac{m_t}{\left[ k_{30}|k_{3r}\right]} \left\langle k_{20}|{\not\!\! {\varepsilon}}|k_{3r}\right],\\ {\mathbb P}_{+-} F_2 & = -\dfrac{m_t^2}{\left\langle k_{2r}|k_{20}\right\rangle \left[ k_{30}|k_{3r}\right]} \left\langle k_{2r}|{\not \!\!{\varepsilon}}| k_{3r}\right],\\ {\mathbb P}_{--} F_3 & = (k_3\cdot\varepsilon)\left\langle k_{20}|k_{30} \right\rangle,\\ {\mathbb P}_{+-} F_3 & = (k_3\cdot\varepsilon)\dfrac{m_t}{\left\langle k_{2r}|k_{20}\right\rangle} \left\langle k_{2r}|k_{30} \right\rangle,\\ {\mathbb P}_{+-} F_4 & = -(k_3\cdot\varepsilon) \dfrac{m_t}{\left[ k_{30}|k_{3r}\right]} \left[ k_{20}|k_{3r}\right],\\ {\mathbb P}_{--} F_4 & = -(k_3\cdot\varepsilon) \dfrac{m_t^2}{\left[ k_{2r}|k_{20}\right]\left[ k_{30}|k_{3r}\right]} \left[ k_{2r}|k_{3r}\right]. \end{split} $ ![]() | (34) |
$ \begin{align} c_{1,-+} = &c_{1,++} = c_{2,--} = c_{2,+-} \\ = &\dfrac{-g^2_s}{Q^4-4 m^2_{t} Q^2} \int {\rm d}^D q \dfrac{1}{ {\cal D}_1 {\cal D}_2 {\cal D}_3 }\big\{8 m^4_{t} Q^2-2 m^2_{t} Q^4+\left(8 (D-4) m^4_{t}-4 m^2_{t} Q^2\right) (k_2 \cdot q )+(8 (D-4) m^4_{t}-4 (D-5) m^2_{t} Q^2)(k_3 \cdot q )\big\},\\ \\ c_{2,++} = &c_{2,-+} = c_{1,+-} = c_{1,--} \\ = & \dfrac{-g^2_s}{Q^4-4 m^2_{t} Q^2} \int {\rm d}^D q \dfrac{1}{ {\cal D}_1 {\cal D}_2 {\cal D}_3 }\big\{(D-4) m^2_{t} Q^2 \left(Q^2-4 m^2_{t}\right)+(8 (D-4) m^4_{t}-4 (D-1)m^2_{t} Q^2+4 Q^4)(k_2 \cdot q )\\&+\left(8 (D-4) m^4_{t}+4 (7-2 D) m^2_{t} Q^2+2 (D-4) Q^4\right) (k_3 \cdot q )+\left(16 m^2_{t}-8 Q^2\right)(k_2 \cdot q ) (k_3 \cdot q )\\&+8 m^2_{t} (k_2 \cdot q )^2+8 m^2_{t} (k_3 \cdot q )^2 -(D-4) Q^2\left(Q^2-4 m^2_{t}\right) q^2\big\},\\ \\ c_{3,++} = & c_{3,-+} = c_{4,+-} = c_{4,--} \\ = & \dfrac{-g^2_s}{\left(Q^3-4 m^2_t Q\right)^2}\int {\rm d}^D q \dfrac{1}{ {\cal D}_1 {\cal D}_2 {\cal D}_3 }\big\{2(D-4) m_{t} \left(Q^3-4 m^2_{t} Q\right)^2+(-32 (D-4) m_{t}^5+8 \,D\, m^3_{t} Q^2-8 m_{t} Q^4)(k_2 \cdot q )\\&-4 m_{t} \left(4 m^2_{t}-Q^2\right) \left(2 (D-4) m^2_{t}-(D-6) Q^2\right) (k_3 \cdot q )+\left(8\, D \,m_{t} Q^2-32 m^3_{t}\right)(k_2 \cdot q ) (k_3 \cdot q )\\&+\left(16 (D-3) m^3_{t}-8 (D-2) m_{t} Q^2\right) (k_2 \cdot q )^2-16 (D-1) m^3_{t} (k_3 \cdot q)^2-4 m_{t} Q^2\left(Q^2-4 m^2_{t}\right) q^2\big\},\\ \\ c_{4,-+} = & c_{4,++} = c_{3,--} = c_{3,+-} \\ = & \dfrac{-g^2_s}{\left(Q^3-4 m^2_t Q\right)^2}\int {\rm d}^D q \dfrac{1}{ {\cal D}_1 {\cal D}_2 {\cal D}_3 }\big\{-8 (D-4) m^3_{t} \left(4 m^2_{t}-Q^2\right) (k_2 \cdot q )-4 (D-4) m_{t} (8 m^4_{t}-6 m^2_{t} Q^2 +Q^4) (k_3 \cdot q )\\&+\left(8\,D\,m_{t} Q^2-32 m^3_{t}\right) (k_2 \cdot q ) (k_3 \cdot q )-16 (D-1) m^3_{t}(k_2 \cdot q )^2 +\left(16 (D-3) m^3_{t}-8 (D-2) m_{t} Q^2\right) (k_3 \cdot q )^2\\&-4 m_{t} Q^2 \left(Q^2 -4 m^2_{t}\right)q^2\big\}. \end{align} $ ![]() | (35) |

$ {\cal A} = \int {\rm d}^D q_1 {\rm d}^D q_2 \dfrac{N(q_1,q_2,k_1,k_2,k_3)}{ {\cal D}_1 {\cal D}_2 {\cal D}_3 {\cal D}_4 {\cal D}_5 {\cal D}_6 }, $ ![]() | (36) |
$ \begin{split} {\cal D}_1 & = (q_2+k_2)^2 -m_t^2,\\ {\cal D}_2 & = (q_1)^2 - m_t^2,\\ {\cal D}_3 & = (q_1-k_1)^2 ,\\ {\cal D}_4 & = (q_2-k_3)^2 - m_t^2,\\ {\cal D}_5 & = (q_2)^2,\\ {\cal D}_6 & = (q_1-q_2-k_2)^2. \end{split} $ ![]() | (37) |
$ {\cal D}_7 = (q_1-k_2)^2. $ ![]() | (38) |
$ \begin{split} N_R(&q_1,q_2,k_1,k_2,k_3) = g^4_s \bar{u}(k_2)\gamma^a({{\not\!\! q}_2}+{{\not\!\! k}_2}+m_t)\gamma^b({{\not\!\! q}_1}+m_t)\\ &\times {\not\!\! {\varepsilon}}P_R({{\not \!\!k}_1}-{{\not\!\! q}_1}+m_t) \gamma^b ({{\not\!\! k}_3}-{{\not \!\!q}_2}+m_t)\gamma^a v(k_3). \end{split} $ ![]() | (39) |
$ \begin{split} s_1 \equiv k_{3r}\cdot k_{30},\quad s_2 \equiv k_{3r}\cdot k_{1} . \end{split} $ ![]() | (40) |
$ \begin{split} F_{1} & = \bar{u}(k_2,m_t){\not\!\! {\varepsilon}} v_{0}(k_{30}),\quad F_{2} = \bar{u}(k_2,m_t){\not\!\! {\varepsilon}} v_{r}(k_{3r}),\\ F_{3} & = (k_3\cdot\varepsilon)\bar{u}(k_2,m_t)v_{0}(k_{30}),\\ F_{4} & = (k_3\cdot\varepsilon)\bar{u}(k_2,m_t)v_{r}(k_{3r}). \end{split} $ ![]() | (41) |
$ \begin{split} {k_{3r}} \cdot {{q_1}} = & \dfrac{2}{Q^4-4 {m^2_t} Q^2} \{({k_2}\cdot {{q_1}} ) ({Q^2} {s_1}-2 {m^2_t} {s_2})\\ &+({k_3}\cdot {{q_1}} )({Q^2} ({s_2}-{s_1})-2 {m^2_t} {s_2})\}, \end{split} $ ![]() | (42) |
$ \begin{split} \\ {k_{3r}} \cdot {{q_2}} = & \dfrac{2}{Q^4-4 {m^2_t} Q^2} \{({k_2}\cdot {{q_2}} ) ({Q^2} {s_1}-2 {m^2_t} {s_2})\\ &+({k_3}\cdot {{q_2}} )({Q^2} ({s_2}-{s_1})-2 {m^2_t} {s_2})\}. \end{split} $ ![]() | (43) |
$ \begin{split} {\mathbb P}_{-+} F_1 & = \left\langle k_{20}|{\not \!\! {\varepsilon}}|k_{30}\right],\\ {\mathbb P}_{++} F_1 & = \dfrac{m_t}{\left\langle k_{2r}|k_{20}\right\rangle}\left\langle k_{2r}|{\not \!\! {\varepsilon}}|k_{30}\right],\\ {\mathbb P}_{++} F_2 & = -\dfrac{m_t}{\left\langle k_{30}|k_{3r}\right\rangle} \left[k_{20}|{\not \!\! {\varepsilon}}|k_{3r}\right\rangle,\\ {\mathbb P}_{-+} F_2 & = -\dfrac{m_t^2}{\left[k_{2r}|k_{20}\right]\left\langle k_{30}|k_{3r}\right\rangle} \left[k_{2r}|{\not \!\! {\varepsilon}}|k_{3r}\right\rangle,\\ {\mathbb P}_{++} F_3 & = (k_3\cdot\varepsilon)\left[k_{20}|k_{30}\right],\\ {\mathbb P}_{-+} F_3 & = (k_3\cdot\varepsilon)\dfrac{m_t}{\left[k_{2r}|k_{20}\right]}\left[k_{2r}|k_{30}\right], \end{split} $ ![]() |
$ \begin{split} {\mathbb P}_{-+} F_4 & = -(k_3\cdot\varepsilon) \dfrac{m_t}{\left\langle k_{30}|k_{3r}\right\rangle} \left\langle k_{20}|k_{3r}\right\rangle,\\ {\mathbb P}_{++} F_4 & = -(k_3\cdot\varepsilon) \dfrac{m_t^2}{\left\langle k_{2r}|k_{20}\right\rangle\left\langle k_{30}|k_{3r}\right\rangle}\left\langle k_{2r}|k_{3r}\right\rangle,\\ {\mathbb P}_{+-} F_1 & = \left[k_{20}|{\not \!\! {\varepsilon}}| k_{30} \right\rangle ,\\ {\mathbb P}_{--} F_1 & = \dfrac{m_t}{\left[ k_{2r}|k_{20}\right]} \left[k_{2r}|{\not \!\! {\varepsilon}} |k_{30}\right\rangle,\\ {\mathbb P}_{--} F_2 & = -\dfrac{m_t}{\left[ k_{30}|k_{3r}\right]} \left\langle k_{20}|{\not \!\! {\varepsilon}}|k_{3r}\right],\\ {\mathbb P}_{+-} F_2 & = -\dfrac{m_t^2}{\left\langle k_{2r}|k_{20}\right\rangle \left[ k_{30}|k_{3r}\right]} \left\langle k_{2r}|{\not \!\! {\varepsilon}}| k_{3r}\right],\\ {\mathbb P}_{--} F_3 & = (k_3\cdot\varepsilon)\left\langle k_{20}|k_{30} \right\rangle,\\ {\mathbb P}_{+-} F_3 & = (k_3\cdot\varepsilon)\dfrac{m_t}{\left\langle k_{2r}|k_{20}\right\rangle} \left\langle k_{2r}|k_{30} \right\rangle,\\ {\mathbb P}_{+-} F_4 & = -(k_3\cdot\varepsilon) \dfrac{m_t}{\left[ k_{30}|k_{3r}\right]} \left[ k_{20}|k_{3r}\right],\\ {\mathbb P}_{--} F_4 & = -(k_3\cdot\varepsilon) \dfrac{m_t^2}{\left[ k_{2r}|k_{20}\right]\left[ k_{30}|k_{3r}\right]} \left[ k_{2r}|k_{3r}\right]. \end{split} $ ![]() | (44) |
$ \begin{split} x_1 & = q_1 \cdot k_2,\quad x_2 = q_1 \cdot k_3,\\ x_3 & = q_2 \cdot k_2,\quad x_4 = q_2 \cdot k_3,\\ x_5 & = q_1^2,\quad x_6 = q_2^2,\quad x_7 = q_1 \cdot q_2. \end{split} $ ![]() | (45) |
$ \begin{split} c_{1,-+} = &c_{1,++} = c_{2,--} = c_{2,+-} = \dfrac{2g^4_s {m^2_t}}{(D-2) {Q^2} \left(Q^2-4 {m^2_t}\right)}\int {\rm d}^D q_1 {\rm d}^D q_2 \dfrac{1}{ {\cal D}_1 {\cal D}_2 {\cal D}_3 {\cal D}_4 {\cal D}_5 {\cal D}_6 }\\& \times \Big\{ -16 (D-2) m^2_{t} x_1^2 +8 (D-2) x_4 x_1^2 -16 (D-2) m^2_{t} x_2^2 -4 \left(D^3-16 D^2+80 D-124\right) x_1 x_4^2 \\& +4 \left(D^3-12 D^2+44 D-52\right) m^2_{t} x_4^2 -4 (D-3) (D-2) Q^2 \left(Q^2-4 m^2_{t}\right) x_1 -4 (D-2) Q^2 \left(Q^2-4 m^2_{t}\right) x_2 \\& -2 Q^2 \left(2 D^2-19 D+38\right) \left(Q^2-4 m^2_{t}\right) x_7 +2 (D-4)(D-2) \left(Q^2-4 m^2_{t}\right) Q^2 x_5\\& +(D-4) \left(D^2-6 D+10\right) \left(Q^2-4 m^2_{t}\right) Q^2 x_6 +4 (D-4) \left((D-4)^2 m^2_{t}-(D-5) Q^2\right) x_1 x_6 \\& +2 (D-4) \left(2 (D-4)^2 m^2_{t}-\left(D^2-10 D+26\right) Q^2\right) x_2 x_6 +2 (D-2) \left(Q^2-4 m^2_{t}\right) Q^2 \left((D-2) m^2_{t}-Q^2\right) \\& + \left(4 \left(D^3-12 D^2+44 D-52\right) m^2_{t} -2 (D-4)^2 (D-2) Q^2\right)x_3^2 +4 \left(D^3-14 D^2+64 D-92\right) x_2 x_3^2 \\& +16 (D-2) \left(Q^2-2 m^2_{t}\right) x_1 x_2 -8 (D-2) x_1 x_2 x_3 +8 (D-5) (D-2) x_2^2 x_3 +2 (D-4) (D-2) \left(2 (D-4) m^2_{t}-Q^2\right) x_3 x_5 \\& +2 (D-2) \left(2 (D-4) (D-2) m^4_{t}+\left(-4 D^2+25 D-42\right) Q^2 m^2_{t}+\left(D^2-7 D+14\right) Q^4\right) x_3 \\& +\left(4 (D-4) (D-2) Q^2-8 \left(2 D^2-19 D+38\right) m^2_{t}\right) x_1 x_3 \\& +\left(8 \left(D^3-12 D^2+51 D-70\right) m^2_{t} -4 \left(D^3-11 D^2+43 D-58\right) Q^2\right) x_2 x_3 \\& +2 (D\!-\!4) (D\!-\!2) \left(2 (D\!-\!4) m^2_{t}-(D\!-\!5) Q^2\right) x_4 x_5 +2 (D-2) \left(2 (D-4) (D-2) m^4_{t}-\left(D^2-9 D+14\right) Q^2 m^2_{t}-2 Q^4\right) x_4 \\& +\left(4 \left(D^3-10 D^2+25 D-10\right) Q^2-8 (D-3) \left(D^2-5 D-2\right) m^2_{t}\right) x_1 x_4 \\& +\left(8 (D-5) (D-2) Q^2 -8 \left(2 D^2-19 D+38\right) m^2_{t}\right) x_2 x_4 -8 (D-5) (D-2) x_1 x_2 x_4 \\& +\left(8 \left(D^3-12 D^2+44 D-52\right) m^2_{t} -2 \left(D^3-14 D^2+56 D-72\right) Q^2\right) x_3 x_4 -4 \left(D^3-14 D^2+64 D-92\right) x_1 x_3 x_4 \\& +4 \left(D^3\!-\!16 D^2\!+\!80 D\!-\!124\right) x_2 x_3 x_4 \!+\!4 (D\!-\!2) \left(2 (D-4) m^2_{t}\!-\!Q^2\right) x_1 x_7 +4 (D-2) \left(2 (D-4) m^2_{t}-(D-5) Q^2\right) x_2 x_7 \\& -8 (D-3) \left((D-4)^2 m^2_{t}-(D-5) Q^2\right) x_3 x_7-4 (D-3) \left(2 (D-4)^2 m^2_{t}-\left(D^2-10 D+26\right) Q^2\right) x_4 x_7 \Big\}, \end{split} $ ![]() | (46) |
$ \begin{split} c_{2,++} = &c_{2,-+} = c_{1,+-} = c_{1,--} = \dfrac{g^4_s}{(D-2)Q^2(Q^2-4m^2_t)}\int {\rm d}^D q_1 {\rm d}^D q_2 \dfrac{1}{ {\cal D}_1 {\cal D}_2 {\cal D}_3 {\cal D}_4 {\cal D}_5 {\cal D}_6 }\\ &\times\Big\{ 8 (D-4)^2 (D-3) m^4_{t} x_3^2 +4 (D-2) \left(2 (D-4) (D-2) m^2_{t}+(14-3 D) Q^2\right) m^4_{t} x_4 -16 (D-2)\left(2 m^2_{t}-Q^2\right) m^2_{t}x_2^2 \\& -8 (D-2)^2 m^2_{t} x_3^2 x_5 -8 (D-2)^2 m^2_{t} x_4^2 x_5 -8 (D-2)^2 m^2_{t} x_1^2 x_6 -8 (D-2)^2 m^2_{t} x_2^2 x_6 -(D-4)^3 Q^2 m^2_{t} \left(4 m^2_{t}-Q^2\right) x_6 \\& +16 (D-2) \left(Q^2-2 m^2_{t}\right) m^2_{t}x_1^2 -2 (D-2) Q^2 m^2_{t} \left(4 m^2_{t}-Q^2\right) \left(2 (D-2) m^2_{t}-(D-4) Q^2\right)\\& +4 (D-4)^2 \left(2 (D-3) m^2_{t}-(D-2) Q^2\right) m^2_{t}x_4^2\\& +4 (D-2) \left(2 (D-4) (D-2) m^4_{t}-(D-3) (D-2) Q^2 m^2_{t}+(D-4) Q^4\right)m^2_{t} x_3 \\& +4 (D-4)^2 m^2_{t} \left(4 (D-3) m^2_{t}-(D-4) Q^2\right) x_3 x_4 +16 (D-2)^2 m^2_{t} x_1 x_3 x_7 +16 (D-2)^2 m^2_{t} x_2 x_4 x_7 \\& -16 (D-2) \left(3 m^2_{t}-Q^2\right) x_3 x_2^2 +4 (D-2)^2 \left(Q^2-4 m^2_{t}\right) Q^2 x_7^2 -2 (D-4) (D-2) Q^2 \left(8 m^4_{t}-6 Q^2 m^2_{t}+Q^4\right) x_5\\& -8 (D-2)^2 \left(2 m^2_{t}-Q^2\right) x_3 x_4 x_5 +(D-6) (D-2)^2 \left(Q^2-4 m^2_{t}\right) Q^2 x_5 x_6\\& +2 (D-4)\left(4 (D-4)^2 m^4_{t} +2 \left(D^2-6 D+14\right) Q^2 m^2_{t}-\left(D^2-8 D+20\right) Q^4\right) x_1 x_6\\& +8 (D-4) \left((D-4)^2 m^4_{t} +(3 D-11) Q^2 m^2_{t}-(D-4) Q^4\right) x_2 x_6 -8 (D-2)^2 \left(2 m^2_{t}-Q^2\right) x_1 x_2 x_6 \\& +\left(4 \left(D^3-14 D^2+68 D-104\right) Q^2-8 \left(D^3-16 D^2+80 D-124\right) m^2_{t}\right) x_1 x_4^2 \\& +4 (D-2) Q^2 \left(4 m^2_{t}-Q^2\right) \left(2 (D-3) m^2_{t}-(D-4) Q^2\right) x_1\\& + \left(8 \left(D^3-14 D^2+64 D-92\right) m^2_{t}-4 (D-4) \left(D^2-12 D+28\right) Q^2\right) x_2 x_3^2 +8 (D-2) Q^2 \left(4 m^4_{t}-5 Q^2 m^2_{t}+Q^4\right) x_2 \\& -16 (D-2) \left(Q^2-2 m^2_{t}\right)^2 x_1 x_2 -16 (D-2) \left((D-1) m^2_{t}-Q^2\right) x_1 x_2 x_3 \\& +4 (D-4) (D-2) \left(2 (D-4) m^4_{t} -(D-1) Q^2 m^2_{t}+Q^4\right) x_3 x_5 \\& +\left(-16 \left(3 D^2-21 D+38\right) m^4_{t}+16 (3 D-8) (D-4) Q^2 m^2_{t} -8 (D-4) (D-2) Q^4\right) x_1 x_3 \\& +\left(16 \left(D^3-13 D^2+53 D-70\right) m^4_{t}+8 \left(5 D^2-35 D+66\right) Q^2 m^2_{t} -8 \left(D^2-7 D+14\right) Q^4\right) x_2 x_3 \\& -16 (D-2) \left(Q^2-(D-1) m^2_{t}\right) x_1^2 x_4 +4 (D-4) (D-2) \left(2 (D-4) m^4_{t}+3 Q^2 m^2_{t}-Q^4\right) x_4 x_5 \\& -8 \left(2 \left(D^3-7 D^2+11 D+6\right) m^4_{t}+\left(-2 D^2+23 D-54\right) Q^2 m^2_{t}+(10-3 D) Q^4\right) x_1 x_4 \\& +\left(-16 \left(3 D^2-21 D+38\right) m^4_{t}+8 \left(D^2-16 D+36\right) Q^2 m^2_{t} +16 (D-2) Q^4\right) x_2 x_4 +16 (D-2) \left(3 m^2_{t}-Q^2\right) x_1 x_2 x_4 \\& +\left(4 (D-4) \left(D^2-12 D+28\right) Q^2 -8 \left(D^3-14 D^2+64 D-92\right) m^2_{t}\right) x_1 x_3 x_4 \\& +\left(8 \left(D^3-16 D^2+80 D-124\right) m^2_{t} -4 \left(D^3-14 D^2+68 D-104\right) Q^2\right) x_2 x_3 x_4 \\& +4 \left((D-6) (D-3) Q^6+(7 D-22) (5-D) m^2_{t} Q^4 +4 \left(3 D^2-21 D+38\right) m^4_{t} Q^2\right) x_7 \\& +8 (D-2) \left(2 (D-4) m^4_{t}-(D-1) Q^2 m^2_{t}+Q^4\right) x_1 x_7 +8 (D-2) \left(2 (D-4) m^4_{t}+3 Q^2 m^2_{t}-Q^4\right) x_2 x_7 \\& +2 \left(-8 (D-4)^2 (D-3) m^4_{t} +4 \left(3 D^2-20 D+34\right) Q^2 m^2_{t}+(D-4) \left(D^2-12 D+28\right) Q^4\right) x_3 x_7 \\& +8 (D-2)^2 \left(2 m^2_{t}-Q^2\right)x_2 x_3 x_7 +8 (D-2)^2 \left(2 m^2_{t}-Q^2\right) x_1 x_4 x_7 \\& -2 \left(8 (D-4)^2 (D-3) m^4_{t}-4 \left(D^3-12 D^2+52 D-74\right) Q^2 m^2_{t} +\left(D^3-14 D^2+68 D-104\right) Q^4\right) x_4 x_7 \Big\}, \end{split} $ ![]() | (47) |
$ \begin{split} c_{3,++} = & c_{3,-+} = c_{4,+-} = c_{4,--} = \dfrac{4m_t g^4_s}{(D-2)(Q^3-4m^2_tQ)^2}\int {\rm d}^D q_1 {\rm d}^D q_2 \dfrac{1}{ {\cal D}_1 {\cal D}_2 {\cal D}_3 {\cal D}_4 {\cal D}_5 {\cal D}_6 }\\ &\times\Big\{ -2 (D-2)^2 \left(Q^2-4 m^2_t\right) Q^2 x_7^2 +4 (D-1)(D-2)^2 m^2_t x_5 x_4^2 +2 (D-2)^2 \left((D-2) Q^2-2 (D-3) m^2_t\right) x_5 x_3^2 \\& -2 (D-2)^2 \left(D Q^2-4 m^2_t\right) x_3 x_4 x_5 +4 (D-1) (D-2)^2 m^2_t x_6 x_2^2 +2 (D-2)^2 \left(Q^2-4 m^2_t\right) Q^2 x_5 x_6 \\& +2 (D-2)^2 \left((D-2) Q^2-2 (D-3) m^2_t\right) x_6 x_1^2 -2 (D-2)^2 \left(D Q^2-4 m^2_t\right) x_1 x_2 x_6 -4 (D-1)(D-2)^2 \left(2 m^2_t-Q^2\right) x_2 x_3 x_7 \\ & +4 (D-2)^2 \left(2 (D-3) m^2_t-(D-2) Q^2\right) x_1 x_3 x_7 +4 (D-2)^2 \left(2 (D-3) m^2_t+Q^2\right) x_1 x_4 x_7 -8 (D-1)(D-2)^2 m^2_t x_2 x_4 x_7 \end{split} $ ![]() |
$ \begin{split} & +2 (D-3)(D-2) \left(Q^3-4 m^2_t Q\right)^2 x_5 -2 (D-2) \left(4 m^2_t-Q^2\right) \left(2 \left(D^2-6 D+10\right) m^2_t-(D-3) D Q^2\right) x_3 x_5\\ & -4 (D-2)\left(4 m^2_t-Q^2\right) \left(\left(D^2-6 D+10\right) m^2_t+(D-3) Q^2\right) x_4 x_5 +8 (D-2) m^2_t \left(4 m^2_t-Q^2\right) x_2^2 \\& +4 (D-2) \left(4 m^2_t-Q^2\right) \left(2 m^2_t-(D-2) Q^2\right) x_1^2 -2 (D-4)(D-2) Q^2 \left(8 m^4_t-6 Q^2 m^2_t+Q^4\right) x_1 \\& +4 (D-2) \left(Q^2-4 m^2_t\right) Q^2 \left((D+4) m^2_t-2 Q^2\right) x_2 +4 (D-2)\left(4 m^2_t-Q^2\right) \left(4 m^2_t+(D-4) Q^2\right) x_1 x_2 \\& -4 (D-4)(D-2)(D-1) \left(2 m^2_t-Q^2\right) x_1 x_2 x_3 +2 (D-2) m^2_t \left(4 m^2_t-Q^2\right) \left(2 (D-2) m^2_t+(D-4)^2 Q^2\right) x_3 \\& +4 (D-2) \left(2 \left(D^2-5 D+12\right) m^2_t -\left(D^2-5 D+8\right) Q^2\right) x_3 x_2^2 +4 (D-4) (D-2) (D-1) \left(2 m^2_t-Q^2\right) x_4 x_1^2\\& +2 (D-2) m^2_t \left(8 (D-2) m^4_t-2 \left(2 D^2-13 D+26\right) Q^2 m^2_t+\left(D^2-7 D+14\right) Q^4\right) x_4 \\& -4 (D-2) \left(2 \left(D^2-5 D+12\right) m^2_t-\left(D^2-5 D+8\right) Q^2\right) x_1 x_2 x_4 -2 (D-2)\left(4 m^2_t-Q^2\right) \left(2 (D-4) m^2_t +(D-3) D Q^2\right) x_1 x_7 \\& -2 (D-2)\left(8 (D-4) m^4_t+2 \left(-2 D^2+5 D+4\right) Q^2 m^2_t+(D-3) D Q^4\right) x_2 x_7 \\& -4 \left(4 \left(5 D^2-34 D+58\right) m^2_t+\left(D^3-12 D^2+50 D-68\right) Q^2\right) x_1 x_4^2 -\left(3 D^2-20 D+36\right) \left(4 m^2_t-Q^2\right) m^2_t Q^2x_6\\& +\left(-8 (D-4)^3 m^4_t+6 \left(D^3-4 D^2+16\right) Q^2 m^2_t-\left(D^3-24 D+56\right) Q^4\right) x_1 x_6\\& +\left(-8 (D-4)^3 m^4_t+2 \left(D^3-28 D^2+144 D-224\right) Q^2 m^2_t+8 \left(D^2-6 D+10\right) Q^4\right) x_2 x_6 \\& + \left(4 \left(D^3-3 D^2-8 D+28\right) m^4_t+2 (D-4)^2 (D-2) Q^2 m^2_t\right) x_3^2 \\& + \left(4 (D-2) \left(D^2-6 D+10\right) m^2_t Q^2-4 \left(D^3-9 D^2+32 D-44\right) m^4_t\right) x_4^2 \\& + \left(32 (D-3) (2 D-7) m^2_t -4 \left(D^3-3 D^2-10 D+32\right) Q^2\right) x_2x_3^2 \\& -4 \left(2 \left(D^3-15 D^2+76 D-116\right) m^4_t+(5 D-12) (D-6) Q^2 m^2_t+2 (D-2) Q^4\right) x_1 x_3 \\& +\left(-8 (D-3) \left(D^2-24 D+60\right) m^4_t-4 \left(D^3+18 D^2-114 D+172\right) Q^2 m^2_t+2 \left(D^3+D^2-22 D+40\right) Q^4\right) x_2 x_3 \\& +\left(8 \left(D^3-5 D^2-12 D+52\right) m^4_t+ 8 \left(D^3-11 D^2+47 D-70\right) Q^2 m^2_t-2 (D-4) \left(D^2-7 D+14\right) Q^4\right) x_1 x_4 \\& +\left(8 \left(D^3+7 D^2-68 D+116\right) m^4_t-4 \left(D^3+D^2-46 D+88\right) Q^2 m^2_t-16 (D-2) Q^4\right) x_2 x_4 \\& -2 \left(3 D^2-20 D+36\right) \left(D Q^2-4 m^2_t\right)m^2_t x_3 x_4 +\left(4 \left(D^3-3 D^2-10 D+32\right) Q^2 -32 (D-3) (2 D-7) m^2_t\right) x_1 x_3 x_4 \\& +4 \left(4 \left(5 D^2-34 D+58\right) m^2_t+\left(D^3-12 D^2+50 D-68\right) Q^2\right) x_2 x_3 x_4 \\& +\left((D-6) (D-4) (D-3) Q^6+2 \left(-4 D^3+51 D^2-212 D+284\right) m^2_t Q^4 +8 \left(2 D^3-25 D^2+104 D-140\right) m^4_t Q^2\right) x_7 \\& +2 (D-4) \left(4 m^2_t-Q^2\right) \left(2 (D-4) (D-3) m^2_t +(10-3 D) Q^2\right) x_3 x_7 \\& +2 \left(8 (D-4)^2 (D-3) m^4_t+2 \left(-3 D^3+35 D^2-140 D+184\right) Q^2 m^2_t +\left(D^3-12 D^2+50 D-68\right) Q^4\right) x_4 x_7 \Big\}, \end{split} $ ![]() | (48) |
$ \begin{split} c_{4,-+} = & c_{4,++} = c_{3,--} = c_{3,+-} = \dfrac{2m_tg^4_s}{(D-2)(Q^3-4m^2_tQ)^2}\int {\rm d}^D q_1 {\rm d}^D q_2 \dfrac{1}{ {\cal D}_1 {\cal D}_2 {\cal D}_3 {\cal D}_4 {\cal D}_5 {\cal D}_6 }\\&\times \Big\{-4 (D-2)^2 \left(Q^2-4 m^2_t\right) Q^2 x_7^2 +8 (D-1) x_3^2 m^2_t x_5 (D-2)^2 +4 (D-2)^2 \left((D-2) Q^2-2 (D-3) m^2_t\right)x_4^2 x_5 \\& -4 (D-2)^2 \left(D Q^2-4 m^2_t\right) x_3 x_4 x_5 +8 (D-1) (D-2)^2 m^2_t x_6 x_1^2 +4 (D-2)^2 \left(Q^2-4 m^2_t\right) Q^2 x_5 x_6 \\& +4 (D-2)^2 \left((D-2) Q^2-2 (D-3) m^2_t\right) x_6 x_2^2-4 (D-2)^2 \left(D Q^2-4 m^2_t\right) x_1 x_2 x_6 -16 (D-1)(D-2)^2 m^2_t x_1 x_3 x_7 \\& +8 (D-2)^2 \left(2 (D-3) m^2_t+Q^2\right) x_2 x_3 x_7 -8 (D-1) (D-2)^2 \left(2 m^2_t-Q^2\right) x_1 x_4 x_7 \\& +8 (D-2)^2 \left(2 (D-3) m^2_t-(D-2) Q^2\right) x_2 x_4 x_7 -8 (D-4)(D-2) \left(2 (D+1) m^2_t-Q^2\right) x_3 x_2^2 \\& -4 (D-2)\left(Q^3-4 m^2_t Q\right)^2 x_5 +16 (D-2) m^2_t \left(4 m^2_t-Q^2\right) x_1^2 +8 (D-2)\left(4 m^2_t-Q^2\right) \left(2 m^2_t+(D-2) Q^2\right) x_2^2 \\& +2 (D-2)\left(Q^3-4 m^2_t Q\right)^2 \left(2 (D-2) m^2_t-(D-4) Q^2\right) -4 (D-2)\left(Q^2-4 m^2_t\right) \left(D \left(Q^2-2 m^2_t\right)-2 Q^2\right)Q^2 x_1 \\& +8 (D-2)\left(4 m^2_t-Q^2\right) \left((3 D-8) m^2_t-(D-3) Q^2\right)Q^2 x_2 -8 (D-2)\left(4 m^2_t-Q^2\right) \left(D Q^2-4 m^2_t\right) x_1 x_2\\ & +8 (D-2)\left(4 m^2_t-Q^2\right) \left(2 (D-3) m^2_t-Q^2\right) x_3 x_5 \end{split} $ ![]() |
$ \begin{split} & -4 (D-2)\left(4 m^2_t-Q^2\right) \left(2 (D-3) (D-2) m^4_t -(D-2) (D-1) Q^2 m^2_t+(D-4) Q^4\right) x_3 \\& +8 (D-2)\left(2 \left(D^2-3 D+4\right) m^2_t-D Q^2\right) x_1 x_2 x_3 +4 (D-2)\left(4 m^2_t-Q^2\right) \left(4 (D-3) m^2_t-(D-4) Q^2\right) x_4 x_5 \\& +8 (D-2) \left(D Q^2-2 \left(D^2-3 D+4\right) m^2_t\right) x_4 x_1^2 \\& -4 (D-2)\left(4 m^2_t-Q^2\right) \left(2 (D-3) (D-2) m^4_t +2 (D-2) Q^2 m^2_t-(D-4) Q^4\right) x_4 \\& +8 (D-4)(D-2) \left(2 (D+1) m^2_t-Q^2\right) x_1 x_2 x_4 -4 (D-2) \left(4 m^2_t-Q^2\right) \left(2 (D-4) m^2_t-D Q^2\right) x_1 x_7 \\& -4 (D-2)\left(4 m^2_t-Q^2\right) \left(2 (D-4) m^2_t+D Q^2\right) x_2 x_7 \\& +\left((D-4)^2 (D-2) Q^6+2 \left(-4 D^3+43 D^2-148 D+164\right) m^2_t Q^4 +8 \left(2 D^3-23 D^2+84 D-100\right) m^4_t Q^2\right) x_6 \\& +\left(-16 (D-4)^3 m^4_t-4 \left(D^3-4 D^2+24 D-64\right) Q^2 m^2_t+2 \left(D^3-8 D^2+36 D-64\right) Q^4\right) x_1 x_6 \\& -4 \left(4 (D-4)^3 m^4_t+\left(-5 D^3+44 D^2-168 D+240\right) Q^2 m^2_t+\left(D^3-8 D^2+30 D-44\right) Q^4\right) x_2 x_6 \\& + \left(16 (D-2) \left(D^2-7 D+13\right) m^2_t Q^2 -8 \left(5 D^3-49 D^2+160 D-172\right) m^4_t\right)x_3^2 \\& +\left(12 (D-4)^2 (D-2) m^2_t Q^2-8 (D-3) \left(3 D^2-28 D+52\right) m^4_t\right)x_4^2 \\& + \left(32 (D-3) \left(D^2-8 D+22\right) m^2_t-16 \left(D^3-9 D^2+31 D-38\right) Q^2\right) x_1 x_4^2 \\& -8 \left(4 \left(D^3-10 D^2+38 D-50\right) m^2_t+(3 D-10) (D-4) Q^2\right) x_2 x_3^2 \\& -4 \left(4 \left(3 D^3-23 D^2+76 D-100\right) m^4_t-4 \left(D^3-4 D^2+11 D-26\right) Q^2 m^2_t+(3 D-10) D Q^4\right) x_2 x_3 \\& +8 \left(2 \left(D^3-5 D^2-4 D+36\right) m^4_t+\left(-D^3+D^2+14 D-32\right) Q^2 m^2_t+(D-2)^2 Q^4\right) x_1 x_3 \\& +\left(16 \left(3 D^3-25 D^2+60 D-28\right) m^4_t-8 \left(D^3-12 D^2+22 D+20\right) Q^2 m^2_t-4 \left(D^2+2 D-16\right) Q^4\right) x_1 x_4 \\& -8 \left(2 (D-3) \left(D^2+12\right) m^4_t+(3 D-8) (D-6) Q^2 m^2_t-(D-4) (D-2) Q^4\right) x_2 x_4 \\& +\left(-16 \left(4 D^3-43 D^2+148 D-164\right) m^4_t+4 \left(9 D^3-100 D^2+348 D-384\right) Q^2 m^2_t-8 (D-4)^2 (D-2) Q^4\right) x_3 x_4 \\& +8 \left(4 \left(D^3-10 D^2+38 D-50\right) m^2_t+(3 D-10) (D-4) Q^2\right) x_1 x_3 x_4 \\& +\left(16 \left(D^3-9 D^2+31 D-38\right) Q^2-32 (D-3) \left(D^2-8 D+22\right) m^2_t\right) x_2 x_3 x_4 \\& -2 \left((D-6) (D-4) Q^6-2 \left(3 D^2-36 D+92\right) m^2_t Q^4+8 \left(D^2-16 D+44\right) m^4_t Q^2\right) x_7 \\& +4 (D-4) \left(4 m^2_t-Q^2\right) \left(2 (D-4) (D-3) m^2_t+(10-3 D) Q^2\right) x_3 x_7 \\& +4 \left(8 (D-4)^2 (D-3) m^4_t+2 \left(-3 D^3+35 D^2-140 D+184\right) Q^2 m^2_t+\left(D^3-12 D^2+50 D-68\right) Q^4\right) x_4 x_7\Big\}. \end{split} $ ![]() | (49) |
$ I_{a_1,a_2,a_3,a_4,a_5,a_6,a_7} \equiv \int \dfrac{{\rm d}^D q_1 {\rm d}^D q_2}{ {\cal D}^{a_1}_1 {\cal D}^{a_2}_2 {\cal D}^{a_3}_3 {\cal D}^{a_4}_4 {\cal D}^{a_5}_5 {\cal D}^{a_6}_6 {\cal D}^{a_7}_7 }. $ ![]() | (50) |
$ \begin{split} c_{1,-+} = &c_{1,++} = c_{2,--} = c_{2,+-} = \dfrac{g_s^4}{547285587552000}(-349758480361050 I_{0,0,0,1,1,1,1}+12411033570133 I_{0,0,1,1,1,0,0}\\&+561600032236650 I_{0,1,0,0,0,1,0}+54203486007512020 I_{0,1,0,1,1,1,0}-2524949213666400 I_{0,1,0,1,1,1,1}\\&-37669046330192400 I_{0,1,1,0,0,1,0}+1725030658739520 I_{0,1,1,1,1,0,0}-4392957485551487040 I_{0,1,1,1,1,1,0}\\&-43861242480409840 I_{0,2,0,1,1,1,0}-29063980357164172800 I_{0,2,1,1,1,1,0}+1620333018035519040 I_{1,1,0,1,1,1,1}\\&-72885095952847200 I_{1,1,1,1,1,0,0}+11596870539170956800 I_{2,1,0,1,1,1,1}), \end{split} $ ![]() | (51) |
$ \begin{split} c_{2,++} = &c_{2,-+} = c_{1,+-} = c_{1,--} =\dfrac{g_s^4}{16965853214112000}(8269804372235850 I_{0,0,0,1,1,1,1}+128265951369391 I_{0,0,1,1,1,0,0}\\&-91088086096643130 I_{0,1,0,0,0,1,0}-649848399059280020 I_{0,1,0,1,1,1,0}+1445530903043788800 I_{0,1,0,1,1,1,1}\\&+3309765421122010800 I_{0,1,1,0,0,1,0}-48712048971181200 I_{0,1,1,1,1,0,0}+100038303369820946880 I_{0,1,1,1,1,1,0}\\&+2255145332468200880 I_{0,2,0,1,1,1,0}+558971258163723993600 I_{0,2,1,1,1,1,0}-351050113244960902080 I_{1,1,0,1,1,1,1}\\&+4171217340297348000 I_{1,1,1,1,1,0,0}-1701371669315481561600 I_{2,1,0,1,1,1,1}), \end{split} $ ![]() | (52) |
$ \begin{split} \\ c_{3,++} = &c_{3,-+} = c_{4,+-} = c_{4,--} =\dfrac{m_tg_s^4}{169658532141120000}(15697729816313400 I_{0,0,0,1,1,1,1}-465105777241369 I_{0,0,1,1,1,0,0}\\&+158565732883624440 I_{0,1,0,0,0,1,0}-576650937419554060 I_{0,1,0,1,1,1,0}-2324636412144847200 I_{0,1,0,1,1,1,1}\\&-5066094845578723200 I_{0,1,1,0,0,1,0}-86512591540544400 I_{0,1,1,1,1,0,0}-14868254094936246720 I_{0,1,1,1,1,1,0}\\&-1977030323227905200 I_{0,2,0,1,1,1,0}-159507262360225382400 I_{0,2,1,1,1,1,0}+591796539388769901120 I_{1,1,0,1,1,1,1}\\&+544504397058468000 I_{1,1,1,1,1,0,0}+2749018573751407718400 I_{2,1,0,1,1,1,1}), \end{split} $ ![]() | (53) |
$ \begin{split} \\ c_{4,-+} = &c_{4,++} = c_{3,--} = c_{3,+-} =\dfrac{m_tg_s^4}{18850948015680000}(2930558305311000 I_{0,0,0,1,1,1,1}-155537250759781 I_{0,0,1,1,1,0,0}\\&+20515397403643560 I_{0,1,0,0,0,1,0}-89892274740750940 I_{0,1,0,1,1,1,0}-259544532715984800 I_{0,1,0,1,1,1,1}\\&-575810327185300800 I_{0,1,1,0,0,1,0}-12234451069011600 I_{0,1,1,1,1,0,0}+16492851980585536320 I_{0,1,1,1,1,1,0}\\&-210958059931545200 I_{0,2,0,1,1,1,0}+108826317247815014400 I_{0,2,1,1,1,1,0}+86665228257872911680 I_{1,1,0,1,1,1,1}\\&-54851022351180000 I_{1,1,1,1,1,0,0}+401116455907129497600 I_{2,1,0,1,1,1,1}). \end{split} $ ![]() | (54) |
The authors wish to thank Bo Feng, Thomas Gehrmann, Gang Yang, Li Lin Yang and Hua Xing Zhu for helpful discussions.