HTML
--> --> -->Among all the reactions in e+e? annihilation, e+e?→e+e? and μ+μ? are the two simplest quantum electrodynamics (QED) processes. Calculations of the unpolarized e+e?→e+e? and μ+μ? cross-sections to order α3 (
For perturbative calculations up to order α3, the radiative correction terms are the interferences between the tree level and higher level (one-loop) Feynman diagrams. In the references mentioned above, all the radiative correction terms were treated as small quantities owing to the extra factor, α, compared to that in the tree-level terms. Such approximations for the QED correction and non-resonant quantum chromodynamics (QCD) hadronic correction are reasonable. However, for the energy regions in the vicinity of narrow resonances, such as charmonium J/ψ and ψ(3686), the contribution of the resonant component of the vacuum polarization (VP) correction is neither a small quantity nor a smooth function of energy. This implies that the energy dependence of the VP correction factor has a significant influence on the line shape of the total cross-section. Therefore, the VP correction in the vicinity of narrow resonances has to be treated appropriately.
The radiative correction of process e+e?→μ+μ? includes the initial-state and final-state corrections. The final-state radiative (FSR) correction is much smaller than the initial-state radiative (ISR) correction owing to the mass relation, me ? mμ[6]. The FSR correction can be neglected if one dose not require very high accuracy. In addition, the contributions of the two-photon-exchange diagrams and asymmetry of e± and μ± are less important. In this work, only the ISR correction of the process, e+e? → μ+μ?, is considered to keep the discussion succinct, and the discussions only concentrate on the VP correction. The calculations for other correction terms follow the expressions given in the related references[7, 8].
The calculations of the resonant cross-section and VP correction need the bare value of the electron width of the resonance, but the value cited in the particle data group (PDG) is the experimental electron width, which absorbs the VP effect[9, 10]. Therefore, another motivation of this work is attempt to provide a scheme for extracting the bare electron widths of resonances J/ψ and ψ(3686) by fitting the measured cross-section of e+e? → μ+μ? and then obtain the value of the Born-level Breit-Wigner cross-section.
The basic properties of a resonance with JPC = 1?? is characterized by its three bare parameters: nominal mass M, electron width Γe, and total width Γ. The values of the resonant parameters can be predicted by the potential model[11], but the theoretical uncertainties are difficult to estimate. A reliable method for obtaining accurate values of the resonant parameters is to fit the measured leptonic cross section[12, 13] or hadronic cross section[14] in the vicinity of these resonances. Extracting the bare values from experimental data can provide useful information to decide the theories and models.
The bare values of the resonant parameters are the input quantities for the calculation of ISR factor 1+δ(s) in the measurement of the R value, which is defined as the lowest level hadronic cross-section normalized by the theoretical μ+μ? production cross-section in e+e? annihilation[15, 16]. In fact, the total hadronic cross-section is measured with the experimental data:
$\begin{eqnarray}{\sigma }_{ex}^{{\rm{tot}}}(s)=\frac{{N}_{{\rm{had}}}}{L\epsilon }, \end{eqnarray}$ | (1) |
$\begin{eqnarray}{\sigma }_{ex}^{0}(s)=\frac{{\sigma }_{ex}^{{\rm{tot}}}(s)}{1+\delta (s)}, \end{eqnarray}$ | (2) |
$\begin{eqnarray}R=\frac{{\sigma }_{ex}^{0}(s)}{{\sigma }_{\mu \mu }^{0}(s)}=\frac{{N}_{{\rm{had}}}}{{\sigma }_{\mu \mu }^{0}L\epsilon [1+\delta (s)]}, \, \, \, \, {\sigma }_{\mu \mu }^{0}(s)=\frac{4\pi {\alpha }^{2}}{3s}.\end{eqnarray}$ | (3) |
$\begin{eqnarray}1+\delta (s)\equiv \frac{{\sigma }^{{\rm{tot}}}(s)}{{\sigma }^{0}(s)}, \end{eqnarray}$ | (4) |
$\begin{eqnarray}{\sigma }^{0}(s)={\sigma }_{{\rm{con}}}^{0}(s)+{\sigma }_{{\rm{res}}}^{0}(s), \end{eqnarray}$ | (5) |
$\begin{eqnarray}{\sigma }_{{\rm{res}}}^{0}(s)=\frac{12\pi {\varGamma }_{e}\varGamma }{{(s-{M}^{2})}^{2}+{M}^{2}{\varGamma }^{2}}, \end{eqnarray}$ | (6) |
$\begin{eqnarray}{\mathop{\sigma }\limits^{\sim }}_{{\rm{res}}}(s)=\frac{12\pi {\varGamma }_{e}^{ex}\varGamma }{{(s-{M}^{2})}^{2}+{M}^{2}{\varGamma }^{2}}\ne {\sigma }_{{\rm{res}}}^{0}(s), \end{eqnarray}$ | (7) |
$\begin{eqnarray}\frac{{\sigma }^{{\rm{tot}}}(s)}{{\sigma }_{{\rm{con}}}^{0}(s)+{\mathop{\sigma }\limits^{\sim }}_{{\rm{res}}}(s)}\ne 1+\delta (s).\end{eqnarray}$ | (8) |
The discussion in the following sections will be concentrated on the VP correction of σtot(s) for the process, e+e?→μ+μ?. The outline of this paper is as follows: In section 2, the related Born cross-sections are presented. In section 3, the VP correction to the virtual photon propagator described in text books and references is reviewed. In section 4, the experimental lepton width with different conventions is reviewed. In section 5, the properties of the VP-modified Born cross-section are discussed and the line-shapes are shown graphically. In section 6, the analytical expressions of the total cross-section of e+e?→μ+μ? with single and double VP corrections are deduced, and the numerical results are presented. Section 7 presents some discussions and comments.
$\begin{eqnarray*}{e}^{+}{e}^{-}\Rightarrow \left\{\begin{array}{c}{\gamma }^{\ast }\\ \psi \end{array}\right\}\Rightarrow \, {\mu }^{+}{\mu }^{-}.\end{eqnarray*}$ |
Figure1. Tree-level Feynman diagrams for processes e+e? →μ+μ? via modes γ* (left) and ψ (right). Charge e at the vertex expresses the coupling strength between a lepton and photon.
Virtual photon propagator γ* is unobservable in the experiment, and its role is transferring the electromagnetic interaction between e+e? and μ+μ?. Intermediate resonance ψ is a real particle, which is a
2
2.1.Cross-section of e+e?→γ*→μ+μ?
Channel e+e?→γ*→μ+μ? is a pure QED process, which corresponds to the left diagram in Fig. 1, and the expression of the Born cross-section can be found in any QED text book[5]: $\begin{eqnarray}{\sigma }_{{\gamma }^{\ast }}^{0}(s)=\frac{4\pi {\alpha }^{2}}{3s}.\end{eqnarray}$ | (9) |
2
2.2.Cross-section of e+e?→ψ→μ+μ?
The channel via intermediate resonance ψ corresponds to the right diagram in Fig. 1, which concerns the production and decay of ψ. This section will provide some description about this mode.In general, the wavefunction of time for an unstable particle is expressed as a plane wave with a damping amplitude:
$\begin{eqnarray}\begin{array}{ll}\Psi (t)&=\theta (t)\Psi (0)\cdot {{\rm{e}}}^{{\rm{i}}\omega t}\cdot {{\rm{e}}}^{-t/2\tau }\\&=\theta (t)|\Psi (0)|\cdot {{\rm{e}}}^{{\rm{i}}\delta }\cdot {{\rm{e}}}^{-{\rm{i}}t(M-{\rm{i}}\varGamma /2)}, \end{array}\end{eqnarray}$ | (10) |
Performing the Fourier transformation on t for Ψ(t), the amplitude of an unstable particle is transformed to nonrelativistic wavefunction of energy W:
$\begin{eqnarray}{\mathcal{T}}(W)=\displaystyle {\int }_{-\infty }^{+\infty }\Psi (t)\cdot {{\rm{e}}}^{{\rm{i}}Wt}{\rm{d}}t=\frac{i|\psi (0)|{{\rm{e}}}^{{\rm{i}}\delta }}{(W-M)+i\varGamma /2}, \end{eqnarray}$ | (11) |
$\begin{eqnarray}\displaystyle {\int }_{0}^{\infty }{{\rm{e}}}^{-pt}{\rm{d}}t=\frac{1}{p}, \, \, \, \, \, \, ({\rm{Re}}\, p\gt 0).\end{eqnarray}$ | (12) |
$\begin{eqnarray}{{\mathcal{T}}}_{f}(W)=\frac{i\sqrt{{\varGamma }_{e}\cdot {\varGamma }_{f}}{{\rm{e}}}^{{\rm{i}}\delta }}{(W-M)+i\varGamma /2}, \end{eqnarray}$ | (13) |
The relativistic amplitude can be obtained easily by adopting the physics picture of the Dirac sea. Dirac considered that an antiparticle corresponded to a hole with same mass M but with negative energy state ?W in the Dirac sea. Therefore, the relativistic amplitude, which includes particle-antiparticle, is:
$\begin{eqnarray}\begin{array}{ll}{{\mathcal{T}}}_{f}(W)&=\frac{i\sqrt{{\varGamma }_{e}\cdot {\varGamma }_{f}}{{\rm{e}}}^{{\rm{i}}\delta }}{(W-M)+i\varGamma /2}+\frac{i\sqrt{{\varGamma }_{e}\cdot {\varGamma }_{f}}{{\rm{e}}}^{{\rm{i}}\delta }}{(-W-M)+i\varGamma /2}\\&=\frac{i\sqrt{{\varGamma }_{e}\cdot {\varGamma }_{f}}(2M-i\varGamma ){{\rm{e}}}^{{\rm{i}}\delta }}{{W}^{2}-{M}^{2}+{\varGamma }^{2}/4+i\varGamma M}\\&\approx \frac{i2M\sqrt{{\varGamma }_{e}{\varGamma }_{f}}{{\rm{e}}}^{{\rm{i}}\delta }}{{W}^{2}-{M}^{2}+i\varGamma M}.\end{array}\end{eqnarray}$ | (14) |
The Born cross-section for the resonant mode corresponding to the right diagram in Fig. 1 is generally written in the Breit-Wigner form:
$\begin{eqnarray}{\sigma }_{\psi }^{0}(s)=\frac{4\pi {\alpha }^{2}}{3s}|{{\mathcal{A}}}_{{\rm{BW}}}{|}^{2}, \, \, \, {{\mathcal{A}}}_{{\rm{BW}}}=\frac{Fr{{\rm{e}}}^{{\rm{i}}\delta }}{\Delta +ir}, \end{eqnarray}$ | (15) |
$\begin{eqnarray}\Delta =\frac{s-{M}^{2}}{{M}^{2}}=t-1, \, \, \, \, t=\frac{s}{{M}^{2}}, \end{eqnarray}$ | (16) |
$\begin{eqnarray}r=\frac{\varGamma }{M}, \end{eqnarray}$ | (17) |
$\begin{eqnarray}F=\frac{3\sqrt{s{\varGamma }_{e}{\varGamma }_{f}}}{\alpha \varGamma M}=\frac{3}{\alpha }\sqrt{t{B}_{e}{B}_{f}}.\end{eqnarray}$ | (18) |
Starting with the Van Royen-Weisskopf formula, Γe can be expressed by the following formula[17, 19, 20]:
$\begin{eqnarray}{\varGamma }_{e}=\frac{16}{3}\pi {\alpha }^{2}{e}_{c}^{2}{N}_{c}\frac{|R(0){|}^{2}}{{M}^{2}}\left(1-\frac{16{\alpha }_{s}}{3\pi }\right), \end{eqnarray}$ | (19) |
2
2.3.Total Born cross-section
The total production amplitude of μ+μ? should be a coherent summation of the two channels: $\begin{eqnarray}{{\mathcal{A}}}_{{\rm{eff}}}=1+\frac{Fr{{\rm{e}}}^{{\rm{i}}\delta }}{\Delta +ir}.\end{eqnarray}$ | (20) |
$\begin{eqnarray}{\sigma }^{0}(s)=\frac{4\pi {\alpha }^{2}}{3s}|{{\mathcal{A}}}_{{\rm{eff}}}{|}^{2}.\end{eqnarray}$ | (21) |
$\begin{eqnarray}{\gamma }^{\ast }:\, \, \frac{-i{g}_{\mu \nu }}{{q}^{2}}\, \, \to \, \, {\mathop{\gamma }\limits^{\sim }}^{\ast }:\, \, \frac{-i{g}_{\mu \nu }}{{q}^{2}[1-\Pi ({q}^{2})]}, \end{eqnarray}$ | (22) |
The original algorithm of Π(s) is an infinite integral of fermion-loops (leptons and quarks) in the four-momentum space. The integral for the QED lepton-loops (e+e?, μ+μ?, τ+τ?) can be calculated perturbatively according to the Feynman rules[5, 21]. The divergence of the infinite integral is canceled by electric charge renormalization
$\begin{eqnarray}{Z}_{3}\equiv \frac{1}{1-\Pi (0)}, \, \, \, (\Pi (0)\to \infty ).\end{eqnarray}$ | (23) |
$\begin{eqnarray}\alpha (s)=\frac{{e}_{0}^{2}/4\pi }{1-\Pi (s)}=\frac{\alpha }{1-[\Pi (s)-\Pi (0)]}\equiv \frac{\alpha }{1-\hat{\Pi }(s)}.\end{eqnarray}$ | (24) |
After the charge renormalization, the effect of the VP correction can be explained as bare charge e0 is redefined as physical charge e and simultaneously fine-structure constant α is replaced by effective energy-dependent running coupling factor α(s). Therefore, finite part
In one-photon exchange and chain approximation, the finite part of VP function
$\begin{eqnarray}\hat{\Pi }(s)=\displaystyle \sum [{\Pi }_{l\bar{l}}(s)+{\Pi }_{q\bar{q}}(s)], \end{eqnarray}$ | (25) |
The optical theorem relates the imaginary part of the QCD component of the photon self-energy to the inclusive hadronic Born cross-section[23]:
$\begin{eqnarray}{\rm{Im}}{\Pi }_{q\bar{q}}(s)=\frac{s}{4\pi \alpha }{\sigma }_{{\rm{had}}}^{0}(s).\end{eqnarray}$ | (26) |
$\begin{eqnarray}{\Pi }_{q\bar{q}}(s)=\frac{s}{\pi }\displaystyle {\int }_{0}^{\infty }\frac{{\rm{Im}}{\Pi }_{q\bar{q}}({s}^{\prime})}{{s}^{\prime}({s}^{\prime}-s-i\epsilon )}{\rm{d}}{s}^{\prime}.\end{eqnarray}$ | (27) |
$\begin{eqnarray}{\Pi }_{q\bar{q}}(s)=\frac{s}{4{\pi }^{2}\alpha }\displaystyle {\int }_{0}^{\infty }\frac{{\sigma }_{{\rm{had}}}^{0}({s}^{\prime})}{{s}^{\prime}-s-i\epsilon }{\rm{d}}{s}^{\prime}.\end{eqnarray}$ | (28) |
$\begin{eqnarray}{\Pi }_{q\bar{q}}(s)={\Pi }_{{\rm{con}}}(s)+{\Pi }_{{\rm{res}}}(s).\end{eqnarray}$ | (29) |
$\begin{eqnarray}{\Pi }_{{\rm{con}}}(s)=\frac{\alpha }{3\pi }\displaystyle {\int }_{0}^{\infty }\frac{\mathop{R}\limits^{\sim }({s}^{\prime})}{{s}^{\prime}-s-i\epsilon }{\rm{d}}{s}^{\prime}.\end{eqnarray}$ | (30) |
Πres(s) includes all the contributions of the resonances with JPC = 1??. If the interference between different resonances having the same decay final states are neglected for simplicity, resonant cross-section
$\begin{eqnarray}{\sigma }_{{\rm{res}}}^{0}(s)=\displaystyle \sum _{j}\frac{12\pi {\varGamma }_{ej}{\varGamma }_{j}}{{(s-{M}_{j}^{2})}^{2}+{M}_{j}^{2}{\varGamma }_{j}^{2}}, \, \, \, (j=\rho, \omega \ldots \psi \ldots ), \end{eqnarray}$ | (31) |
$\begin{eqnarray}\begin{array}{ll}{\Pi }_{{\rm{res}}}(s)&=\frac{s}{4{\pi }^{2}\alpha }\displaystyle {\int }_{0}^{\infty }\frac{{\sigma }_{{\rm{res}}}^{0}({s}^{\prime})}{{s}^{\prime}-s-i\epsilon }{\rm{d}}{s}^{\prime}\\&=\displaystyle \sum _{j}\frac{3s}{\alpha }\frac{{\varGamma }_{ej}}{{M}_{j}}\frac{1}{s-{M}_{j}^{2}+i{M}_{j}{\varGamma }_{j}}.\end{array}\end{eqnarray}$ | (32) |
Figure 3 exhibits the energy dependence of running coupling constant α(s) expressed by Eq. (24) around resonances J/ψ and ψ(3686). The resonant shape of α(s) is due to the virtual VP effect, instead of the real resonance produced.
Figure2. Bare propagator γ* is replaced by full propagator
Figure3. Energy dependence of α(s) around J/ψ (left) and ψ(3686) (right).
It should be noticed that in experiment measurements, there is no strict partition between the continuum and resonant states, as expressed in Eq. (5). For example, observed final state π+π? may be direct production e+e? → π+π? or via intermediate mode e+e? → ρ0 → π+π?. Therefore, Eqs. (5) and (29) are only roughly divided for simplicity.
It should be stressed that the dispersion relation and optical theorem merely provide a practical algorithm for calculating QCD nonperturbative VP function
In general, the Born cross-sections of the γ* mode and intermediate ψ mode are proportional to α2. Considering the VP effect, running coupling constant α(s) leads to an additional energy-dependence of the cross-section. Moreover, for the energy region around J/ψ and ψ(3686), the value of Πres(s) is very sensitive to s, Γe, and Γ, which implies that the bare values of Γe and Γ will influence the line-shape of e+e?→γ*/ψ→μ+μ? significantly.
In reference [9], the experimental electron width is defined as:
$\begin{eqnarray}{\varGamma }_{e}^{ex}=\frac{{\varGamma }_{e}}{|1-\hat{\Pi }({M}^{2}){|}^{2}}, \end{eqnarray}$ | (33) |
$\begin{eqnarray}{\varGamma }_{e}^{ex}=\frac{{\varGamma }_{e}}{|1-{\hat{\Pi }}_{0}({M}^{2}){|}^{2}}, \, \, {\hat{\Pi }}_{0}(s)={\hat{\Pi }}_{{\rm{QED}}}(s)+{\hat{\Pi }}_{{\rm{QCD}}}(s).\end{eqnarray}$ | (34) |
It is seen from the discussion in the above section, it is not necessary to introduce quantity
The VP-corrected total Born cross-section is:
$\begin{eqnarray}{\mathop{\sigma }\limits^{\sim }}^{0}(s)=\frac{{\sigma }^{0}(s)}{|1-\hat{\Pi }(s){|}^{2}}=\frac{{\sigma }_{{\gamma }^{\ast }}^{0}(s)+{\sigma }_{\psi }^{0}(s)}{|1-\hat{\Pi }(s){|}^{2}}.\end{eqnarray}$ | (35) |
2
5.1.VP-modified cross-section of γ* channel
Born cross-section $\begin{eqnarray}{\sigma }_{{\gamma }^{\ast }}^{0}(s)\, \to \, {\mathop{\sigma }\limits^{\sim }}_{{\gamma }^{\ast }}^{0}(s)=\frac{{\sigma }_{\gamma \ast }^{0}(s)}{|1-\hat{\Pi }(s){|}^{2}}=\frac{4\pi {\alpha }^{2}(s)}{3s}.\end{eqnarray}$ | (36) |
Figure4. (color online) Line-shape of
2
5.2.VP-modified cross-section of ψ channel
Generally, the cross-section of a resonance is expressed in the Breit-Wigner form. If the value of the electron width adopts bare value Γe, the effective Breit-Wigner cross-section is modified by the VP correction. The reference [9] adopted the convention defined by Eq. (33), which corresponds to the VP effect-modified Breit-Wigner cross-section: $\begin{eqnarray}{\mathop{\sigma }\limits^{\sim }}_{\psi }^{0}(s)=\frac{{\sigma }_{\psi }^{0}(s)}{|1-\hat{\Pi }({M}^{2}){|}^{2}}.\end{eqnarray}$ | (37) |
$\begin{eqnarray}{\mathop{\sigma }\limits^{\sim }}_{\psi }^{0}(s)=\frac{{\sigma }_{\psi }^{0}(s)}{|1-\hat{\Pi }(s){|}^{2}}, \end{eqnarray}$ | (38) |
$\begin{eqnarray}{\varGamma }_{e}^{ex}(s)=\frac{{\varGamma }_{e}}{|1-\hat{\Pi }(s){|}^{2}}, \end{eqnarray}$ | (39) |
$\begin{eqnarray}{\varGamma }_{e}\to {\mathop{\varGamma }\limits^{\sim }}_{e}(s)=\frac{16}{3}\pi {[\alpha (s)]}^{2}{e}_{c}^{2}{N}_{c}\frac{|R(0){|}^{2}}{{M}^{2}}\left(1-\frac{16{\alpha }_{s}}{3\pi }\right).\end{eqnarray}$ | (40) |
Figure5. (color online) Line-shape comparison of resonant channels e+e? →J/ψ→μ+μ? (left) and e+e?→ψ(3686)→μ+μ? (right) between Born-level Breit-Wigner cross-section
2
5.3.Single VP correction case
The Feynman diagram with a single VP correction is shown in Fig. 6, where e at the vertex is the electron charge, which represents the coupling strength between the leptons (e± or μ±) and photon (γ*). The grey bubble represents the VP correction in the 1PI approximation, and the hollow oval represents resonance ψ. For the ψ channel in the Feynman diagram in Fig. 6, only the virtual photon propagator between the initial e+e? and intermediary ψ is corrected by the VP. There is no VP correction for the virtual photon between ψ and final state μ+μ?, which is same as the traditional treatment, i.e., only a single VP correction is considered for the ψ channel.Figure6. Feynman diagram with a single VP correction.
A coherent amplitude is given by sum of two diagrams:
$\begin{eqnarray}{\mathop{{\mathcal{A}}}\limits^{\sim }}_{{\rm{eff}}}\sim \frac{1}{1-\hat{\Pi }(s)}(1+\frac{Fr{{\rm{e}}}^{{\rm{i}}\delta }}{\Delta +ir}).\end{eqnarray}$ | (41) |
$\begin{eqnarray}{\sigma }^{0}(s)\to {\mathop{\sigma }\limits^{\sim }}^{0}(s)=\frac{4\pi {\alpha }^{2}}{3s}|{\mathop{A}\limits^{\sim }}_{{\rm{eff}}}{|}^{2}=\frac{{\sigma }^{0}(s)}{|1-\hat{\Pi }(s){|}^{2}}, \end{eqnarray}$ | (42) |
Figure7. Line-shape of σ0(s) by Eq. (21) (dashed line) and
The Feynman diagram with a single VP correction in Fig. 6 can also be replotted as Fig. 8 equivalently, which has the same topological structure as the tree level in Fig. 1. The black-dot at the vertex is effective running electron charge:
$\begin{eqnarray}{e}^{2}(s)=\frac{{e}^{2}}{|1-\hat{\Pi }(s)|}.\end{eqnarray}$ | (43) |
For the right Feynman diagram of channel e+e? →ψ→μ+μ? in Fig. 6 or Fig. 8, coupling strength of three-line vertex e+e?γ* is e(s) corresponding to α(s), and for μ+μ?γ*, it is e corresponding to α:
$\begin{eqnarray}\alpha =\frac{{e}^{2}}{4\pi }, \, \, \, \, {\rm{and}}\, \, \, \, \alpha (s)=\frac{{e}^{2}(s)}{4\pi }.\end{eqnarray}$ | (44) |
2
5.4.Double VP correction case
In the quantum field theory, processes e+e?→μ+μ? and μ+μ?→e+e? should be invariant under time reversal T??T, and both processes have the same cross-section if masses me and μμ can be neglected compared to energyResonant channel e+e? →ψ → μ+μ? has two independent virtual photons, one is between e+e? and ψ, and another is between ψ and μ+μ?. According to the Feynman rule and ISR correction principle, each independent virtual photon propagator will be modified by a single VP correction factor, and the two VP factors cannot be combined into one. A Feynman diagram with time reversal symmetry can be plotted as Fig. 9.
Figure9. Feynman diagram with double VP correction.
The coherent amplitude for the Feynman diagram, as shown in Fig. 9, after the contraction of the Lorentz indices of the virtual photons γ* and intermediary vector meson ψ, can be written as:
$\begin{eqnarray}{\mathop{{\mathcal{A}}}\limits^{\sim }}_{{\rm{eff}}}\sim \frac{1}{1-\hat{\Pi }(s)}+\frac{1}{1-\hat{\Pi }(s)}\frac{Fr{{\rm{e}}}^{{\rm{i}}\delta }}{\Delta +ir}\frac{1}{1-\hat{\Pi }(s)}, \end{eqnarray}$ | (45) |
$\begin{eqnarray}{\mathop{\sigma }\limits^{\sim }}^{0}(s)=\frac{4\pi {\alpha }^{2}}{3s}|{\mathop{{\mathcal{A}}}\limits^{\sim }}_{{\rm{eff}}}{|}^{2}.\end{eqnarray}$ | (46) |
Figure10. (color online) Line-shape of σ0(s) (dashed line) and
Comparing Figs. 7 and 10, the single and double VP correction lead to different line-shapes for the cross-section. This issue will yield different results when extracting the resonant parameters from experimental data.
The Feynman diagram in Fig. 9 with double VP correction can be replotted equivalently as Fig. 11, which is symmetrical for the two time-reversal leptonic processes:
$\begin{eqnarray}{e}^{+}{e}^{-}\, \, \rightleftarrows \, \, {\gamma }^{\ast }/\psi \, \, \rightleftarrows \, \, {\mu }^{+}{\mu }^{-}.\end{eqnarray}$ | (47) |
The tree-level Feynman diagrams in Fig. 1 and double VP-corrected equivalent diagram in Fig. 11 have the same topology, but the coupling vertexes possess different coupling strengths e and e(s), respectively.
-->
6.1.General form
In the Feynman diagram scheme, the total cross-section up to order $\begin{eqnarray}{\sigma }^{{\rm{tot}}}(s)=(1-{x}_{m}^{\beta }+{\delta }_{{\rm{vert}}}){\mathop{\sigma }\limits^{\sim }}^{0}(s)+\displaystyle {\int }_{0}^{{x}_{m}}{\rm{d}}xH(x;s){\mathop{\sigma }\limits^{\sim }}^{0}({s}^{\prime}), \end{eqnarray}$ | (48) |
$\begin{eqnarray}H(x;s)=\beta \frac{{x}^{\beta }}{x}\left(1-x+\frac{{x}^{2}}{2}\right), \, \, \, \, \beta =\frac{2\alpha }{\pi }\left(\text{ln}\frac{s}{{m}_{e}^{2}}-1\right).\end{eqnarray}$ | (49) |
$\begin{eqnarray}{\sigma }_{th}^{{\rm{tot}}}({s}_{0})=\displaystyle \int {\rm{d}}sG(s;{s}_{0}){\sigma }^{{\rm{tot}}}(s), \end{eqnarray}$ | (50) |
In the following sections, the analytical expression of integral Eq. (48) is deduced for the two cases of single and double VP corrections, and total cross-section σtot(s) is evaluated using the analytical results.
2
6.2.Analytical calculation for single VP
If the initial e± radiates a photon with energy fraction x, the notations in Eqs. (16) and (32) are changed: $\begin{eqnarray}\Delta \Rightarrow \Delta (x)=(1-x)t-1, \end{eqnarray}$ | (51) |
$\begin{eqnarray}{\Pi }_{{\rm{res}}}(s)\Rightarrow {\Pi }_{{\rm{res}}}(x;s)=h\frac{1-x}{\Delta (x)+ir}.\end{eqnarray}$ | (52) |
$\begin{eqnarray}{\sigma }^{0}(s)\Rightarrow {\mathop{\sigma }\limits^{\sim }}^{0}(x;s)=\frac{4\pi {\alpha }^{2}}{3s}\frac{1}{1-x}\cdot \frac{U(x)}{V(x)}, \end{eqnarray}$ | (53) |
$\begin{eqnarray}U(x)={u}_{2}{x}^{2}+{u}_{1}x+{u}_{0}, \end{eqnarray}$ | (54) |
$\begin{eqnarray}V(x)={v}_{2}{x}^{2}+{v}_{1}x+{v}_{0}.\end{eqnarray}$ | (55) |
$\begin{eqnarray}H(x){\mathop{\sigma }\limits^{\sim }}^{0}(x;s)=\frac{4\pi {\alpha }^{2}}{3s}\beta \frac{{x}^{\beta }}{x}\left[\frac{1}{1-x}\displaystyle \sum _{n=0}^{4}{w}_{n}{x}^{n}+\frac{1}{V(x)}\displaystyle \sum _{n=0}^{5}{d}_{n}{x}^{n}\right], \end{eqnarray}$ | (56) |
Figure12. (color online) Line-shapes of σ0(s) (dashed line) and σtot(s) for single VP correction (solid line) in the vicinity of J/ψ (left) and ψ(3686) (right).
2
6.3.Analytical calculation for double VP
The integrand of Eq. (48) for the double VP correction can be expressed as the following elementary function: $\begin{eqnarray}\begin{array}{ll}H(x){\mathop{\sigma }\limits^{\sim }}^{0}(x;s)=&\frac{4\pi {\alpha }^{2}}{3s}\beta \frac{{x}^{\beta }}{x}\left[\frac{1}{1-x}\displaystyle \sum _{n=0}^{4}{p}_{n}{x}^{n}\right.\\&\left.+\frac{1}{V(x)}\displaystyle \sum _{n=0}^{5}{q}_{n}{x}^{n}+\frac{1}{{V}^{2}(x)}\displaystyle \sum _{n=0}^{5}{r}_{n}{x}^{n}\right], \end{array}\end{eqnarray}$ | (57) |
Figure13. (color online) Line-shapes of σ0(s) (dashed line) and σtot(s) for double VP correction (solid line) in the vicinity of J/ψ (left) and ψ(3686) (right).
The tree-level Feynman diagram in Fig. 1 for e+e?→γ*/ψ→μ+μ? is the coherent summation of the γ* channel and ψ channel. The VP-modified Born cross-section is given in Eq. (46), the γ* channel is modified by a single VP factor, and the ψ channel is modified by double VP factors.
Figure 14 exhibits the comparison of original Born cross-section σ0(s) and single and double VP-modified Born cross-sections
Figure14. (color online) Line-shapes of σ0(s) (dashed line), single (dot-dashed line), and double (solid line) VP-modified
Reference [10] discusses the VP-modified Born cross-section of process e+e? → μ+μ?, where the tree-level Feynman diagram is only a continuum γ* channel and there is no resonant ψ channel. In fact, this is the case discussed in section 5.1 in this paper. The VP-modified Born cross-section in reference [10] is same as expressed in Eq. (36) in our paper. Eq. (36) is a very concise and natural expression, and it is easy to understand in physics. Reference [10] made a skillful mathematic identical transformation to VP correction, where the full factor of
$\begin{eqnarray}{\mathop{\Pi }\limits^{\sim }}_{{\rm{res}}}(s)=\frac{3{\varGamma }_{e}}{\alpha }\frac{s}{M}\frac{1}{s-{\mathop{M}\limits^{\sim }}^{2}+i\mathop{M}\limits^{\sim }\mathop{\varGamma }\limits^{\sim }}, \end{eqnarray}$ | (58) |
$\begin{eqnarray}{\mathop{M}\limits^{\sim }}^{2}={M}^{2}+\frac{3{\varGamma }_{e}}{\alpha }\frac{s}{M}{\rm{Re}}\frac{1}{1-{\Pi }_{0}}, \end{eqnarray}$ | (59) |
$\begin{eqnarray}\mathop{M}\limits^{\sim }\mathop{\varGamma }\limits^{\sim }=M\varGamma -\frac{3{\varGamma }_{e}}{\alpha }\frac{s}{M}{\rm{Im}}\frac{1}{1-{\Pi }_{0}}.\end{eqnarray}$ | (60) |
The bare resonant parameters (M, Γ, Γe, δ) are the basic quantities in the Breit-Wigner formula, and they characterize the main properties of a resonance. The values of these parameters can be estimated from phenomenological potential models [26, 27]. However, their accurate values have to be measured by fitting the experimental data.
Generally, the cross-section directly measured in experiments is the total cross-section, which includes all the radiative effects. To extract the bare resonant parameters from the measured cross-section correctly, an appropriate treatment of the ISR correction is crucial.
As seen in the previous sections, the value of the total cross-section,
The values of the resonant parameters of J/ψ and ψ(3686) can be extracted by fitting the measured cross-section in the line-shape scan experiment based on the least square method:
$\begin{eqnarray}{\chi }^{2}=\displaystyle \sum _{i=1}^{n}\frac{{[{\sigma }_{ex}^{{\rm{tot}}}({s}_{i})-{\sigma }_{th}^{{\rm{tot}}}({s}_{i})]}^{2}}{{\Delta }_{i}^{2}}, \end{eqnarray}$ | (61) |
When the value of Γe is extracted, one may obtain
It is expected that if the values of the resonant parameters (M, Γ, Γe, δ) are extracted using the scheme proposed in this paper, the results will not be the same as in previous measurements. Therefore, which scheme is reasonable should be determined by experiments and further studies.