Evaluating changes in ecological land and effect of protecting important ecological spaces in China
GAO Jixi,1, LIU Xiaoman,1, WANG Chao1, WANG Yong2, FU Zhuo1, HOU Peng1, LYU Na1通讯作者:
收稿日期:2020-11-3修回日期:2021-04-20网络出版日期:2021-07-25
基金资助: |
Received:2020-11-3Revised:2021-04-20Online:2021-07-25
Fund supported: |
作者简介 About authors
高吉喜(1964-), 男, 内蒙古呼和浩特人, 博士, 研究员, 主要从事区域生态保护与修复研究。E-mail:
摘要
关键词:
Abstract
Keywords:
PDF (2854KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
高吉喜, 刘晓曼, 王超, 王勇, 付卓, 侯鹏, 吕娜. 中国重要生态空间生态用地变化与保护成效评估. 地理学报[J], 2021, 76(7): 1708-1721 doi:10.11821/dlxb202107010
GAO Jixi, LIU Xiaoman, WANG Chao, WANG Yong, FU Zhuo, HOU Peng, LYU Na.
1 引言
中国生态环境保护已进入注重国土空间格局“源头”管控的新阶段,其中构建生态空间格局是管控的重要内容[1]。生态空间是指具有自然属性、以提供生态产品或生态服务为主导功能的国土空间[2,3],能为环境保护和经济社会发展提供生态支撑。从重要生态功能维护、人居环境屏障和生物多样性维护等角度出发,自然保护区[4,5]、重点生态功能区[6]、生物多样性优先区[7]都是中国最重要的生态空间,均在保障中国生态安全方面发挥着重要作用[8]。随着工业化、城镇化加速推进,生态破坏、环境污染、国土空间无序开发等一系列问题日渐凸显,快速的人类活动使得生态空间不断被侵占和蚕食,生态功能不断退化,现存的重要生态空间逐渐丧失其自然属性,影响了中国生态环境可持续发展,因此迫切需要开展重要生态空间构建的生态保护成效分析,这也一直是国内外生态学和生态系统评估的研究热点。有些****从保护对象的角度来刻画保护成效,如Joppa等评估了全球359个自然保护地对全部物种多样性的保护成效[9]。Willcock等对非洲生物多样性热点区域的管控成效进行了评估[10]。有的****将研究重点放在生态系统的保护成效上,Songer等对比评估了缅甸Chatthin野生动物避难所森林生态系统的保护效果[11],王伟等对中国海南自然保护区森林保护情况进行了对比分析[12]。也有****从土地覆被转换的角度来阐释保护成效,Nagendra对22个国家49个自然保护区的土地覆盖变化情况进行了评估[13];范泽孟等研究了中国180个国家级自然保护区从20世纪80年代后期到2005年的土地覆盖转换强度[14];赵国松等分析了土地利用变化对生物多样性保护重点区域的扰动[15]。部分****以生态参数、生态质量和生态功能为指标来研究保护成效,徐洁等对国家重点生态功能区生态环境质量的变化情况进行了评估[16];黄麟等分析了中国水源涵养型、水土保持型、防风固沙型、生物多样性维护型重点生态功能区的生态系统结构、质量与核心服务的变化[17];侯鹏等以生态系统格局、植被长势、服务功能为核心内容,探讨了重点生态功能区保护成效[18]。还有****以生境为切入点探讨了中国典型自然保护区的保护成效[19]。以上研究为中国重要生态空间保护成效的评估提供了方法、指标等方面的借鉴。但仍存在一些亟待解决的问题,主要表现在:① 目前的研究主要集中在自然保护区这一重要生态空间,针对重点生态功能区和生物多样性优先区这两类中国特有的重要生态空间的研究相对不足;② 缺乏从国家层面整体评估中国3类重要生态空间的保护成效;③ 成效评估与具体管理工作衔接不足,评估结果较难直接应用于管理实践。
本文立足管理实际,以生态用地为切入点,将国家级自然保护区、重点生态功能区、生物多样性优先保护区这3类最重要的生态空间作为一个整体,从国家层面评估了生态保护成效。作为一种重要的用地类型,生态用地是人类赖以生存的基本资源,为人类提供必需的生态服务,具有涵养水源、保护土壤、防风固沙、调节气候、净化环境等生态功能[20],在维持生态平衡、保障国土生态安全、应对全球气候变化具有特殊地位[21]。是一个国家或地区生态环境质量好坏的“晴雨表”[22],也是衡量中国重要生态空间生态保护成效的重要指标。本文一方面从时间的角度研究3类重要生态空间1980—2018年的生态保护成效,另一方面将重要生态空间及其周边区域空间作为一个整体考虑,基于“重要生态空间—周边区域空间”的梯度差异,从空间上揭示3类重要生态空间内、外协同保护成效的不同,以期为新形势下中国生态空间的成效评估提供新的视角和方法,为中国国土空间分类分区管控提供科学依据。
2 数据资料与方法
2.1 数据资料
2.1.1 边界数据来源 截止到2019年底,中国共有474个国家级自然保护区[23]、25个重点生态功能区[6]和32个陆地生物多样性优先区[7](图1)。其中,重点生态功能区的边界来源于2010年国务院发布的《全国主体功能区规划》[6]。生物多样性优先区边界来源于2010年原环境保护部发布的《中国生物多样性保护战略与行动计划(2011—2030年)》[7]。国家级自然保护区边界来源于生态环境部南京环境科学研究所。图1
新窗口打开|下载原图ZIP|生成PPT图1中国3类重要生态空间分布图
注:基于国家自然资源部标准地图服务网站GS(2020)4619号地图绘制,底图无修改。
Fig. 1Distribution of three types of natural ecological spaces
2.1.2 土地利用数据来源 以卫星数据作为主要信息源,刘纪远等建成了中国国家尺度土地利用数据库,截止2019年底,已经完成并拥有多期100 m×100 m的栅格数据,各土地利用类型分类精度超过90%[24,25,26,27,28,29,30,31,32]。每期土地利用数据包括农田、林地、草地、水体、城乡工矿建设用地、未利用地等6个一级类型和水田、旱地、有林地等25个二级类型。本文采用该土地利用变化数据库中的1980年、1990年、2000年、2010年和2018年5期全国100 m×100 m土地利用数据集。
2.2 研究方法
2.2.1 生态用地的划分 “生态用地分类”一直是学术界研究争论的热点,不同****从多个角度开展了探讨研究,并提出不同分类方案[33,34,35,36,37,38,39,40,41,42,43,44]。目前较为主流的分为4种观点。① “生态要素决定论”,主要从土地空间形态角度来定义生态用地,认为生态要素的空间定位统称为生态用地,按空间形态分为两类:成片森林、湖泊水体、湿地、农业用地以及开敞空间等属于面状生态用地,河流、沿海滩涂等属于线状生态用地[22]。② “泛生态功能决定论”,单纯从土地生态功能角度来定义生态用地,认为凡是可以提供生态系统服务的土地均可以视为生态用地,包括农田、林地、草地、水域和沼泽等在内的、地表无人工铺装的、具有透水性的地面等都可以纳入生态用地的范围[45,46,47]。③ “主体功能决定论”,以土地主体功能来划分生态用地,认为以发挥自然生态功能为主、对维护关键生态过程具有重要意义的生态系统为生态用地,其生态系统服务功能重要、生态敏感性高[48,49,50]。④ “利用形式决定论”,从是否开发利用的视角来分类生态用地,认为除农用地和建设用地外,其他未被人类所利用的、能够直接或间接发挥生态功能的土地就是生态用地[51,52,53]。本文认为,应以未被人类开发利用为基本准则,同时依据发挥的主体生态功能来划分生态用地,分为2种情形:其中林地、草地、湿地(包括水域)3种类型,能直接或间接提供生态调节和生物支持等生态服务功能,在改善环境、提供环境调节、维持生物多样性和区域生态平衡,以及提供生态产品等方面具有重要作用,且自身具有一定自我调节、修复和维持能力;而沙地、戈壁、盐碱地、沼泽地、裸土地、裸岩石质地等土地类型,人类不直接利用,以生态修复和保护为主,但在生态平衡以及地球原生环境等方面作用明显,此类土地生态功能较为脆弱,过度人类干预和开发会给生态安全带来严重负面影响,应以保护为主[49,50]。因此生态用地总共包括湿地、林地、草地和其他未利用地4个一级地类,以及19个二级地类等。非生态用地均已被人类所开发利用,包括以城镇居民生产生活为主体功能的用地和以农业生产和农村居民生活为主体功能的用地(表1)。Tabl. 1
表1
表1生态用地、非生态用地与不同土地利用类型的对应关系
Tabl. 1
用地类型 | 对应的土地利用类型 |
---|---|
生态用地 | 有林地、灌木林、疏林地、其它林地 |
高覆盖度草地、中覆盖度草地、低覆盖度草地 | |
河渠、湖泊、水库坑塘、永久性冰川雪地、滩涂、滩地 | |
沙地、戈壁、盐碱地、沼泽地、裸土地、裸岩石质地 | |
非生态用地 | 农业用地:水田、旱地 |
城镇用地:城镇、农村居民点、其它建设用地 |
新窗口打开|下载CSV
2.2.2 生态用地扩大、缩小和保持 基于1980年和2018年全国土地利用数据,研究3类重要生态空间内生态用地的扩大、缩小和保持情况,以此来反映重要生态空间的生态用地在格局上的变化特征。因研究区内土地利用类型复杂,生态用地与非生态用地破碎化分布,以S表示生态用地面积。设定相同区域范围内1980年生态用地面积为S1,2018年生态用地面积为S2:
当S1 < S2时,表示该区域内生态用地面积增加,即由非生态用地转换成生态用地,变化形式以“扩大”表示;
当S1 > S2时,表示该区域内生态用地面积减少,即由生态用地转换成非生态用地,变化形式以“缩小”表示;
当S1 = S2时,表示该区域内生态用地面积不变,即生态用地未转变,变化形式以“保持”表示。
3 结果与分析
3.1 2018年重要生态空间生态用地分析
3.1.1 2018年生态用地状况分析 2018年,中国重要生态空间内生态用地总面积为695.37 万km2,占比92.64%,非生态用地面积55.27万km2,占比7.36%(表2)。分别来看,生物多样性优先区中有93.65%的面积为生态用地,重点生态功能区有90.60%的面积为生态用地,国家级自然保护区有97.68%的面积为生态用地。中国重要生态空间以生态用地为主导,面积占绝对优势,清晰体现出中国重要生态空间的发展定位和重要地位。国家级自然保护区、重点生态功能区和生物多样性优先区作为中国最核心和最精华的生态空间,具有良好的生态本底,在国家生态保护工作中占据着重要位置,在维护国家生态安全中居于重要地位。生态用地面积比例呈现国家级自然保护区>生物多样性优先区>重点生态功能区的规律。作为中国成立最早、保护最严格的重要生态空间,国家级自然保护区生态用地面积比例最高,总体上反映了不同重要生态空间生态保护成效的梯度差异。Tab. 2
表2
表22018年3类重要生态空间内不同用地面积与占比统计(万km2)
Tab. 2
重要生态空间 | 非生态用地面积及比例 | 生态用地面积及比例 | 总计 |
---|---|---|---|
国家级自然保护区 | 2.26 | 95.19 | 97.45 |
(2.32) | (97.68) | ||
生物多样性优先区 | 17.53 | 258.37 | 275.9 |
(6.35) | (93.65) | ||
重点生态功能区 | 35.48 | 341.81 | 377.29 |
(9.40) | (90.60) | ||
三类重要生态空间 | 55.27 | 695.37 | 750.64 |
合计 | (7.36) | (92.64) |
新窗口打开|下载CSV
3.1.2 生态用地分布格局分析 总体来看,3类重要生态空间内生态用地主要分布于“胡焕庸线”以西以北(图2),其中,国家级自然保护区生态用地主要分布于新疆、青海、西藏、云南等省份的国家级自然保护区(图2a)。青藏高原藏西北羌塘高原荒漠、阿尔金草原荒漠化防治、三江源草原草甸湿地、若尔盖草原湿地、藏东南高原边缘森林、呼伦贝尔大草原草甸、川滇森林及生物多样性、阿尔泰山地森林草原、塔里木河荒漠化防治等重点生态功能区内生态用地占比较高(图2b)。库姆塔格、天山准格尔盆地、祁连山、羌塘三江源、喜马拉雅东南源、东北的大兴安岭、小兴安岭、呼伦贝尔、锡林郭勒草原、阿尔泰山等生物多样性优先区的生态用地占比较高(图2c)。
图2
新窗口打开|下载原图ZIP|生成PPT图2中国3类重要生态空间内不同用地空间分布
注:基于国家自然资源部标准地图服务网站GS(2020)4619号地图绘制,底图无修改。
Fig. 2Distribution of land in three types of important natural ecological space in 2018
3.2 1980—2018年重要生态空间生态用地变化与保护成效分析
3.2.1 生态用地总体变化特征与保护成效分析 1980—2018年,重要生态空间内生态用地面积呈逐步减少趋势,共减少了7.72万km2(图3),减少率为1.1%,低于全国生态用地面积减少率1.66%。非生态用地面积持续增加,总共增加7.72万km2,增加率为16.23%(图3),其中城镇用地面积共增加了1.27万km2,增加率为66.75%;农业用地面积共增加了6.45万km2,增加率为14.13%,城镇用地扩张最为明显。说明1980年以来,随着社会经济的高速发展,中国城镇化进程快速推进,开发建设和农业活动日益明显,重要生态空间内生态用地不断被农业用地和城镇用地侵占,收缩趋势明显。但总体来说重要生态空间内生态用地面积减少率低于全国平均水平,较好地反映了中国重要生态空间的构建对生态的积极保护作用。图3
新窗口打开|下载原图ZIP|生成PPT图31980—2018年中国重要生态空间内不同用地面积
Fig. 3The land area change in three types of important natural ecological space in China from 1980 to 2018
分不同监测时段来看,1980年、1990年、2000年、2010年、2018年生态用地面积分别为703.09万km2、702.36万km2、699.69万km2、699.27万km2和695.37万km2(图3)。其中1980—1990年、1990—2000年、2000—2010年、2010—2018年生态用地分别减少0.73万km2、2.67万km2、0.42万km2和3.90万km2,年减少率分别为0.01%、0.04%、0.006%和0.07%。其中2000—2010年的年减少率最小,主要原因是中国于1999年启动了一系列生态保护工程,而这些工程实施区域主要分布在三类重要生态空间内,这期间林、草地面积显著增加,体现了生态保护工程的修复成效,生态破坏趋势得到一定程度的遏制。但2010—2018年面积年减少率最大,一个重要的原因在于国家生态保护工程规模和范围呈现一定程度的缩减,主要以补充和巩固为主。《全国主体功能区规划》和《中国生物多样性保护战略与行动计划(2011—2030年)》颁布之后的生态保护效应还未充分体现出。
3.2.2 生态用地转移特征与保护成效分析 1980—2018年重要生态空间内生态用地转为非生态用地面积为19.28万km2,非生态用地转为生态用地面积为11.56万km2(表3),生态用地总体上减少7.72万km2,94.2%减少的生态用地被农业开发活动侵占,5.8%被城镇居民点和开发建设活动侵占。具体而言,国家级自然保护区95.29%减少的生态用地、生物多样性优先区92.76%减少的生态用地、重点生态功能区94.84%减少的生态用地被农业开发活动侵占。1980—2018年,中国重要生态空间内生态用地减少的主要原因在于农业开发活动。生态用地增加也主要来源于农业用地,96.9%增加的生态用地由农业用地转入。说明中国重要生态空间内退耕还林还草生态保护工程修复成效已经凸显,但另一方面开发建设和农业活动持续侵占和破坏生态用地,生态保护形势依然严峻。
Tab. 3
表3
表31980—2018年3类重要生态空间内不同用地面积转移情况(万km2)
Tab. 3
重要生态空间 | 1980年 | 2018年 | |||
---|---|---|---|---|---|
生态用地 | 非生态用地 | ||||
农业用地 | 城镇用地 | ||||
国家级自然保护区 | 生态用地 | 94.75 | 0.98 | 0.05 | |
非生态用地 | 农业用地 | 0.38 | 1.15 | 0.03 | |
城镇用地 | 0.06 | 0.02 | 0.04 | ||
生物多样性优先区 | 生态用地 | 254.04 | 5.73 | 0.45 | |
非生态用地 | 农业用地 | 4.23 | 10.58 | 0.32 | |
城镇用地 | 0.10 | 0.12 | 0.33 | ||
重点生态功能区 | 生态用地 | 335.03 | 11.45 | 0.62 | |
非生态用地 | 农业用地 | 6.59 | 21.75 | 0.63 | |
城镇用地 | 0.20 | 0.34 | 0.70 | ||
3类重要生态空间合计 | 生态用地 | 683.82 | 18.16 | 1.12 | |
非生态用地 | 农业用地 | 11.20 | 33.47 | 0.99 | |
城镇用地 | 0.36 | 0.48 | 1.06 |
新窗口打开|下载CSV
3.2.3 不同重要生态空间生态用地变化特征与保护成效分析 1980—2018年3类重要生态空间内生态用地面积均呈减少趋势,将生态用地面积与时间进行线性关系拟合,结果发现,国家级自然保护区生态用地面积变化斜率为-0.134,R2 = 0.942,减少趋势最不明显;生物多样性优先区生态用地面积减少趋势斜率为-0.452,R2 = 0.849;重点生态功能区变化斜率为-1.265,R2 = 0.939,减少趋势相比最明显(图4)。从生态用地面积减少率来看,重点生态功能区、生物多样性优先区和国家级自然保护区分别减少了1.52%、0.71%和0.61%。说明3类重要自然生态内部保护成效存在差异,国家级自然保护区作为中国保护最严格、执法力度最大的重要生态空间,1980年以来生态用地面积减少率最小、减少趋势最不明显,生态保护成效最好。从不同监测时段来看,无论从减少面积,还是从年减少率来看,3类重要生态空间内生态用地均在2000—2010年变化最小、2010—2018年变化最明显(图5)。
图4
新窗口打开|下载原图ZIP|生成PPT图41980—2018年不同重要生态空间内生态用地面积变化趋势
Fig. 4The change trend of ecological land in important natural ecological spaces in China from 1980 to 2018
图5
新窗口打开|下载原图ZIP|生成PPT图51980—2018年3类重要生态空间在不同监测时段生态用地减少面积和年减少率
Fig. 5Reduction area and annual reduction rate of ecological land in three types of important natural ecological space in different monitoring periods from 1980 to 2018
3.2.4 生态用地格局变化与保护成效分析 通过计算3类重要生态空间内生态用地的扩大、缩小和保持情况,1980—2018年,国家级自然保护区内98.9%的生态用地面积未发生变化,生物多样性优先区内97.6%的生态用地面积未发生变化,重点生态功能区内96.5%的生态用地面积未发生变化(表4)。总体来说,1980年以来中国重要生态空间内生态用地基本处于稳定状态,其中国家级自然保护区内生态用地变化相对最稳定,其次为生物多样性优先区和重点生态功能区。国家级自然保护区、生物多样性优先区和重点生态功能区生态用地缩小面积分别占各重要生态空间面积的1.1%、2.4%和3.5%,扩大面积分别占0.5%、1.7%和2%,生态用地缩小的面积比例均大于扩大的面积比例,总体保护成效较好。
Tab. 4
表4
表41980—2018年重要生态空间内生态用地面积变化
Tab. 4
变化情况 | 国家级自然保护区 | 生物多样性优先区 | 重点生态功能区 | |||||
---|---|---|---|---|---|---|---|---|
面积(万km2) | 占比(%) | 面积(万km2) | 占比(%) | 面积(万km2) | 占比(%) | |||
保持 | 94.75 | 98.9 | 254.04 | 97.6 | 335.03 | 96.5 | ||
缩小 | 1.03 | 1.1 | 6.18 | 2.4 | 12.07 | 3.5 | ||
扩大 | 0.44 | 0.5 | 4.33 | 1.7 | 6.79 | 2.0 |
新窗口打开|下载CSV
从空间格局上来看,重要生态空间内生态用地扩大区域为黄土高原以及南方部分丘陵区等退耕还林还草工程实施区域,这与中国实施的退耕还林还草还湿政策有密切的关系,工程实施对重要生态空间结构的变化有很大影响。缩小的区域集中在东北平原重要的粮食产区,以及新疆绿洲农业地区,这些区域的生态用地主要被大规模农业开发活动侵占,今后要重点加强管控。
具体而言,东北地区的饶河东北黑蜂、挠力河、乌裕尔河、五大连池等自然保护区,以及沿海滨州贝壳堤岛与湿地、盐城湿地珍禽等自然保护区生态用地缩小较为明显。辉河、南翁河、锡林郭勒草原等自然保护区生态用地扩大较为明显(图6a)。作为东北粮食产区的三江平原湿地、大小兴安岭森林,以及农牧交错带为主的科尔沁草原等重点生态功能区生态用地缩小较为明显。西北地区的塔里木河荒漠化防治生态功能区生态用地也在缩小,该区域是中国现代农业示范园区,农业发展逐步挤占了生态空间。生态用地扩大的区域主要分布在黄土高原丘陵沟壑水土保持、秦巴生物多样性和大别山水土保持等重点生态功能区(图6b)。生物多样性优先区生态用地缩小区域主要分布于以农业生产为主的三江平原、松嫩平原等生物多样性优先区,以及以灌溉农业为主的西北宁夏平原、绿洲农业所在的西鄂尔多斯—贺兰山—阴山区和塔里木河流域生物多样性优先区。生态用地扩大区域主要位于实施退耕还林还草生态保护工程所在的六盘山子午岭、武陵山区、秦岭区等生物多样性优先区(图6c)。
图6
新窗口打开|下载原图ZIP|生成PPT图61980—2018年中国重要生态空间生态用地变化分布
注:基于国家自然资源部标准地图服务网站GS(2020)4619号地图绘制,底图无修改。
Fig. 6Change distribution of ecological land in three types of important natural ecological space from 1980 to 2018
3.3 重要生态空间内、外部生态用地状况与保护成效分析
2018年重要生态空间、外部0~5 km区域和外部5~10 km区域生态用地面积比例分别为92.64%、81.17%和77.44%,重要生态空间内生态用地面积比例分别比外部0~5 km区域和外部5~10 km区域高11.47%和15.2%。分别来看,生物多样性优先区、外部0~5 km区域和外部5~10 km区域生态用地面积占比分别为93.65%、76.62%和73.41%;重点生态功能区、外部0~5 km和外部5~10 km生态用地面积占比分别为90.6%、83.96%和77.59%;国家级自然保护区、外部0~5 km和外部5~10 km生态用地面积占比分别为97.68%、83.94%和81.05%(图7)。生物多样性优先区、重点生态功能区和国家级自然保护区内部的生态用地面积比例均高于周边区域。2018年中国重要生态空间的生态保护成效要高于周边外部区域,且呈现出距离重要生态空间越远,生态用地面积占比越小、生态保护状况越差的规律,定量反映了中国重要生态空间构建的意义和重要性。图7
新窗口打开|下载原图ZIP|生成PPT图7中国3类重要生态空间内、外不同用地面积比例图
Fig. 7Area proportion of different lands inside and outside three types of important natural ecological space in China
1980—2018年重要生态空间、外部0~5 km和外部5~10 km区域的生态用地面积分别减少了1.1%、1.99%和2.15%。分别来看,生物多样性优先区、外部0~5 km和外部5~10 km区域的面积减少率分别为0.71%、2.71%和3.12%;重点生态功能区、外部0~5 km和外部5~10 km区域的面积减少率分别为1.52%、1.6%和1.55%;国家级自然保护区、外部0~5 km和外部5~10 km区域的面积减少率分别为0.61%、1.58%和1.66%(图8)。1980年以来,3类重要生态空间外部0~5 km、5~10 km未受保护区域生态用地面积减少率相当,均大于重要生态空间内部,重要生态空间内、外保护成效具有梯度差异。其中生物多样性优先区外部生态用地面积减少率是内部的3倍以上,国家级自然保护区外部生态用地面积减少率是内部的2倍以上,说明重要生态空间的构建对保护中国重要生态系统和维护生态安全具有重要作用。
图8
新窗口打开|下载原图ZIP|生成PPT图81980—2018年不同重要生态空间内生态用地面积减少率
Fig. 8Reduction rate of ecological land area in different important natural ecological spaces from 1980 to 2018
4 结论和讨论
4.1 结论
(1)2018年中国重要生态空间内生态用地面积比例为92.64%,占绝对优势,具有良好的生态本底,体现了重要生态空间的发展定位和重要地位。3类重要生态空间内的生态用地主要分布在“胡焕庸线”以西以北。(2)1980—2018年重要生态空间内生态用地呈收缩趋势,但面积减少率低于全国平均水平,定量反映了中国重要生态空间的构建对生态的保护成效。生态用地减少的主要原因在于农业开发活动,同时增加也主要来源于农业用地,说明退耕还林还草生态保护工程修复成效已经凸显,但另一方面开发建设和农业活动持续侵占和破坏生态用地,生态保护形势依然严峻。总体来说生态用地变化基本处于稳定状态,扩大区域主要分布在重要生态空间内的退耕还林还草生态保护工程实施区,缩小区域集中在东北平原的粮食主产区和新疆绿洲农业地区,今后要重点加强管控。
(3)3类重要生态空间内部生态保护成效有差异,国家级自然保护区作为中国成立最早、保护最严格、执法力度最大的重要生态空间,生态用地面积比例最高,面积减少率最小、减少趋势最不明显、变化最为稳定,生态保护效果最好,也体现了不同重要生态空间生态保护成效的差异。
(4)重要生态空间内生态用地面积比例高于周边外部区域,面积减少率低于外部区域,内、外保护成效具有明显梯度差异,重要生态空间的构建对生态保护的意义重大。
4.2 讨论
本文从时间和空间双重角度,通过对生态用地“空间格局”与“时间过程”的集成研究,评估了中国重要生态空间的生态保护效果,以期能为中国国土空间分类分区管控提供科学依据。但依然存在不足之处:① 国家级自然保护区、重点生态功能区和生物多样性优先区的成立时间不一样,管控重点和保护对象不同,依据不同管理需求划定,边界在空间上存在交叉重叠,有些区域甚至存在3类重叠。但本文仅分别对3类重要生态空间的生态保护成效进行了分析,没有考虑边界重叠带来的积累生态保护效应。在后续研究中将深入探讨和研究2类重叠或3类重叠的累积效应,以期为管理决策提供更加科学的支撑。② 分析采用的数据来源于中科院地理所建成的中国国家尺度土地利用数据库,目前已生产完成的最新数据年份为2018年。考虑到数据的可获得性,本文只探讨了截至2018年中国重要生态空间的生态保护成效,时效性略有不足,下一步有待利用最新数据源进行补充分析。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
URL [本文引用: 1]
URL [本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 3]
[本文引用: 3]
[本文引用: 3]
[本文引用: 3]
DOI:10.5846/stxbURL [本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
DOI:10.1111/gcb.13218PMID:26748590 [本文引用: 1]
Agricultural expansion has resulted in both land use and land cover change (LULCC) across the tropics. However, the spatial and temporal patterns of such change and their resulting impacts are poorly understood, particularly for the presatellite era. Here, we quantify the LULCC history across the 33.9 million ha watershed of Tanzania's Eastern Arc Mountains, using geo-referenced and digitized historical land cover maps (dated 1908, 1923, 1949 and 2000). Our time series from this biodiversity hotspot shows that forest and savanna area both declined, by 74% (2.8 million ha) and 10% (2.9 million ha), respectively, between 1908 and 2000. This vegetation was replaced by a fivefold increase in cropland, from 1.2 million ha to 6.7 million ha. This LULCC implies a committed release of 0.9 Pg C (95% CI: 0.4-1.5) across the watershed for the same period, equivalent to 0.3 Mg C ha(-1) yr(-1). This is at least threefold higher than previous estimates from global models for the same study area. We then used the LULCC data from before and after protected area creation, as well as from areas where no protection was established, to analyse the effectiveness of legal protection on land cover change despite the underlying spatial variation in protected areas. We found that, between 1949 and 2000, forest expanded within legally protected areas, resulting in carbon uptake of 4.8 (3.8-5.7) Mg C ha(-1), compared to a committed loss of 11.9 (7.2-16.6) Mg C ha(-1) within areas lacking such protection. Furthermore, for nine protected areas where LULCC data are available prior to and following establishment, we show that protection reduces deforestation rates by 150% relative to unprotected portions of the watershed. Our results highlight that considerable LULCC occurred prior to the satellite era, thus other data sources are required to better understand long-term land cover trends in the tropics.© 2016 John Wiley & Sons Ltd.
,
DOI:10.1007/s10531-008-9490-5URL [本文引用: 1]
,
DOI:10.1371/journal.pone.0057561URL [本文引用: 1]
,
DOI:10.1579/06-R-184.1URL [本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
DOI:10.11821/dlxb201411005 [本文引用: 1]
Considering the impacts of land use change on biodiversity conservation services of varied ecosystems, the Ecosystem Comprehensive Anthropogenic Disturbance Index (ECADI) is built to assess disturbance impacts of land use change during 1990-2010 on biodiversity conservation priority areas of China at national and regional scales. Four levels of biodiversity conservation areas are categorized: generally important areas, moderately important areas, important areas, and very important areas. Results showed that: In 2010, the ECADI value is higher in Central and Eastern China than that in Western China, and the values of the moderate important, important and very important regions are lower than the average value of the whole country at all levels. Notably, in recent 20 years, the change extent of ECADI in Central and Eastern China was much greater compared with that in Western China, and the change extent of ECADI in the moderately important, important and very important biodiversity conservation regions all showed slightly increasing trends, with the increasing degree lower than that of whole China at all levels. Due to human activities such as urbanization in Eastern China and cropland reclamation in Northeast China and Xinjiang, ECADI value in the moderately important, important and very important biodiversity conservation areas showed an increasing trend, which should be given more attention. However, ECADI value in the Loess Plateau presented a decreasing trend because of the obvious effectiveness of Green for Grain Project. Furthermore, the variation was negligible in the Tibetan Plateau.
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
PMID:26785559 [本文引用: 1]
In this paper, the dynamics of ecosystem macrostructure, qualities and core services during 2000 and 2010 were analyzed for the key ecological function zones of China, which were classified into four types of water conservation, soil conservation, wind prevention and sand fixation, and biodiversity maintenance. In the water conservation ecological function zones, the areas of forest and grassland ecosystems were decreased whereas water bodies and wetland were increased in the past 11 years, and the water conservation volume of forest, grassland and wetland ecosystems increased by 2.9%. This region needs to reverse the decreasing trends of forest and grassland ecosystems. In the soil conservation ecological function zones, the area of farmland ecosystem was decreased, and the areas of forest, grassland, water bodies and wetland ecosystems were increased. The total amount of the soil erosion was reduced by 28.2%, however, the soil conservation amount of ecosystems increased by 38.1%. In the wind prevention and sand fixation ecological function zones, the areas of grassland, water bodies and wetland ecosystems were decreased, but forest and farmland ecosystems were increased. The unit amount of the soil. wind erosion was reduced and the sand fixation amount of ecosystems increased lightly. In this kind of region that is located in arid and semiarid areas, ecological conservation needs to reduce farmland area and give priority to the protection of the original ecological system. In the biodiversity maintenance ecological function zones, the areas of grassland and desert ecosystems were decreased and other types were increased. The human disturbances showed a weakly upward trend and needs to be reduced. The key ecological function zones should be aimed at the core services and the protecting objects, to assess quantitatively on the effectiveness of ecosystem conservation and improvement.
,
PMID:26785559 [本文引用: 1]
DOI:10.11821/dlxb201803004 [本文引用: 1]
Ecosystem services have become one of the major aspects of ecosystem management and evaluation. As a key area of ecosystem services, evaluation of ecosystem changes and implementation effect is important for national key ecological function zones. Such evaluation can help to maintain national ecological security, drive the implementation of the main function zone strategy and advance the construction of an ecological civilization. This article explores the ecological zone of a tropical rainforest region in the central mountain area of Hainan Island, China. Multi-source satellite data and ground observation statistics are analyzed with geo-statistics method and ecological assessment model. The core analysis of this paper includes ecosystem pattern, quality and service. By means of spatial and temporal scale expansion and multi-dimensional space-time correlation analysis, we examine the trend and stability characteristics of ecosystem change, and evaluate the implementation effect. The results showed that, first, the forest area ratio was 84.5% in 2013, which was significantly higher than the average level in Hainan Island. During 1990-2013, settlement gradually increased in ecological zone. After the implementation of the function zone in 2010, human activity intensity was still increasing, with the area ratio rising from 0.5% to 0.8%. The main land use change was urban construction and land reclamation. Second, water conservation in the ecological function zone was better than that outside the zone. During 1990-2013, water conservation increased slightly, and had obvious fluctuation in different periods. Water conservation change decreased first and then increased during both the periods 1990-2000 and 2000-2013. Water conservation quantity was 0.5178 million cubic metres per square kilometer, which was higher than the average outside the zone. Third, soil conservation in the ecological function zone was also better than that outside the zone. Soil conservation showed dramatic fluctuations and relatively poor stability during 1990-2013. Soil conservation quantity was 19500 tons per square kilometer in the ecological function zone. Fourth, the human disturbance index in the ecological function zone was significantly less than that outside the zone and had lower biodiversity threat level. This would be beneficial to biodiversity conservation. In the ecological function zone, average human disturbance index was 0.3664 and 0.1152 lower than that outside the zone. During 1990-2013, human disturbance index variation range outside the zone was 0.0152, about 5.31 times that of the inner zone. Especially in 2010-2013, the increased range of human disturbance index in the ecological function zone was significantly less than that outside value the zone.
,
[本文引用: 1]
DOI:10.11821/dlxb201801008 [本文引用: 1]
Establishment of protected areas is one of the most important approaches for biodiversity conservation. Until 2015, China had established 2740 sites for nature reserves with a total area of 1.47 million km2, which covering 14.8% of Chinese land surface. Based on remote sensing inversion, model simulation and spatial analysis methods, this study analyzed spatial and temporal variations of habitat from vegetation coverage, net primary production (NPP) and their driving forces in different types and climate zones on the typical nature reserves of China, in the first 15 years of the 21st Century. Results showed that from 2000 to 2015, the vegetation coverage of national nature reserves increased from 36.3% to 37.1%, with all types of nature reserves improved to some extent. The forest ecological nature reserves observed annual growth of 0.1%, grassland meadow type 0.8%, inland wetlands classes 0.2%, desert ecological class 0.1%, wild animal 0.1% and wild plants 0.1%. The NPP of grassland meadow, inland wetlands, desert ecology, wild animal nature reserve had a growth of 2.0 g·m-2, 1.2 g·m-2, 0.3 g·m-2 and 0.4 g·m-2 respectively. However, the NPP of forest ecological and wild plants nature reserves reduced by a rate of 3.5 g·m-2 and 2.5 g·m-2 respectively. In the 15 years, national nature reserves had a weak change from human disturbance, in addition to nature reserves which located in the Qinghai-Tibet Plateau and the south subtropical humid area with a slightly fall, others are increased, especially in the north subtropical and temperate humid zone, the human disturbance increased significantly from 4.7% to 5.4%.
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 2]
,
[本文引用: 2]
DOI:10.17520/biods.2019087 [本文引用: 1]
The construction of natural protected area system is a biodiversity conservation strategy which has been highly emphasized by international communities. In recent years, China expresses its concerns about the overlapping and intersection of natural protected area and proposed Guidance on Establishing a Natural Protected Area System Dominated by National Parks. To implement the proposed strategy, it is important to conduct a systematic study on the relationship and spatial distribution of the natural protected areas. This study collected data from 8,572 natural protected areas in different categories and administrative levels, including coordinates, types of ecosystems, administrative regions and boundaries. Among them, 1,532 natural protected areas with spatial overlapping and cross-jurisdictions were selected. Geographic concentration index (G) was calculated, and ArcGIS software was adopted for Kernel density estimation. Finally, the spatial distribution patterns, overlap of protected areas in ecological and geographic zones, ecosystem types, agencies with crossing jurisdiction and province locations were obtained. The results showed that: (1) Natural protected areas were concentrated in mountainous areas in central Shandong, Taihang Mountain, Dabie Mountain, Tianmu-Huaiyu Mountain and Wanjiang region, across multiple wetlands and forest ecosystems (Mean > 6, Max > 8). Among 10 pilot national parks, only Giant panda, Nanshan and Qianjiangyuan were located in areas with high density of overlapping; (2) The former State Administration of Forestry and the Ministry of Housing and Urban-rural Development had the largest number of sites under cross-jurisdiction among all the former agencies; (3) The number of overlapping natural protected areas in Heilongjiang, Anhui, Shandong, Henan, Hubei and Hunan provinces are significantly higher than other provinces. The overlap between Shanxi-Hebei-Henan and Anhui-Hubei-Jiangxi provinces is higher, and there is moderate overlap in other provinces. The areas studied above could become key priority areas for reassembling and optimizing China’s protected area system. Based on overlap hot zones, priority zones for biodiversity conservation, and cultural ecosystem services, this paper proposes a framework for reassembling and optimizing overlapped protected areas. According to 3 new protected area categories including national parks, nature reserves and natural parks, suggestions are given prioritizing reassembling and associating the area with a new category, which would provide a reference scheme to the urgent needs of ongoing reform of China’s natural protected areas system.
,
[本文引用: 1]
DOI:10.11821/dlxb201805001 [本文引用: 1]
Land use/cover change is an important theme on the impacts of human activities on the earth systems and global environment change. National land-use changes of China during 2010-2015 were acquired by the digital interpretation method using high-resolution remotely sensed images, i.e. the Landsat8 OLI, and GF-2 remote sensing images. The spatio-temporal characteristics of land-use changes across China during 2010-2015 were revealed by the indexes of dynamic degree model, annual land-use changes ratio, etc. The results indicated that built-up land increased by 24.6×103 km2, while cropland decreased by 4.9×103 km2, and the total area of woodland and grassland decreased by 16.4×103 km2. The spatial pattern of land-use changes in China during 2010-2015 was concordant with that of the period 2000-2010. Specially, new characteristics of land-use changes emerged in different regions of China in 2010-2015. The built-up land in eastern China expanded continually, and the total area of cropland decreased, both at decreasing rates. The rates of built-up land expansion and cropland shrinkage were accelerated in central China. The rates of built-up land expansion and cropland growth increased in western China, while the decreasing rate of woodland and grassland accelerated. In northeastern China, built-up land expansion slowed down continually, and cropland area increased slightly accompanied by the conversions between paddy land and dry land. Besides, woodland and grassland area decreased in northeastern China. The characteristics of land-use changes in eastern China were essentially consistent with the spatial governance and control requirements of the optimal development zones and key development zones according to the Major Function-oriented Zones Planning implemented during the 12th Five-Year Plan (2011-2015). It was a serious challenge for the central government of China to effectively protect the reasonable layout of land use types dominated with the key ecological function zones and agricultural production zones in central and western China. Furthermore, the local governments should take effective measures to strengthen the management of territorial development in future.
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
DOI:10.1007/s11442-010-0483-4URL [本文引用: 1]
,
DOI:10.1007/s11442-014-1082-6URL [本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
DOI:10.11821/dlxb201502013 [本文引用: 1]
As a fundamental supplying carrier of natural ecosystem services in urban areas, ecological land couples human social development and natural ecological succession based on the inherent correlation between land use and land cover. Thus spatial optimization of ecological land has gradually become a vital and comprehensive approach to address the conflicts between urban development and ecological conservation. The measurement of urban ecological land demand can directly determine the equilibrium between supply and demand for ecological land, which is a significant step in overall planning and management of urban ecological land. After a systematic review of the concept of ecological land, the similarities and differences between ecological demands and ecological land demands are discussed in this paper. Then a conceptual space-function framework for measuring urban ecological land demand is proposed. Within this framework methodologies of measuring urban ecological land fall into three categories, namely experimental predication, ecosystem services and spatial patterns. In details, the category of experimental predication includes legal quota and historical trend methods. The methods of ecological footprint and carbon-oxygen equilibrium belong to the category of ecosystem services, while the method of ecological security pattern is included in the spatial patterns category. By methodological principles analysis, the advantages and disadvantages of these methods are comparatively discussed and summarized in terms of comprehensiveness, representativeness, threshold and area, and location. Finally, four key directions of future research are presented: urban ecological land classification related to ecological functions, comprehensive efficiency measurement on urban ecological land focusing on spatial patterns of ecological land, functional tradeoff of urban ecological land using multi-target scenarios, and urban ecological hinterland recognition based on ecological land supply-demand balance analysis.
,
[本文引用: 1]
DOI:10.11821/dlxb201707013 [本文引用: 1]
This paper created a land use classification system of production-living-ecological spaces based on analyzing the theories of production-living-ecological spaces and commanding the dialectical relationships between land use types and land use functions. The classification system perfectly connected to the state standard of land use classification. Based on this system, we examined the spatial and temporal patterns of production-living-ecological spaces in China between 1990 and 2010. The results showed that: (1) The production spatial pattern almost unchanged between 1990 and 2010, and the production spaces were mainly distributed in the southeast of the Hu Huanyong Line, including Northeast China Plain, northwest Xinjiang, Ningxia, Lanzhou-Xining, Sichuan Basin, Bohai Rim, Yangtze River Delta, Xiamen-Quanzhou-Zhangzhou, and Pearl River Delta, where China's urban agglomerations and main grain production areas were located in. (2) Living spaces were mainly distributed in China's urban agglomerations and cities, showing a spatial pattern of "high in the east and north regions, while low in the west and south regions". Its spatial expansion varied in different areas. Large-scale expansion of living spaces appeared in the Bohai Rim, Yangtze River Delta and Pearl River Delta, while small-scale and point-type expansion in the major provincial capitals. (3) Ecological spaces were mainly distributed in the northwest of the Hu Huanyong Line, showing a spatial pattern of "high in the west and south regions, while low in the east and north regions". The expansion of ecological spaces were mainly in the Loess Plateau, Hulun Buir Glassland and Tianshan Mountains, while the reduction of ecological spaces were mainly in the Northeast China Plain, North China Plain, Yangtze River Delta, Pearl River Delta, Ningxia and Xinjiang. (4) Industrialization and urbanization were the basic driving powers of changes of China's production-living-ecological spaces. The main reasons for regional spatial differences across China included farmland cultivation in Northwest and Northeast China, rapid urbanization in North China, Bohai Rim, Yangtze River Delta and Pearl River Delta, and reversion of farmland to forestland in the Loess Plateau. This research was valuable for the studies on classification and evaluation of production-living-ecological spaces.
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
DOI:10.11821/dlxb201601004 [本文引用: 1]
The identifying of land multifunctionality is a basic tool for organization, coordination and configuration of urban land, and is a key criterion for urban land functions forms, composite pattern and dynamic tradeoffs. This topic is of important theoretical and practical significance. An available identification system of urban land multifunctionality, however, had not been built for a long time. This paper develops a function classification system for urban ecological-production-living spaces from an integrated perspective of land function, ecosystem services and landscape function. We integrated a value function group of space function based on ecosystem services valuation. A comparison method of vertical and cross direction is proposed to identify dominant function type of urban land. The empirical results show that in the study area, function classification system of urban ecological-production-living spaces can reflect differentiated function types of different land use classes. The identified result of dominant function for urban space is matched with the functions of different land types. Meanwhile, we also found that there are some problems on urban land use, such as the low adjacency degree with different spaces, and poor complementarity with different space functions. The result indicates that the spatial distribution of urban ecological-production-living spaces is congregated in the study area.
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
PMID:19947214 [本文引用: 2]
With the well-developed theory and methodology of landscape security pattern, and by the analysis of natural, biological, and cultural processes, it's possible to judge and plan the landscape security pattern of definite ecological process, i. e., to maintain the minimum ecological land use of this ecological process both in pattern and in area, which is of strategic significance. From the aspects of land coverage and spatial quality, this paper defined the ecological land use as the ecosystem (land unit) and its spatial position that have important significance in safeguarding critical ecological processes and providing critical ecosystem services. Taking three towns in eastern Beijing as an example, the ecological land use based on storm water management and biological conservation was analyzed. In the study area, the ecological land use at low, medium, and high security levels occupied 20.4%, 31.1%, and 48.6% of the total, respectively, indicating that the landscape security pattern approach based on critical ecological processes was an effective tool in the quantitative study of ecological land use, having important reference value for urban and land planning.
,
PMID:19947214 [本文引用: 2]
[本文引用: 2]
,
[本文引用: 2]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]