Monitoring glacier surface velocity and ablation using high-resolution UAV imagery
FU Yin,1, LIU Qiao2, LIU Guoxiang1,3, ZHANG Bo1, CAI Jialun1, WANG Xiaowen1,3, ZHANG Rui,1,31. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China 2. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China 3. State-Province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Rail Safety, Chengdu 611756, China
National Key R&D Program of China.2017YFB0502700 National Natural Science Foundation of China.41771402 National Natural Science Foundation of China.41871069 National Natural Science Foundation of China.41804009 Technology Research and Development Program of China Railway Corporation.P2018G004 Science and Technology Program of Sichuan Province.2018JY0564
作者简介 About authors 符茵(1994-), 女, 河南信阳人, 博士生, 研究方向为遥感图像处理与分析。E-mail: rsyinfu@my.swjtu.edu.cn
Abstract Unmanned Aerial Vehicle (UAV) has been developed to obtain high-precision, high-resolution and three-dimensional (3D) dynamic of glacier surface, which is helpful for revealing the movement and melting of glaciers, so it has become an important technology for glaciology researches. Because the high-resolution image data can be used to effectively identify the detailed features on the surface of the debris-covered glaciers, this study employed the pyramid image set combined with the least square matching (LSM) method to track the feature points of 3D displacement field. We acquired digital orthophoto map (DOM) and digital surface model (DSM) by UAV mapping at the lower part of Gongba Glacier, Mt. Gongga, on June 9 and October 17, 2018. Feature points were extracted and tracked to obtain a 3D glacier surface displacement field, which suggests that the mean surface displacement velocity was 7.51 cm/d and the ablation was over 11 cm/d at the glacier tongue. This study provides effective reference for monitoring glaciers and glacial related hazards in steep terrain regions and unreachable mountainous areas. Keywords:UAV;LSM;pyramid image;Gongba Glacier;glacier ablation
PDF (7578KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 符茵, 刘巧, 刘国祥, 张波, 蔡嘉伦, 王晓文, 张瑞. 基于无人机影像的冰面流速与高程变化提取方法. 地理学报[J], 2021, 76(5): 1245-1256 doi:10.11821/dlxb202105015 FU Yin, LIU Qiao, LIU Guoxiang, ZHANG Bo, CAI Jialun, WANG Xiaowen, ZHANG Rui. Monitoring glacier surface velocity and ablation using high-resolution UAV imagery. Acta Geographica Sinice[J], 2021, 76(5): 1245-1256 doi:10.11821/dlxb202105015
1 引言
冰川是全球重要的固态水资源,同时也是气候变化的指示器[1]。1951—2009年期间,中国平均气温升高了1.38°C,其中青藏高原变暖率达到了0.4 ℃/10a [2]。相比于大陆型冰川,季风海洋型冰川对气候的变化更加敏感,在全球气候变暖的背景下,表现出更高的动态变化和更高的物质交换水平[3,4,5,6]。已有研究表明,高亚洲地区的喜马拉雅山脉、天山山脉、祁连山脉以及念青唐古拉山脉和横断山脉的冰川物质严重亏损,尤其在藏东南地区达到了(-4.0±1.5) Gt a-1((-0.62±0.23) m w.e. a-1)[7]。冰川的加速退缩,除了雪线不断上升、冰川厚度不断变薄、流速持续减缓等外在表象,还会诱发滑坡、泥石流和冰湖溃决导致的洪水等次生灾害[8]。
IPCC. . Geneva: Cambridge University Press. [本文引用: 1]
LiuShiyin, YaoXiaojun, GuoWanqin, et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory Acta Geographica Sinica, 2015,70(1):3-16. [本文引用: 1]
Yao TD, ThompsonL, YangW, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings , 2012,2(9):663-667. DOI:10.1038/nclimate1580URL [本文引用: 1]
ZhangY, HirabayashiY, LiuS Y. Catchment-scale reconstruction of glacier mass balance using observations and global climate data: Case study of the Hailuogou catchment, south-eastern Tibetan Plateau , 2012,444/445:146-160. DOI:10.1016/j.jhydrol.2012.04.014URL [本文引用: 1]
YangW, Yao TD, Guo XF, et al. Mass balance of a maritime glacier on the southeast Tibetan Plateau and its climatic sensitivity , 2013,118(17):9579-9594. DOI:10.1002/jgrd.50760URL [本文引用: 1]
ZhuM, YaoT, YangW, et al. Differences in mass balance behavior for three glaciers from different climatic regions on the Tibetan Plateau , 2018,50(9/10):3457-3484. DOI:10.1007/s00382-017-3817-4URL [本文引用: 1]
BrunF, BerthierE, WagnonP, et al. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016 , 2017,10(9):668-673. DOI:10.1038/ngeo2999URL [本文引用: 1]
AltenaB, ScambosT, FahnestockM, et al. Extracting recent short-term glacier velocity evolution over southern Alaska and the Yukon from a large collection of Landsat data , 2019,13(3):795-814. DOI:10.5194/tc-13-795-2019URL [本文引用: 1]
ScherlerD, LeprinceS, Strecker MR. Glacier-surface velocities in alpine terrain from optical satellite imagery:Accuracy improvement and quality assessment , 2008,112(10):3806-3819. DOI:10.1016/j.rse.2008.05.018URL [本文引用: 1]
DehecqA, GourmelenN, TrouvéE. Deriving large-scale glacier velocities from a complete satellite archive: Application to the Pamir-Karakoram-Himalaya , 2015,162:55-66. DOI:10.1016/j.rse.2015.01.031URL [本文引用: 1]
LiuGuoxiang, ZhangBo, ZhangRui, et al. Monitoring dynamics of Hailuogou Glacier and the secondary landslide disasters based on combination of satellite SAR and ground-based SAR Geomatics and Information Science of Wuhan University, 2019,44(7):980-995. [本文引用: 3]
BhardwajA, SamL, Martín-TorresF J, et al. UAVs as remote sensing platform in glaciology: Present applications and future prospects , 2016,175:196-204. DOI:10.1016/j.rse.2015.12.029URL [本文引用: 2]
Hugenholtz CH, WhiteheadK, Brown OW, et al. Geomorphological mapping with a small unmanned aircraft system (sUAS): Feature detection and accuracy assessment of a photogrammetrically-derived digital terrain model , 2013,194:16-24. DOI:10.1016/j.geomorph.2013.03.023URL [本文引用: 1]
BenoitL, GourdonA, VallatR, et al. A high-resolution image time series of the Gorner Glacier-Swiss Alps-derived from repeated unmanned aerial vehicle surveys , 2019,11(2):579-588. DOI:10.5194/essd-11-579-2019URL [本文引用: 1]
WigmoreO, Mark BG. Monitoring tropical debris-covered glacier dynamics from high-resolution unmanned aerial vehicle photogrammetry, Cordillera Blanca, Peru , 2017,11:2463-2480. DOI:10.5194/tc-11-2463-2017URL [本文引用: 1]
Dall'AstaE, ForlaniG, RoncellaR, et al. Unmanned aerial systems and DSM matching for rock glacier monitoring , 2017,127:102-114. DOI:10.1016/j.isprsjprs.2016.10.003URL [本文引用: 1]
Ye YX, BruzzoneL, ShanJ, et al. Fast and robust matching for multimodal remote sensing image registration , 2019,57(11):9059-9070. DOI:10.1109/TGRS.36URL [本文引用: 1]
Harris CG, StephensM. A combined corner and edge detector , 1988. [本文引用: 1]
GruenA. Adaptive least squares correlation: A powerful image matching technique , 1985,14(3):175-187. [本文引用: 1]
SuZhen, ShiYafeng, ZhengBenxing. Quaternary glacial remains on the Gongga Mountain and the division of glacial period Advance in Earth Sciences, 2002,17(5):639-647. [本文引用: 1]
ZhangNingning, HeYuanqing, DuanKeqin, et al. Changes of Gongba Glacier in the west slope of Mt. Gongga during the past 25 years Journal of Glaciology and Geocryology, 2008,30(3):380-382. [本文引用: 2]
ZhangBo, ZhangRui, LiuGuoxiang, et al. Monitoring of interannual variabilities and outburst regularities analysis of glacial lakes at the end of Gongba Glacier utilizing SAR images Geomatics and Information Science of Wuhan University, 2019,44(7):1054-1064. [本文引用: 3]
LiuQiao, LiuShiyin, ZhangYong, et al. Surface ablation features and recent variation of the lower ablation area of the Hailuogou Glacier, Mt. Gongga Journal of Glaciology and Geocryology, 2011,33(2):227-236. [本文引用: 2]
SuZhen, SongGuoping, CaoZhentang. Maritime characteristics of Hailuogou Glacier in the Gongga Mountains Journal of Glaciology and Geocryology, 1996,18(Suppl.1) : 51-59. [本文引用: 1]