Monitoring of snowline altitude at the end of melting season in High Mountain Asia based on MODIS snow cover products
WANG Xiaoru1,2, TANG Zhiguang,1, WANG Jian3, WANG Xin2,3, WEI Junfeng21. National-local Joint Engineering Laboratory of Geo-spatial Information Technology, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China 2. Department of Resources, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China 3. Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou 730000, China
National Nature Science Foundation of China.41871058 National Nature Science Foundation of China.41501070 National Nature Science Foundation of China.41701061 National Nature Science Foundation of China.41771075 Natural Science Foundation of Hunan Province.2018JJ3154
作者简介 About authors 王晓茹(1993-),女,陕西渭南人,硕士,主要从事积雪遥感方面的研究E-mail:wangxiaoru93@126.com。
摘要 以2001—2016年逐日MODIS积雪产品为主要数据源,在高亚洲区域发展了大尺度融雪末期雪线高度的遥感提取方法,并对其2001—2016年的时空变化特征进行了分析。提取方法首先对逐日的MODIS积雪覆盖率产品进行去云处理,获得积雪覆盖日数(SCD)数据集;并用冰川年物质平衡观测数据、融雪末期Landsat数据对提取终年积雪的MODIS SCD阈值进行率定;最后以MODIS SCD提取的终年积雪面积结合地形“面积—高程”曲线实现大尺度融雪末期雪线高度信息的提取。结果表明:① 高亚洲融雪末期雪线高度的空间异质性较强,总体上呈南高北低的纬度地带性分布规律;并因受山体效应的影响,雪线高度由高海拔地区向四周呈环形逐渐降低的特点。② 高亚洲2001—2016年融雪末期雪线高度总体上表现为明显的增加趋势。在744个30 km的监测格网中,24.2%的格网雪线高度呈显著增加,而仅0.9%的格网呈显著下降。除兴都库什、西喜马拉雅外,其他地区雪线高度均表现为升高趋势,显著上升的地区主要分布在天山、喜马拉雅中东部和念青唐古拉山等,其中以东喜马拉雅升高最为显著(8.52 m yr -1)。③ 夏季气温是影响高亚洲融雪末期雪线高度变化的主要因素,两者具有显著的正相关关系(R = 0.64,P < 0.01)。 关键词:雪线高度;MODIS;积雪覆盖率产品;高亚洲;遥感监测
Abstract The remote sensing extraction method of large-scale snowline altitude at the end of melting season is developed based on MODIS snow cover products. The spatial and temporal variation characteristics of snowline altitude at the end of melting season of the High Mountain Asia during 2001-2016 are detailedly estimated on a grid-by-grid (30 km) basis. In this method, the cloud removal of the daily MODIS snow cover products was firstly carried out based on the developed cubic spline interpolation cloud-removel method, and snow covered days (SCD) of the 16 years are extracted using the cloud-removed MODIS snow cover products. In addition, the MODIS SCD threshold for estimating perennial snow cover is calibrated using the observed data of glacier annual mass balance and Landsat data at the end of melting season. Finally, the altitude value of the snowline at the end of melting season is determined by combining the perennial snow cover area and the terrain area-elevation curve. The results are as follows: (1) There is strong spatial heterogeneity of the snowline altitude at the end of melting season in the High Mountain Asia, and the snowline altitude at the end of melting season generally decreases with the increase of latitude. Under the influence of mass elevation effect, snowline altitude at the end of melting season gradually decreases from the high altitude area to the surrounding low mountainous area. (2) Generally, the snowline altitude at the end of the melting season from 2001 to 2016 in High Mountain Asia shows an obvious increasing trend. In the 744 monitoring grids (30 km), the snowline altitude at the end of melting season in 24.2% of the grids shows a significant increasing trend, while only 0.9% with a significant decrease. The snowline altitude at the end of melting season shows an increasing trend almost in the whole the High Mountain Asia, except for the regions of Hindukush and West Himalayas. The Tianshan Mountains, central and eastern Himalayas and Nyainqentanglha mountains show a significant increasing trend, and the eastern Himalayas experiences the most significant increase of 8.52 m yr -1. (3) The summer temperature is the main factor affecting the change of snowline altitude at the end of melting season in the High Mountain Asia, with a significant positive correlation (R=0.64, p<0.01). Keywords:snowline altitude;MODIS;snow cover products;High Mountain Asia;remote monitoring
PDF (4019KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 王晓茹, 唐志光, 王建, 王欣, 魏俊锋. 基于MODIS积雪产品的高亚洲融雪末期雪线高度遥感监测. 地理学报[J], 2020, 75(3): 470-484 doi:10.11821/dlxb202003003 WANG Xiaoru. Monitoring of snowline altitude at the end of melting season in High Mountain Asia based on MODIS snow cover products. Acta Geographica Sinice[J], 2020, 75(3): 470-484 doi:10.11821/dlxb202003003
Fig. 3Average correlation coefficients between annual mass balance of the 12 measured glaciers and their corresp-onding grid (30 km) snowline altitude changing with the MODIS SCD threshold
Fig. 7Scatter plots of grid (30 km) grids snowline altitude at the end of melting season and the corresponding grid elevation in the High Mountain Asia
4.2 融雪末期雪线高度时空变化
对研究区744个格网2001—2016年的融雪末期雪线高度进行线性趋势分析,得出2001—2016年研究区融雪末期雪线高度的变化趋势,并对变化趋势进行了显著性检验(图8)。高亚洲2001—2016年融雪末期雪线高度变化总体上表现为增加趋势。研究区75.3%的格网雪线高度呈现不同程度的增加趋势(趋势线斜率值为0~24.5 m yr-1),其中24.2%的格网呈显著增加(p < 0.05);显著性增加且年均增长8 m以上的格网主要分布在天山、喜马拉雅中部和东部、念青唐古拉山、以及青藏高原内部的局部地区。雪线高度呈下降趋势的格网占总格网数的16.1%(趋势线斜率为-13.6~0 m yr-1),主要分布在喀喇昆仑山西部、兴都库什、西喜马拉雅山脉以及帕米尔地区,而仅0.9%的格网呈显著下降趋势(p < 0.05)。
注:*、**分别表示统计显著性达到0.05和0.01的水平。 Fig. 9Interannual variation and linear trend (slope) of snowline altitude at the end of melting season for different subregions of High Mountain Asia from 2001 to 2016
Tab. 1 表1 表12001—2016年高亚洲不同分区融雪末期雪线高度与气温、降水之间的相关系数 Tab. 1Correlation coefficients between the snowline altitude at the end of melting season and temperature, precipitation in different subregions of High Mountain Asia during 2001-2016
Tab. 2 表2 表212条实测冰川的年物质平衡与对应格网融雪末期雪线高度(30 km)之间的线性回归参数 Tab. 2Linear regression parameters between annual mass balances and the grid (30 km) snowline altitudeat the end of melting season for the 12 measured glaciers
Fig. 10Scatter plots between glacier annual mass balances and their corresponding grid (30 km) snowline altitude at the end of melting season for the 12 glaciers
在全球变暖的大背景下,高亚洲的积雪、冰川、冰湖以及多年冻土正在加速变化[37]。高亚洲融雪末期雪线高度的年际变化总体上表现为升高的趋势,特别是在天山、喜马拉雅中东部、青藏高原东南部的念青唐古拉山等区域的上升趋势显著(图8~图9)。已有研究表明[38,39,40],在过去的几十年里,高亚洲冰川的物质平衡普遍在下降,但在某些区域部分冰川保持稳定,甚至有增长的趋势,这种特殊的行为首先在喀喇昆仑发现,并称为“喀喇昆仑异常”[38],而这种异常在高亚洲西北部的喀喇昆仑和帕米尔也得到了证实[41]。本研究中发现,高亚洲融雪末期雪线高度总体上呈上升趋势(图8~图9),并且融雪末期雪线高度在东天山(5.16 m yr-1)、西天山(4.64 m yr-1)、青藏高原内部(3.64 m yr-1)、青藏高原东南部(9.18 m yr-1)、东喜马拉雅(8.52 m yr-1)和横断山(5.16 m yr-1)地区上升趋势显著。
WunderleS, DrozM, KleindienstH . Spatial and temporal analysis of the snow line in the Alps: Based on NOAA- AVHRR data , 2002,57(3):170-183. [本文引用: 1]
Baum SK, Crowley TJ . Seasonal snowline instability in a climate model with realistic geography: Application to carboniferous glaciation , 1991,18(9):1719-1722. [本文引用: 1]
Mengel JG, Short DA, North GR . Seasonal snowline instability in an energy balance model , 1988,2(3):127-131. [本文引用: 1]
Kraj?íP, HolkoL, Perdig?oR A P , et al. Estimation of regional snowline elevation (RSLE) from MODIS images for seasonally snow covered mountain basins , 2014,519:1769-1778. [本文引用: 3]
PandeyP, Kulkarni AV, VenkataramanG . Remote sensing study of snowline altitude at the end of melting season, Chandra-Bhaga basin, Himachal Pradesh, 1980-2007 , 2013,28(4):311-322. [本文引用: 2]
GuoZhongming, GuZhujun, WuHongbo , et al. Research progress of glacier snowline altitude Remote Sensing Technology and Application, 2016,31(4):645-652. [本文引用: 3]
McFadden EM, RamageJ, RodbellT . Landsat TM and ETM+ derived snowline altitudes in the Cordillera Huayhuash and Cordillera Raura, Peru, 1986-2005 , 2011,5(2):419-430. [本文引用: 2]
RabatelA, BermejoA, LoarteE , et al. Can the snowline be used as an indicator of the equilibrium line and mass balance for glaciers in the outer tropics? , 2012,58(212):1027-1036. [本文引用: 1]
Tawde SA, Kulkarni AV, BalaG . Estimation of glacier mass balance: An approach based on satellite-derived transient snowlines and a temperature index driven by meteorological observations//American Geophysical Union , 2015. 2015:C13B-0810. [本文引用: 1]
XieZichu, ZhouZaigen, LiQiaoyuan , et al. Progress and prospects of mass balance characretistic and responding to global change of glacier system in High Asia Advances in Earth Science, 2009,24(10):1065-1072. [本文引用: 1]
HuangX, DengJ, WangW , et al. Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau , 2017,190:274-288. [本文引用: 1]
LiuShiyin, DingYongjian, YeBaisheng , et al. Regional characretistics of glacier mass balance variations in High Asia Journal of Glaciology and Geocryology, 2000,22(2):97-105. [本文引用: 1]
LeiL, ZengZ, ZhangB . Method for detecting snow lines from MODIS data and assessment of changes in the Nianqingtanglha Mountains of the Tibet Plateau , 2012,5(3):769-776. [本文引用: 2]
SpiessM, HuintjesE, SchneiderC . Comparison of modelled-and remote sensing-derived daily snow line altitudes at Ulugh Muztagh, northern Tibetan Plateau , 2016,13(4):593-613.
VerbylaD, HegelT, NolinA , et al. Remote sensing of 2000-2016 alpine spring snowline elevation in Dall Sheep Mountain Ranges of Alaska and Western Canada , 2017,9(11):1157-1174.
WangJ, LiH, LiangJ , et al. Extraction and assessment of snowline altitude over the Tibetan Plateau using MODIS fractional snow cover data (2001 to 2013) , 2014,8(1):084689. [本文引用: 2]
BaoWeijia, LiuShiyin, WuKunpeng , et al. A method for extracting snowline alitude based on MODIS snow product Journal of Glaciology and Geocryology, 2017,39(2):259-272. [本文引用: 1]
TangZhiguang, WangJian, LiangJi , et al. Monitoring of snowline altitude over the Tibetan Plateau based on MODIS data Remote Sensing Technology and Application, 2015,30(4):767-774. [本文引用: 3]
TangZhiguang, WangJian, WangXin , et al. Extraction and spatiotemporal analysis of snow covered days over Tibetan Plateau based on MODIS data Mountain Research, 2017,35(3):412-419. [本文引用: 3]
DwyerJ, SchmidtG . The MODIS Reprojection Tool //Qu J J, Gao W, Kafatos M, et al. Earth Science Satellite Remote Sensing. , 2006. [本文引用: 1]
TangZhiguang, WangJian, LiHongyi , et al. Arccuracy validation and cloud obscuration removal of MODIS fractional snow cover products over Tibetan Plateau Remote Sensing Technology and Application, 2013,28(3):423-430. [本文引用: 2]
TangZhiguang, WangJian, WangXin , et al. Spatiotemporal variation of snow cover in Tianshan Mountains based on MODIS Remote Sensing Technology and Application, 2017,32(3):556-563. [本文引用: 1]
Hall DK, Riggs GA, Salomonson VV . Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data , 1995,54(2):127-140. [本文引用: 1]
ZhangQ, KangS . Glacier snowline altitude variations in the Pamirs, Tajikistan, 1998-2013: Insights from remote sensing images , 2017,8(12):1220-1229. [本文引用: 1]
ZhangQibing, KangShichang, ZhangGuoshuai , et al. Changes of snow line altitude for glaciers on Western Nyainqentanglha range observed by remote sensing Scientia Geographica Sinica, 2016,36(12):1937-1944. [本文引用: 1]
Klein AG, Isacks BL . Spectral mixture analysis of Landsat thematic mapper images applied to the detection of the transient snowline on tropical Andean glaciers , 1999,22:139-154. [本文引用: 1]
HanFang, ZhangBaiping, TanJing , et al. The effect of mountain basal elevation on the distribution of snowline with different mountain basal elevations in Tibetan Plateau and its surrounding areas Geographical Research, 2014,33(1):23-30. [本文引用: 2]
YeWanhua, WangFeiteng, LiZhongqin , et al. Temporal and spatial distributions of the equilibrium line altitudes of the monitoring glaciers in High Asia Journal of Glaciology and Geocryology, 2016,38(6):1459-1469. [本文引用: 1]
HanF, Zhang BP, ZhaoF , et al. Estimation of mass elevation effect and its annual variation based on MODIS and NECP data in the Tibetan Plateau , 2018,15(7):1510-1519. [本文引用: 1]
ZhangBaiping, YaoYonghui . Implications of mass elevation effect for the altitudinal patterns of global ecology , 2016,26(7):871-877. [本文引用: 1]
HanF, ZhangB, YaoY , et al. Mass elevation effect and its contribution to the altitude of snowline in the Tibetan Plateau and surrounding areas , 2011,43(2):207-212. [本文引用: 1]
HanF, YaoY, DaiS , et al. Mass elevation effect and its forcing on timberline altitude , 2012,22(4):609-616. [本文引用: 1]
YaoTandong, LiuShiyin, PuJianchen , et al, Recent retreat of high Asian glaciers and its impact on northwest water resources Earth Science, 2004,34(6):535-543. [本文引用: 2]
BrunF, BerthierE, WagnonP , et al. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016 , 2017,10(9):668-673. [本文引用: 2]
YaoT, Thompson LG, MosbruggerV , et al. Third Pole environment (TPE) , 2012,3:52-64. [本文引用: 1]
HewittK . The Karakoram anomaly? Glacier expansion and the 'elevation effect' Karakoram Himalaya , 2005,25(4):332-340. [本文引用: 1]
BolchT, KulkarniA, K??bA , et al. The state and fate of Himalayan glaciers , 2012,336(6079):310-314. [本文引用: 1]
ChenYaning, LiZhi, FangGonghuan , et al. Impact of climate change on water resources in the Tianshan Mountians, Central Asia Acta Geographica Sinica, 2017,72(5):18-26. [本文引用: 1]
ChenAnan, ChenWei, WuHongbo , et al. The variations of firn line altitude on the Binglinchuan Glacier, Ulugh Muztagh during 2000-2013 Journal of Glaciology and Geocryology, 2014,36(5):1069-1078. [本文引用: 2]
WangNinglian . Grey relational analysis of the leading climatic factor influencing the changes of the equilibrium line Journal of Glaciology and Geocryology, 1995,17(1):8-15. [本文引用: 1]
WangNinglian, HeJianqiao, PuJianchen , et al. Altitude of glacier balance line changes in Qilian Mountain in the last 50 years Chinese Science Bulletin, 2010,55(32):3107-3115. [本文引用: 1]
ZhaoJun, HuangYongsheng, ShiYinfang , et al. Relationship between snowLine change and climate change in the middle of Qilian Mountains during 2000-2012 Mountain Research, 2015,33(6):683-689. [本文引用: 1]